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Background. Literature has identified differentially expressed miRNAs in congenital pulmonary airway malformation (CPAM).
However, the functional role of these miRNAs in CPAM remains unclear. Methods. We obtained diseased lung tissues as well
as adjacent normal lung tissue from CPAM patients attending the centre. Hematoxylin and eosin (H&E) and Alcian blue
staining were performed. Differentially expressed mRNA expression profile was CPAM tissue, and matched normal tissue
specimens were examined by high-throughput RNA sequencing. CCK-8 assay, EdU staining, TUNEL staining, flow cytometry,
and the Transwell assay were performed to investigate the effect of miR-548au-3p/CA12 axis on proliferation, apoptosis, and
chondrogenic differentiation in rat tracheal chondrocytes. mRNA and protein expression levels were determined using reverse
transcription-quantitative PCR and western blot analysis, respectively. The relationship between miR-548au-3p and CA12 was
evaluated using the luciferase reporter assay. Results. The expression level of miR-548au-3p was significantly increased in
diseased tissues compared with normal adjacent tissues from patients with CPAM. Our results indicate that miR-548au-3p
functions as a positive regulator in rat tracheal chondrocyte proliferation and chondrogenic differentiation. At molecular level,
miR-548au-3p promoted N-cadherin, MMP13, and ADAMTS4 expressions and reduced E-cadherin, aggrecan, and Col2A1
expressions. CA12 has been previously reported as a predicted target of miR-548au-3p, and here, we show that overexpression
of CA12 in rat tracheal chondrocyte mimics the effects of inhibition of miR-548au-3p. On the other hand, CA12 knockdown
reversed the effects of miR-548au-3p on cell proliferation, apoptosis, and chondrogenic differentiation. Conclusions. In
conclusion, the miR-548au-3p/CA12 axis plays a role in the pathogenesis of CPAM and may lead to identification of new
approaches for CPAM treatment.

1. Introduction

Congenital pulmonary airway malformation (CPAM), also
named as congenital cystic adenomatoid malformation
(CCAM), is a rare polycystic lesion of the lung, with an inci-
dence rate of 1 : 11000 ~1 : 35000 in newborns [1, 2]. According
to the Stocker classification, CPAM is classified into five types,
namely, type 0 (3%), type I (60-70%), type II (15-20%), type
III (5-10%), and type IV (10-15%) [3, 4]. Imaging and histopa-
thological analysis of biopsies are themost commonly used tools
for the clinical diagnosis for CPAM; however, CPAM can be

asymptomatic, easily missed, or misdiagnosed, leading to
increased risk of tumor development [5–7]. The pathogenesis
of CPAM is complex, calling for a better understanding of the
molecular mechanisms underlying its development and
progression.

During lung development, bronchial atresia can cause
excessive interstitial hyperplasia, and an imbalance between
cell proliferation and apoptosis can trigger defective branch-
ing morphogenesis of the lung [8].

MicroRNAs (miRNAs), which are highly conserved
short noncoding RNA molecules, play an essential role in
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the onset and progression of lung diseases [9, 10] by regulat-
ing a variety of biological functions, including cell differenti-
ation and proliferation and organ morphogenesis [11, 12].
The expression and role of miRNAs in CPAM were recently
reported in a recent study by Zeng et al. [13], who identified
differentially expressed miRNAs in CPAMs, using miRNA
chip analysis, in patients with CPAM. Specifically, the
authors reported upregulation of miR-4523 and miR-
548au-3p and downregulation of miR-21-3p, miR-590-3p,
and miR-146a-3p in patients with type I-II CPAM com-
pared with adjacent lesion tissue. Additional research sug-
gested that miR-4523 overexpression attenuated
dexamethasone-induced reactive oxygen species production,
oxidative injury, and cell apoptosis in human osteoblasts
[14]. Further, Chen et al. [15] reported that miR-21-3p
may underlie the effect of cigarette smoke extract-
exosomes on macrophage polarization. miR-590-3p was also
identified as factor in chronic obstructive pulmonary disease
based on data from the NCBI-GEO database, as reported by
Li et al. [16]. In addition, miR-146a-3p knockdown
decreased lipopolysaccharide-induced lung epithelial cell
apoptosis and alleviated inflammation and oxidative stress
in an in vivo model of acute lung injury [17]. So far, the
involvement of miR-548au-3p in the pathogenesis of lung
diseases or CPAM remains unclear.

miRNAs regulate posttranscriptional gene expression via
binding to the 3′-untranslated region of mRNAs, which usu-
ally have hundreds of in silico predicted targets [18].

In this study, we set to investigate the role of miR-548au-
3p and its downstream regulators in CPAM. Specifically, we
used tracheal chondrocyte to analyze the effect of a miR-
548au-3p mimic or inhibitor on apoptosis, mobility, and
chondrogenic differentiation. We performed high-
throughput mRNA sequencing to screen for differentially
expressed targets of miR-548au-3p and potential direct
downstream regulators of tracheal chondrocytes.

2. Materials and Methods

2.1. Tissue Samples. Lung tissues were harvested from
patients with type I CPAM (n = 20) being treated at Guang-
zhou Women and Children’s Medical Center, China,
between Jan. 2020 and Dec. 2021; CPAM tissues were col-
lected, and matched adjacent tissues were used as normal
controls (n = 20). Signed informed consent for all patients
was obtained prior to tissue collection. This study was
approved by the Ethics Committee of Guangzhou Women
and Children’s Medical Center, China.

2.2. Histological Analysis. Histological analysis was done
using hematoxylin and eosin (H&E) and Alcian blue stain-
ing. Tissue specimens were fixed, dehydrated, and then
embedded in paraffin and cut into 5μm sections. Sections
were then deparaffinized, rehydrated, and stained with1%
Alcian blue (Sigma-Aldrich) for 30min for detection of pro-
teoglycan and mucopolysaccharides or with H&E staining.

For Alcian blue staining of cells, rat tracheal chondro-
cytes were washed three times, treated with 0.1mol/l hydro-

chloric acid solution, and incubated in a solution of 1%
Alcian blue staining overnight.

2.3. Cell Culture. Rat tracheal chondrocytes were purchased
from Procell Life Science & Technology Co., Ltd. (Wuhan,
China) and grown in DMEM (Thermo Fisher Scientific)
with 10% FBS in an incubator (37°C and 5% CO2).

2.4. High-Throughput mRNA Sequencing Analysis. Extrac-
tion of total RNA from tissues was performed with TRIzol
reagent (company), and RNA quality was determined using
the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA). RNA was quantified and amplified with
GeneChip 3′IVT Express Kit (Affymetrix, CA, USA). After
purification by RNAClean XP Kit (Cat. A63987, Beckman
Coulter, Inc., Kraemer Boulevard Brea, CA, USA), amplified
RNA was fragmented and processed using the GeneChip
Hybridization Wash and Stain Kit (Affymetrix). Raw data
of dyed chips were scanned using a GeneChip Scanner
3000 (Affymetrix). Differentially expressed genes (DEGs)
were identified between CPAM samples and normal samples
by using the Limma package (provide info) under the crite-
rion of false discovery rate ðFDRÞ < 0:05 and jlog2 fold
change ðFCÞj > 1.

2.5. Cell Transfection. The miR-548au-3p mimics, inhibitor
and negative control (NC), CA12 overexpression plasmid,
and small interfering RNA (siRNA) targeting CA12 and
siRNA NC were provided by Guangzhou RiboBio Co., Ltd.
and transfected into rat tracheal chondrocytes. In rescue
experiments, rat tracheal chondrocytes were cotransfected
with miR-548au-3p inhibitor and CA12 siRNA. All transfec-
tions were carried out for 48h using Lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA), in accordance to manufac-
turer’s instructions.

2.6. Reverse Transcription-Quantitative PCR. Following
RNA extraction using TRIzol (Invitrogen, USA), comple-
mentary DNA (cDNA) with cDNA was synthesized using
a Reverse Transcription Kit (Thermo Fisher Scientific). We
performed reverse transcription-quantitative PCR using the
Power SYBR® Green Master Mix (Thermo Fisher Scientific),
on an ABI 7500 Fast Real-Time PCR instrument (Applied
Biosystems, Foster City, CA, USA). The primer sequences
used are listed in Table 1. We calculated relative miRNA
and mRNA levels using the 2−ΔΔCT method.

2.7. CCK-8 Assay. Cell viability of rat tracheal chondrocytes
was determined using a CCK-8 kit (Dojindo, Kumamoto,
Japan), according to the manufacturer’s instructions.
Approximately 3 × 103 transfected cells were seeded into
each well of a 96-well plate and cultured for 24, 48, 72, and
96 h. At each time point, cells were incubated with 10μl
CCK-8 solution for 2 h at 37°C, and optical densities (OD)
were measured at 450 nm.

2.8. Cell Proliferation Assay. Cell proliferation of rat tracheal
chondrocytes was assessed by EdU staining. In brief, cells
were seeded in 24-well plates and the Cell-Light EdU DNA
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Cell Proliferation Kit (Guangzhou RiboBio Co., Ltd.) was
used, according to the manufacturer’s instructions.

2.9. Terminal Transferase-Mediated DNA End Labelling
(TUNEL) Assay. The TUNEL assay was used to examine
the presence of fragmented DNA in apoptotic cells. After
trypsinization, cells were resuspended in fresh media,
washed with PBS, fixed with 4% formaldehyde for 25min
at 4°C, and permeabilized with 0.2% Triton X-100 for
2min on ice. Next, cells were washed again with PBS and
labeled for 60min with 50μl of TUNEL test solution in
darkness at 37°C. Cells were then incubated with DAPI
reagent and visualized under a fluorescence microscopy.

2.10. Flow Cytometry. Cell apoptosis of rat tracheal chondro-
cytes was determined using the FITC Annexin V Apoptosis
Detection Kit (BD Pharmingen, Franklin Lakes, NJ, USA)
according to the manufacturer’s instructions. In brief, cells
were trypsinized, centrifuged at 1500 rpm for 5min, and
resuspended in 1x binding buffer. Cells were then stained
for 5min in the dark with 5μl of FITC Annexin V and pro-
pidium iodide. Next, the numbers and percentage of apopto-
tic cells were calculated using a cell sorter (BD FACSAria
Cell Sorter, Chestnut Hill, MA).

2.11. Transwell Assay. To examine cell migration, rat tracheal
chondrocytes (5 × 104) were resuspended in 100μl serum-
free medium and seeded into the upper 24 wells of a Trans-
well chamber with 8μm pore size (Corning, Inc.). In the
lower chambers, we added 500μl of DMEM containing
20% FBS as a chemoattractant. After incubation for 24 h at
37°C, the cells that had migrated into the lower chambers
were fixed with 4% paraformaldehyde for 15min and stained

with 0.5% crystal violet both at room temperature for 30min.
Migrated cells in five randomly fields of view were photo-
graphed and counted using an inverted microscope.

2.12. Luciferase Reporter Assay. The luciferase reporter assay
was used to validate the relationship between miR-548au-3p
and CA12, predicted based on analysis of putative miR-
548au-3p binding site in CA12 by TargetScan. In brief, the
binding sites of putative wild-type (WT) and mutant
(MUT) miR-548au-3p in the 3′-UTR of CA12 were inserted
into a pmirGLO-Report luciferase vector (Promega, Madi-
son, WI, USA) to generate corresponding CA12-WT and
CA12-MUT plasmids. HEK-293 cells were cotransfected
with CA12-WT or CA12-MUT, together with miR-548au-
3p mimics or NC, using Lipofectamine 2000 (Invitrogen,
city, country) for 48 h. The relative luciferase activity was
analyzed with the luciferase reporter assay system (Promega,
Madison, WI, USA).

2.13. Western Blot Analysis. Total protein was extracted using
the RIPA lysis buffer kit (Beyotime, Shanghai, China), and
total protein was mixed with 1x loading buffer. 10% SDS-
PAGE gel electrophoresis was performed, and samples were
transferred onto PVDF membranes (Millipore Corp. Biller-
ica, MA, USA). Then, membranes were incubated with 5%
skim milk and incubated with primary antibodies overnight
at 4°C. Membranes were then incubated with secondary
peroxidase-conjugated antibodies for 1 h at room tempera-
ture. Finally, a SuperSignal chemiluminescent substrate
(Millipore, Billerica, MA, USA) was used to visualize protein
bands. Primary antibodies for this study were specific for
CA12 (Boster, Cat. No. A04063, 1 : 1000), LONRF3 (Gene-
Tex, Cat. No. GTX112150, 1 : 2000), MAP2 (Boster, Cat.

Table 1: Primers for real-time PCR.

Name of genes Sequences (5′→3′)
GAPDH F TGTTCGTCATGGGTGTGAAC

GAPDH R ATGGCATGGACTGTGGTCAT

CA12 F AGGCCAGGAAGCATTCGTC

CA12 R GGGAAGGGTCGTCCATGTG

U6 F CTCGCTTCGGCAGCACA

U6 R AACGCTTCACGAATTTGCGT

All R CTCAACTGGTGTCGTGGA

miR-146a-5p RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAACCCATG

miR-146a-5p F ACACTCCAGCTGGGTGAGAACTGAATTCCA

miR-590-3p RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACTAGCTT

miR-590-3p F ACACTCCAGCTGGGTAATTTTATGTATAA

miR-21-3p RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACAGCCCA

miR-21-3p F ACACTCCAGCTGGGCAACACCAGTCGATG

miR-548au-3p RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTGGTGCA

miR-548au-3p F ACACTCCAGCTGGGTGGCAGTTACTTTTG

miR-4523 RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACAGCCGA

miR-4523 F ACACTCCAGCTGGGGACCGAGAGGGCCTC

F: forward primer; R: reverse primers; RT: reverse transcription.
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No. A01201, 1 : 2000), THBS1 (Boster, Cat. No. PB0471,
1 : 2000), PPID, E-cadherin (Beyotime, Cat. No. AF6759,
1 : 1000), N-cadherin (Beyotime, Cat. No. AF5237, 1 : 800),
aggrecan (Abcam, Cat. No. ab3778, 1 : 1000), Col2A1 (Boster,
Cat. No. A00517, 1 : 2000), MMP13 (Proteintech, Cat. No.
18165-1-AP, 1 : 3000), ADAMTS4 (Proteintech, Cat. No.
11865-1-AP, 1 : 600), and GAPDH (Abcam, Cat. No.
ab9485, 1 : 2000). GAPDH was used as internal control.

2.14. Statistical Analysis. GraphPad Prism 8.0 was used to
analyze the data. Data were expressed as mean ± standard
derivation from three independent experiments. Gene
expression levels between CPAM samples and control sam-
ples were compared using an independent t-test. Analysis
for multiple groups was conducted using one-way ANOVA
followed by Dunnett’s test. A p value < 0.05 was deemed
as statistically significant.

3. Results

3.1. miR-548au-3p Is a Potential Target in CPAM
Pathogenesis. We determined the expression levels of previ-
ously identified miRNA markers, in CPAM using lung tis-
sues from type I/II CPAM patients. Inspection of H&E
staining indicated more multiple cysts with different sizes
in type I/II CPAM-derived lung tissues compared with adja-
cent normal tissue (Figure 1(a)). As shown in Figure 1(b),
Alcian blue staining revealed excess mucous and goblet cell
hyperplasia in diseased tissues from patients with type I/II
CPAM, in contrast with normal tissue. We used reverse
transcription-quantitative PCR to measure several identified
miRNA markers. As shown in Figure 1(c), a significant
decrease in the expression levels of miR-590-3p, miR-146a-
5p, and miR-21-3p was observed in diseased tissues from
CPAM patients, compared with normal adjacent tissue. In
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Figure 1: miR-548au-3p is a potential target involved in pathogenesis of CPAM. Representative scans of (a) hematoxylin and eosin (H&E)
and (b) Alcian blue staining in lung tissues from CPAM patients. (c) Expression of miR-590-3p, miR-146a-5p and miR-21-3p, miR-548au-
3p, and miR-4523 was determined in lung tissues from CPAM patients (n = 20) and adjacent tissues (n = 20).
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addition, diseased tissues were characterized by increased
expression of miR-548au-3p and miR-4523. Given that
miR-548au-3p expression level exhibited the greatest
increase among detected five miRNAs, this miRNA was
selected for further analyses.

3.2. miR-548au-3p Contributed to Rat Tracheal Chondrocyte
Cell Proliferation and Chondrogenic Differentiation. To
determine whether miR-548au-3p was involved in CPAM
in vitro, miR-548au-3p expression was altered in rat tracheal
chondrocytes by transfection with miR-548au-3p mimics or
inhibitor (Figure 2(a)). The results from CCK-8 assay
(Figure 2(b)) and EdU staining (Figure 2(c)) consistently
indicated that viability and proliferation rate of rat tracheal
chondrocytes were significantly elevated after miR-548au-
3p overexpression but were reduced after miR-548au-3p
knockdown. TUNEL-positive cells were reduced after miR-
548au-3p overexpression but were elevated after miR-
548au-3p knockdown (Figure 2(d)). Similar results were
obtained using flow cytometry (Figure 2(e)). These results
are in agreement with changes of E-cadherin and N-
cadherin protein levels, as assessed by western blot
(Figure 2(f)). Transwell experiments revealed positive effects

of miR-548au-3p on cell migration (Figure S1). Alcian blue
staining suggested that miR-548au-3p promoted expression
of glycosaminoglycans (Figure 2(g)). Furthermore, we
analyzed the expressions of chondrogenic differentiation-
related factors aggrecan, Col2A1, MMP13, and ADAMTS4
by western blot analysis. As depicted in Figure 2(h),
overexpression of miR-548au-3p in rat tracheal
chondrocytes promoted expression of MMP13 and
ADAMTS4 but reduced expression of aggrecan and
Col2A1. Knockdown of miR-548au-3p led to opposite
results.

3.3. Identification of DEGs Involved in CPAM Pathogenesis.
We investigated the role of miR-548au-3p and its down-
stream signaling pathways in the pathogenesis of CPAM
using high-throughput mRNA sequencing analysis. The
study design and the samples included at every stage of the
analysis are described in Figure 3(a). The differential mRNA
expression between CPAM and normal tissues is conveyed in
the scatter plot of gene expression profile (Figure 3(b)). After
further screening, the top 8 DEGs included 5 downregulated
and 3 upregulated genes, as described by a hierarchical clus-
ter (Figure 3(c)). We further confirmed downregulation of
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CA12, THBS1, and PPID and the upregulation of LONRF3
andMAP2 in lung tissues derived from CPAM patients com-
pared with controls at mRNA (Figure 3(d)) and protein levels
(Figure 3(e)).

3.4. CA12 As a Direct Target of miR-548au-3p. Among the
identified five genes by high-throughput mRNA sequencing
analysis, based on data from the TargetScan database, we

hypothesized that CA132 was a direct target of miR-548au-
3p via, as shown in Figure 4(a). Results using a luciferase
reporter showed a significant decrease on the luciferase
activity of the CA12 WT plasmid after miR-548au-3p mimic
transfection in in rat tracheal chondrocytes, compared with
transfection with a negative control. The luciferase activity
of CA12 MUT plasmid was not significantly changed
(Figure 4(b)). Moreover, the expression of CA12 mRNA
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Figure 3: Identification of DEGs involved in the pathogenesis of CPAM. (a) Flowchart of the study design and samples at each stage of
analysis. (b) Scatterplot of mRNA expression variation between diseased CPAM and normal tissues. (c) Hierarchical cluster of gene
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7Oxidative Medicine and Cellular Longevity



(Figure 4(c)) and protein (Figure 4(d)) decreased after trans-
fection with miR-548au-3p and increased after transfection
with a miR-548au-3p inhibitor.

3.5. CA12 Suppressed Rat Tracheal Chondrocyte Proliferation
and Differentiation. To study the functional role of CA12,
rat tracheal chondrocytes were transfected with a CA12
overexpression plasmid or a CA12 siRNA as negative con-
trol. CA12 overexpression and knockdown were confirmed
by western blot (Figure 5(a)). Subsequent experiments
showed that overexpression of CA12 suppressed cell viability
(Figure 5(b)) and proliferation (Figure 5(c)) and promoted
apoptosis (Figures 5(d) and 5(e)) of rat tracheal chondro-
cytes. The expression of E-cadherin increased and N-
cadherin decreased after CA12 overexpressed (Figure 5(f)).
In addition, overexpression of CA12 suppressed cell migra-
tion (Figure S2). Similar to results obtained by miR-548au-
3p knockdown, overexpression of CA12 inhibited the

expression of glycosaminoglycans (Figure 5(g)) and
downregulated expression of MMP13 and ADAMTS4
expressions and upregulated expression of aggrecan and
Col2A1 (Figure 5(h)).

3.6. CA12 Knockdown Reversed miR-548au-3p Inhibitor-
Mediated Suppressive Effects on Rat Tracheal Chondrocytes.
To further confirm whether CA12 was involved in miR-
548au-3p-mediated processes, we performed rescue experi-
ments by cotransfecting rat tracheal chondrocytes with
miR-548au-3p inhibitor and CA12 siRNA. Western blot
analysis confirmed that transfection with miR-548au-3p
inhibitor caused elevation of CA12, which was obviously
attenuated after cotransfection with miR-548au-3p inhibitor
and CA12 siRNA (Figure 6(a)). Results from the CCK-8
assay (Figure 6(b)), EdU staining (Figure 6(c)), TUNEL
staining (Figure 6(d)), and flow cytometry (Figure 6(e)) indi-
cated decrease of cell viability and proliferation, following
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miR-548au-3p knockdown, as well as reduction of apoptosis
after CA12 knockdown. In addition, knockdown of CA12
reversed miR-548au-3p knockdown-mediated effects on cell
migration (Figure S3) and alterations in EMT markers (E-
cadherin and N-cadherin) (Figure 6(f)). Moreover, miR-
548au-3p knockdown suppressed the expression of
glycosaminoglycans (Figure 6(g)); upregulation of aggrecan/
Col2A1 and downregulation of MMP13/ADAMTS4

(Figure 6(h)) were inhibited by cotransfection with miR-
548au-3p inhibitor and CA12 siRNA.

4. Discussion

In this study, we set out to explore the role of miRNAs in the
pathology of CPAM, a congenital disorder of the lung. Zeng
et al. [13] previously provided genomic insights into this
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condition and revealed that diseased lung tissues from
CPAM patients exhibited downregulation of miR-590-3p,
miR-146a-5p, and miR-21-3p and upregulation of miR-
548au-3p and miR-4523 expressions, in comparison to adja-
cent normal lung tissues. Here, we show that miR-548au-3p
promoted proliferation and differentiation of rat tracheal
chondrocytes. CPAM, as a developmental disorder, may
occur in conjunction with other congenital anomalies which
are risk factors for disease progression later in life [19]. We
hypothesized that upregulation of miR-548au-3p might trig-
ger CPAM by governing airway formation during gestation
via regulation postnatal cell growth and differentiation
[20]. To test this hypothesis, we use rat tracheal chondro-
cytes as a model, as they have been widely used to study con-
genital disorder-related diseases, including
tracheobronchomalacia [21], cartilage regeneration [22],
and lung agenesis [23]. At molecular level, we found that
miR-548au-3p promoted expression of N-cadherin,
MMP13, and ADAMTS4 but suppressed expression levels
of E-cadherin, aggrecan, and Col2A1. Tracheal epithelial
cells function as a key regulator in the defense of respiratory
tract [24]. E-cadherin plays a key role in adherent junctions
and hence regulates epithelial barrier function [25]. Cao
et al. [26] showed that cleavage of E-cadherin disrupted air-

way epithelial cell barriers and suppressed cell proliferation
in the respiratory mucosal surface. Secreted metalloprotease
members from the ADAMTS family also play crucial roles in
modulating the extracellular matrix (ECM) [27]. Previous
studies reported that proliferative chondrocytes could pro-
duce cartilage extracellular matrix, including type II collagen
and aggrecan, along with generation of type X collagen
(COL10) and matrix metalloproteinase 13 (MMP13) [28].
Given the association between excessive interstitial hyper-
plasia and CPAM, we hypothesized that miR-548au-3p pro-
moted CPAM development by regulating chondrocyte
proliferation, mobility, and differentiation via regulating
ECM and EMT processes.

Through high-throughput mRNA sequencing analysis,
we identified the top five differentially expressed mRNAs
(CA12, LONRF3, MAP2, THBS1, and PPID) in diseased
CPAM versus normal lung tissue. We confirmed CA12 as
a direct target of miR-548au-3p. Our functional experiments
indicated that miR-548au-3p regulated cell proliferation,
mobility, and differentiation in rat tracheal chondrocytes
by targeting CA12. As reported by Han et al. [29], human
hypoxia-treated ligamentum flavum-derived stem cells
(LFSCs) expressed higher levels of aggrecan and CA12 pro-
moted the proliferation and differentiation of these cells
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toward nucleus pulposus-like cells. Furthermore, as a trans-
membrane protein, carbonic anhydrase 12 (CA12) partici-
pates in the regulation of cellular pH in metabolically
active cells/tissues via catalysis of carbon dioxide hydration
and dehydration reversible reactions [30]. Kim et al. [31]
suggested a role of CA12 in host defense against inhaled
pathogens in the airway mucosal microenvironment and
also reported cystic fibrosis-like airway infections in people
with CA12 mutations.

In this work, we suggest that CA12 plays an important
role in airway microenvironment and is a key regulator of
the miR-548au-3p axis in the development of CPAM,
although a direct relationship cannot be assumed based on
current evidence.

In summary, we identified five key mRNAs in the path-
ogenesis of CPAM using high-throughput mRNA sequenc-
ing analysis. Moreover, we demonstrated that miR-548au-
3p promoted proliferation and chondrogenesis in rat tra-
cheal chondrocytes by targeting CA12. More in-depth stud-
ies are necessary, but, in the meantime, our present findings
provide new insights into the molecular mechanisms under-
lying CPAM.
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