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Abstract

Fibrosis in adipose tissue is a major driver of obesity-related metabolic dysregulation. It is 

characterized by an overaccumulation of extracellular matrix (ECM) during unhealthy expansion 

of adipose tissue in response to over nutrition. In obese adipose-depots, hypoxia stimulates 

multiple pro-fibrotic signaling pathways in different cell populations, thereby inducing the 

overproduction of the ECM components, including collagens, noncollagenous proteins, and 

additional enzymatic components of ECM synthesis. As a consequence, local fibrosis develops. 

The result of fibrosis-induced mechanical stress not only triggers cell necrosis and inflammation 

locally in adipose tissue but also leads to system-wide lipotoxicity and insulin resistance. A 

better understanding of the mechanisms underlying the obesity-induced fibrosis will help design 

therapeutic approaches to reduce or reverse the pathological changes associated with obese 

adipose tissue. Here, we aim to summarize the major advances in the field, which include newly 

identified fibrotic factors, cell populations that contribute to the fibrosis in adipose tissue, as well 

as novel mechanisms underlying the development of fibrosis. We further discuss the potential 

therapeutic strategies to target fibrosis in adipose tissue for the treatment of obesity-linked 

metabolic diseases and cancer.

Introduction

Obesity is a severe epidemic in industrialized and developing countries (242, 263). It has 

been recognized as a significant risk factor for many chronic diseases, including type 2 
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diabetes, cardiovascular disease, hypertension, dyslipidemia, and certain types of cancer 

(68, 242, 263). Obesity is caused by interactions of multiple complex factors, such as 

overnutrition, reduced physical activity, and environmental and genetic factors. Adipose 

tissue is the primary organ that is, conveying the negative impact of its unhealthy expansion 

on the system at large (242). Adipose tissue plasticity means its ability to acquire new 

structural identities or adopt alternative cellular sizes and compositions in response to 

different nutritional conditions. In response to excessive caloric intake, adipose tissue 

experiences a dynamic remodeling process which puts high demands on the plasticity at 

adipocytes and adipose tissue. The extracellular matrix (ECM) of adipose tissue faces many 

challenges to accommodate the necessary dynamic changes required for expansion (49, 163, 

164, 245). In parallel, the growth of blood vessels via angiogenesis cannot keep pace with 

the expansion. As a result, local hypoxia develops in obese adipose tissue (79, 163, 241).

Hypoxia initiates multiple pathological changes in the obese adipose tissue (242). Fibrosis 

is one of the major consequences caused by hypoxia (241, 242), with fibrosis being 

increasingly appreciated as a predominant player in adipose tissue dysfunction (49, 85, 116, 

143, 197, 236, 245). Abnormal ECM accumulation during fibrosis is tightly associated with 

chronic low-grade inflammation in obese adipose tissue (37, 48, 71, 118, 143). Moreover, 

the pro-inflammatory factors and free fatty acids (FAs) released from the dysfunctional 

adipose tissue further circulate to other metabolically active tissues/organs, such as the liver, 

kidney, and muscles, thereby triggering an elevated degree of lipotoxicity in other organs 

(131, 258). As a result, the whole system develops insulin resistance and other metabolic 

disorders.

Below, we offer a brief synopsis of recent findings about the pathological process of fibrosis, 

underlying mechanisms that govern the whole process, as well as the resulting disorders 

in adipose tissue. Further, we highlight several recently identified fibrotic factors that play 

key roles in metabolic dysregulation during obesity. Finally, we discuss the therapeutic 

perspectives of targeting fibrosis in adipose tissue to treat obesity-related diseases.

ECM Components in Adipose Tissue

The ECM is a three-dimensional network that facilitates the proper structure and function 

of mature adipocytes, preadipocytes, and other cell populations in the stromal fraction of 

the adipose tissue (245). It not only provides the mechanical support but also contributes 

to the cell signaling pathways that are essential for adipogenesis and other proper functions 

of adipose tissue. The ECM is composed of a variety of highly organized protein factors, 

including collagens and noncollagenous proteins, multiple regulators that closely interact 

with ECM, and several other components, such as polysaccharides, glycoproteins, and 

proteoglycans as well (46). The ECM in adipose tissue is the most flexible structure that 

experiences dynamic remodeling during the tissue expansion in response to overnutrition 

(116). While it shares a lot of common components with ECM in other tissues, it also 

displays several unique structural features, such as the enrichment of collagen VI (Col6) 

(116). While some of these components only occupy a very small portion of the ECM, they 

play key roles in maintaining the integrity and normal function of whole adipose tissue.
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Collagens

Collagens are the main component of ECM in adipose tissue (116). They occupy significant 

portion of the noncell mass of adipose tissue (116). Several types of collagens, including 

Col I, IV, V, VI, VII, VIII, and IX are an integral part of the structure of ECM of adipose 

tissue. They are secreted by many types of cells in the adipose tissue, including adipocytes, 

progenitor cells, and other components of the stromal vascular fraction (SVF) (49, 116, 

162, 236, 262). Intriguingly, the collagen proteins show diverse distribution patterns in 

different white adipose tissue (WAT) depots (49). Among them, ColVI is the most abundant 

subcategory in obese adipose tissue (225). ColVI is a large glycoprotein that is, composed 

of three subunits—α1, α2, and α3. The three chains are assembled into hetero-tetramers and 

further form oligomers (116). The complex of ColVI with a high level of tertiary structure 

is secreted into ECM space where they further associate with other factors to form mature 

microfibrils that are integrated into the mature ECM (197). The levels of ColVI are tightly 

regulated during the diet-induced obesity development (116, 150). Clinical studies revealed 

that the expression levels of ColVIα3 are correlated with fat mass and total body mass 

during obesity (200). Our recent studies demonstrated that ColVIα3 can be digested by 

the metalloproteinase MMP14 (150). ColVI and its cleaved product(s) play a key role in 

adipocyte hypertrophy, local fibrosis and inflammation, and whole-body insulin resistance 

during obesity (116, 243). In particular, the carboxyterminal cleavage product of Col6 

referred to as endotrophin has been found to exert a multitude of functions in adipose tissue 

as well as other metabolically active tissues/organs and in malignant tumors (197, 198, 244).

Noncollagen proteins

Secreted protein, acidic and rich in cysteine (SPARC)—Secreted protein, acidic 

and rich in cysteine (SPARC), also known as osteonectin or BM-40, is ubiquitously 

expressed in adipocytes and stromal cells in adipose tissue. The expression of SPARC is 

upregulated during obesity (28). Its protein levels are further regulated by insulin, leptin, 

and circulating glucose under multiple physio/pathological conditions (124). Animal studies 

reveal that SPARC is involved in growth and differentiation of adipocyte precursors (28). 

Functional studies indicate that upon being secreted into the ECM lumen, SPARC actively 

interacts with other factors and hence contributes to the dynamic remodeling of the network 

(16). Specifically, it modulates the density and the diameters of the type I collagen fibrils 

(19, 20). Lack of SPARC leads to increased adiposity as well as shortened collagen fibrils 

and impaired tensile strength of the ECM in adipose tissue (20). This pathological change 

has been demonstrated to directly affect the expansion capacity of the adipose tissue (20). 

Clinical observations reveal that the circulating levels of SPARC are elevated in obese 

patients and SPARC in the plasma may be involved in the progression to cardiovascular 

disease (12, 247, 256). Furthermore, adipose tissue-specific SPARC expression is tightly 

linked to obesity-related insulin resistance as well as other diabetic complications (123).

Fibronectin—Fibronectin is one of the essential ECM components in most tissues/organs. 

Fibronectin is expressed at a high level in mature adipose tissue and preadipocytes as 

well (177, 287). Intriguingly, clinical studies indicate that fibronectin levels in different 

adipose depots are dramatically reduced in the obese patients (141). Moreover, its levels are 

negatively correlated with leptin but positively associated with adiponectin (141). Numerous 
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studies have suggested that fibronectin in adipose tissue contributes to the metabolic 

dysregulation during obesity. Mechanistically, its regulatory function is through its higher 

molecular weight oligomers that are assembled in the abundant ECM components in obese 

adipose tissue. Indeed, oligomerization of fibronectin is required for its cross-linking with 

other pericellular ECM components, such as thrombospondin (TSP) and type I collagens 

to stabilize the whole ECM (119, 178, 234). Intriguingly, fibronectin also serves as a key 

signaling molecule by functioning as a high-affinity ligand for α5β1 integrin (239). The 

binding of fibronectin may trigger α5β1 integrin-mediated downstream signaling response 

that is, involved in adipogenesis and maturation of adipocytes. Furthermore, the fibronectin-

integrin pathway is also regulated by protein-protein interactions between fibronectin and 

the soluble protein DLK1 (also known as Pref-1) which activates integrin downstream 

pathway and inhibits adipocyte differentiation (267).

Thrombospondin (TSP)-1—TSP-1 is a multifunctional matrix protein in adipose 

tissue. TSP-1 levels are upregulated in obese adipose tissue. It binds to the other 

ECM molecules and stimulates the production of growth factors and cytokines, thereby 

triggering cellular signaling that is, involved in ECM remodeling, cell metabolism, and 

pro-inflammatory responses (122). Specifically, TSP-1 has been demonstrated to activate 

the latent transforming growth factor-β1 (TGF-β1) pathway which initiates a pro-fibrotic 

reaction in adipocytes (171). Moreover, its physical interaction with CD36 is involved in 

enhanced free FA uptake by adipocytes (77, 78). TSP-1 levels are positively correlated 

with adipose tissue inflammation. Increased TSP-1 further triggers an increase in local 

proinflammatory responses in obese adipose tissue (151, 171). Intriguingly, the effects 

on lipid uptake and inflammation for TSP-1 can be reversed by pioglitazone treatment, 

but the underlying mechanisms remain unclear (259). Loss-of-function of TSP-1 protected 

the mice from diet-induced inflammation and insulin resistance by reducing macrophage 

accumulation in adipose tissue (151). Given its positive correlation with obesity and its 

multifaceted function on adipose tissue remodeling and systemic metabolism, TSP-1 has 

been considered as a sensitive prognostic and diagnostic indicator for obesity and related 

type 2 diabetic sequelae (74).

Hyaluronic acid (HA)—Hyaluronic acid (HA) (also known as hyaluronan) is a 

heterogenous disaccharide polymer that is, an important component of the ECM in 

most tissues. Historically, its role in the ECM remodeling and metabolic regulation in 

adipose tissue has been underestimated (294). Most recently, its profound contribution 

to the metabolic regulation of obese adipose tissue has been better understood with 

the improvement of more sensitive methods for its isolation, characterization, and 

visualization, as well as several newly developed animal models (110, 295, 296). As an 

important structural component, HA actively interacts with other protein factors in the 

ECM. It may further bind to several receptors on the surface of adipocytes. Through 

these HA-induced protein-protein interactions, HA triggers multiple downstream signaling 

pathways that potentially affect adipogenesis as well as lipid and glucose metabolism, 

cell migration, angiogenesis, fibrosis, apoptosis, and proinflammatory responses (294–296). 

Mechanistically, binding of HA to the cell surface protein CD44 promotes the proliferation 

of CD44+/PDGFRα+ preadipocytes, while its binding to RHAMM/HMMR receptors blunts 
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the CD44-activated signaling and suppresses adipogenesis (5, 7, 142). Furthermore, given 

the critical roles of CD44 and RHAMM/HMMR receptors in the regulation of lipid and 

glucose metabolic pathways, it is suggested that HA is involved in the development of 

type-2 diabetes (121, 271).

Intriguingly, the level of inflammation is tightly correlated with the size of the HA polymers 

in different cells. Large HA polymers may suppress the local inflammation, while under 

pro-inflammatory conditions, the high-molecular-weight-HA may undergo a depolarization 

process and hence produce the fragments that exert pro-inflammatory functions (40, 175). In 

diet-induced obese adipose tissue and muscles, the content of HA is significantly increased 

and its levels are highly correlated with whole-body insulin resistance (110).

Elastin—Many other noncollagenous proteins, such as elastin, have also been found in 

the ECM of adipose tissue. However, there is limited information about their detailed 

function and regulation in the adipose tissue. Elastin fibers have been found to be unevenly 

distributed around adipocytes in different adipose depots, with a dramatic increase of 

the elastin network in epididymal WAT when compared with subcutaneous WAT. The 

differences might be caused by specific post-translational modifications of the elastin protein 

(3, 167). The density of the elastin network is significantly increased in the obese adipose 

tissue (236). This change is tightly regulated by the increased activity of the cross-linking 

enzyme Lox (79, 160). Interestingly, in the Col6 knockout adipose tissue, elastin levels 

were also decreased, suggesting a mutual regulatory effect between elastin and collagen 

(116). Notably, several peptide products derived from elastin have been demonstrated to 

induce insulin resistance in both adipose tissue and in muscles, pinpointing its critical role in 

systemic metabolic regulation (14). The detailed mechanisms leading to cleavage products 

and the respective enzymes mediating the cleavage remain to be elucidated.

Proteinases and their inhibiting factors

Matrix metalloproteinases (MMPs)—The protein components of the ECM are 

dynamically remodeled and the process is tightly regulated by enzymes mediating the 

digestion, including collagenases and other proteinases. Among all the enzymes, matrix 

metalloproteinases (MMPs) are a large family of proteolytic endopeptidases that are actively 

involved in the dynamics of ECM remodeling (29, 35, 36, 150). The MMP family is 

composed of more than 20 members and almost all of the MMPs are produced in an 

inactive form and need to be activated by other enzymes or by autodigestion (99). Of note, 

even though theoretically they have the ability to degrade most components in the ECM, 

they prefer to digest collagens (23, 99). In fact, MMPs exhibit substrate specificities when 

degrading the proteins during ECM remodeling (165).

Among the family of MMPs, MMP14 (also known as MT1-MMP) is the predominant 

membrane-bound-type MMP in adipose tissue (35, 36). MMP14 is key for the modulation 

of stiff pericellular collagens to allow cells to grow out of the stromal regions and is directly 

involved in overall ECM remodeling under both physiological and pathological conditions 

(35, 36, 97, 127, 150, 183, 252). It exerts its enzymatic function not only to digest collagen 

proteins but also to activate other MMPs, such as MMP2 and MMP9, upon tethering onto 
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the plasma membranes of adipocytes (214, 297). During obesity development, the level of 

MMP14 in adipose tissue is upregulated (29, 150). A genetic variant of the human Mmp14 
gene located in proximity to its catalytic domain has been found to be closely associated 

with obesity and diabetes traits (36). These observations suggest a direct correlation between 

MMP14 and obesity. Importantly, our recent findings further link MMP14 to the HIF1α-

mediated pathological changes in obese adipose tissue (150). We discovered that HIF1α 
directly upregulates MMP14 expression by binding to its promoter region (150). Meanwhile, 

HIF1α induces a massive fibrotic program, prominently inducing, amongst many other 

collagens, ColVI in obese adipose tissue (79, 241). MMP14 cleaves the ColVIα3 chain 

and releases its carboxy-terminal C5 fragment (197, 243). The C5 fragment, that we refer 

to as endotrophin, stimulates in turn further wide-spread pro-fibrotic and pro-inflammatory 

responses in the tissue (see below), ultimately leading to systemic insulin resistance and 

impaired lipid homeostasis (150). Notably, in addition to MMP14 and other members of 

the MMP family, a sub-family of MMPs called a disintegrin and metalloproteinase with 

TSP motif (ADAMTSs) also plays crucial roles in adipose tissue development and various 

metabolic disease through their ECM remodeling activities (9, 10, 31, 293).

Tissue inhibitors of MMPs (TIMPs)—The counter players for MMPs, the so-called 

tissue inhibitors of MMPs (TIMPs), have also been demonstrated to be key for the ECM 

remodeling in obese adipose tissue (23, 67, 161, 183, 224). There are a total of four TIMPs 

in adipose tissue. Their levels are varied during adipogenesis and adipose tissue remodeling 

(126, 161). Particularly, TIMP1 is the most widely studied TIMP in adipose tissue. In 

addition to directly affecting ECM turnover via inhibiting the activity of MMPs, TIMP1 

has been reported to have additional profound effects on adipose tissue (67). For example, 

it negatively regulates adipogenesis in obese mice and in humans (170). TIMP4 is another 

inhibitor for MMPs that is, enriched in adipose tissue. Based on UniGene analysis, TIMP4 

is exclusively expressed in the adipose tissue in humans (165). Its levels are further elevated 

in response to nutritional stress (273). Lack of TIMP4 leads to reduced hypertrophy and 

ameliorated fibrosis in obese adipose tissue, demonstrating the effects it exerts on adipose 

tissue expansion (224).

Other ECM enzymes—In addition to MMPs, there are other important enzymes that 

function on the formation and remodeling of the ECM in adipose tissue. Among them, lysyl 

oxidase (LOX) is a copper-containing amine oxidase that has been identified to be expressed 

in adipose tissue and malignant tumors. It exists in the cytosol or is secreted into the ECM 

upon synthesis in adipocytes. Depending on its subcellular localization, LOX may play 

multiple functions in the physiology/pathology of tissues (39). Particularly in the ECM, 

LOX post-translationally modifies collagens and noncollagen proteins, such as elastin, 

thereby catalyzing the covalent cross-linking of the fibers formed by the proteins (39, 

108). This cross-linking process is essential for the stabilization, elasticity, and flexibility 

of fibrils and fibers when being integrated into the ECM (39). The levels and function 

of LOX are highly regulated in obese adipose tissue. We first found that in diet-induced 

obese adipose tissue, HIF1α upregulates the expression of LOX and the higher LOX levels 

facilitate the overaccumulation of ECM in the obese adipose tissue (79). In line with this 

finding, inhibition of LOX significantly reduced the level of local fibrosis (79, 202). The 
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function of another cross-linking enzyme referred to as factor XIII-A (FXIII-A) on adipose 

tissue remodeling has also drawn attention recently (182). Recent observations demonstrated 

that FXIII-A in WAT has a causative relationship with obesity in humans (106, 107). In 

preadipocytes, FXIII-A translocates to the surface of cells where it promotes the assembly of 

fibronectin to form the ECM surrounding the preadipocytes. As a result, FXIII-A negatively 

regulates adipogenesis by reducing the proliferation and differentiation of the preadipocytes 

through remodeling of ECM at the cell surface (182).

Abnormal ECM Remodeling and Fibrosis

The flexibility of the ECM in adipose tissue is illustrated by its ability to accommodate 

the rapid expansion or shrinking of the tissue in response to a differential nutritional status 

(219). However, we appreciate that the WAT cannot expand without limits, both in animal 

models and in humans (27, 70, 260). There exists a threshold for the expansion that keeps 

the whole tissue in a normal functional range. Beyond this threshold, the extremely stiff 

ECM gives rise to profound pathological alterations, including the development of local 

fibrosis (245). Meanwhile, the ECM-laden adipocytes lose their plasticity and undergo 

pathological changes, including cellular inflammation, ER stress, and apoptosis (218, 242). 

There are multiple steps that eventually lead to the abnormal ECM remodeling (Figure 

1). Hypoxia has been recognized as a key initiating step; fibrosis and its associated 

inflammation are both pathological consequences not the initiating factors for the further 

development and progression of a myriad of the obesity-induced metabolic diseases (62, 64, 

79, 92, 125, 136, 139).

Hypoxia: the initiating step

Hypoxia is a challenge that any tissue may face when the local oxygen pressure (pO2) 

is decreased. Well-known hypoxic conditions persist in the central region of solid tumors. 

Indeed, hypoxia has been recognized as the major driver for malignant tumor progression in 

most types of cancer (52, 227). Adipose tissue is the only nontransformed tissue in the body 

that has the ability to expand over the course of developing obesity to an almost unlimited 

extent, just like a tumor mass. However, the formation of blood vessels via angiogenesis 

and vasculogenesis cannot keep pace (79, 246). Indeed, the blood flow rates in an obese fat 

pad are 30% to 40% lower compared to lean adipose tissue (15). As a result, local hypoxia 

develops (1, 241).

Detection of hypoxia in obese adipose tissue—The adipocytes are rather large cells 

and their size can easily excess 200μm in diameter in obese individuals (79, 233). However, 

the effective diffusion rates of O2 are much less than 200μm in tissue (21). This unique 

feature of adipocytes further worsens the local hypoxic environment. To detect hypoxia 

quantitatively in adipose tissue, several approaches have been developed by our group 

and others, including pimonidazole staining, pO2 tracking in situ, and hypoxia-induced 

factor (HIF) activity measurements. Experimental results with these techniques have clearly 

demonstrated that a higher level of hypoxia persists in obese adipose tissue of genetic and 

diet-induced obese animal models and obese humans (92, 201, 212, 279, 280). Specifically, 

by tracking the local pO2 with an oxygen sensor using an electron paramagnetic resonance 
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(EPR) system, we revealed that the pO2 in the epidydimal WAT is dynamically decreased 

during diet-induced obesity (241). Intriguingly, compared to the levels measured in mouse 

models, the hypoxia level is relative minor in obese human fat tissue (201, 253). However, a 

recent clinical study argues that highly significant hypoxic conditions exist in severely obese 

patients (253). More clinical studies with larger populations of obese individuals may be 

necessary to better define the hypoxic state in obese adipose tissue.

Hypoxia-induced factors (HIFs) and their regulation—Hypoxia exerts profound 

effects on adipose tissue, ultimately leading to insulin resistance (242). The cells in adipose 

tissue respond to low oxygen conditions by activating multiple transcriptional factors, 

such as HIFs, CREB family members, and NF-κB (255). Among these factors, HIF1 has 

been demonstrated to function as a “Master Regulator” (1, 79, 241). HIF1 is an essential 

transcription factor that plays a fundamental role in oxygen homeostasis in almost all tissues 

and in cancer (228). HIF1 contains two subunits, HIF1α and β and they form a basic 

helix-loop-helix structure when binding to the cis-acting HIF response element (HRE) to 

exert their function on transcriptional activation/suppression (228). Our groups have utilized 

adipose-specific gain- and loss-of-function mouse models to study the role of HIF1α in the 

obesity-associated pathogenesis (79, 241). We have reported that HIF1α plays a pivotal role 

in shaping the unhealthy microenvironment in obese adipose tissue. During obesity, HIF1 is 

massively upregulated at both the microRNA (mRNA) and protein level in adipocytes (79, 

241). Intriguingly, HIF1 fails to upregulate a typical target gene, VEGF-A in adipocytes, 

resulting in the lack of angiogenesis in the largely expanded adipose tissue (79, 241). 

Instead, it triggers a massive “fibrosis program” by upregulating collagen proteins and ECM 

remodeling enzymes, such as MMP14 and LOX (79, 150, 202, 241). LOX can cross-link 

lysyl residues in collagens and in elastin. This cross-linking reaction may stabilize the 

collagens to form the building blocks for the ECM (88, 216). Overexpression of LOX 

enhances the fibrotic streaks by acting to cross-link the accumulated Col1 and 3 to form the 

fibrillar collagen fibers (282).

HIF1 is also induced in other cell populations, such as the M1-like polarized macrophages 

and preadipocytes in obese adipose tissue (208, 231, 232). The function of HIF1α 
in the macrophages is to drive low-grade inflammation by upregulating IL-1β (208, 

232). Interestingly, a recent study demonstrated that inhibition of HIFα in PDGFRβ+ 

preadipocytes facilitates adipogenesis and healthy expansion of different adipose depots 

during obesity (231).

The levels and activity of HIF1 are dynamically regulated by multiple signals associated 

with obesity, such as local oxygen tension, ANT2, insulin, and adipogenesis (65, 84, 229). 

Intriguingly, MMP14 has been shown to affect HIF1α transcriptional activity by physically 

retaining its suppressor, factor inhibiting HIF-1α−1 (FIH-1) in the cytoplasm in a subset 

of cancer cells (159, 204, 205, 221, 223). FIH-1 is an asparaginyl hydroxylase that targets 

and hence hydroxylates the Asn-803 residue in HIF1α. The hydroxylation (Asn803-OH) 

significantly blocks the recruitment of P300/CBP to HIF1α, which in turn impairs its 

overall transcriptional activity (100, 134, 159, 217, 264). The cytosolic region of MMP14 

(but not of any other MMPs) interacts with FIH-1, thereby preventing its translocation 

into the nucleus, and hence allowing HIF1α to evade the suppression by FIH-1 (222). 
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Nevertheless, the importance of FIH-1 in MMP14-mediated HIF1α activation has not yet 

been directly evaluated in obese adipose tissue. Given that the loss-of-function study of 

FIH-1 has revealed a profound impact on adipose tissue metabolism (284), we reason that it 

is an integral component of HIF1α regulation in adipose tissue, mediated by MMP14.

This leads us to propose that HIF1 induction represents an early event during obesity 

development, while it is a critical step in the sequential processes of obesity-related 

pathological changes including fibrosis and inflammation.

HIF2α, a protein related to HIF1α, is also broadly expressed in adipocytes and macrophages 

in adipose tissue (34, 64, 69, 153). It also plays multifaceted roles in metabolism, 

physiology, and pathology of adipose tissue. Even though it shares similar target genes 

with HIF1α, it also has some unique functions which are, in some instances, opposite to 

those of HIF1α (113). Of note, studies have highlighted the important role of HIF2α in 

protecting adipocytes from dysfunction, predominantly through its proangiogenic actions by 

upregulating VEGF-A in obese adipose tissue (61, 64, 174, 253). Further insights need to be 

gained to better understand the mechanistic details of the interactions between HIF1α and 

HIF2α.

Abnormal ECM formation driven by hypoxia

Fibrosis in adipose tissue is caused by the disproportionate accumulation of ECM proteins. 

During the process of fibrosis, excessive amounts of ECM proteins are produced, while 

their degradation is reduced. The overarching pathophysiological role of the ECM is 

driven by the obesity-induced hypoxic conditions, but the detailed events and underlying 

mechanisms remain to be further clarified (242, 245). Of note, even though there is an 

established link between obesity and fibrosis in rodent models, clinical observations reveal 

that not all obese individuals develop local fibrosis in adipose tissue, suggesting fibrosis is a 

pathological process that is, controlled by other factors aside from obesity per se, including 

environmental and genetic factors [reviewed in Sun et al. (242)].

Regulation of collagens in obese adipose tissue—Collagen proteins are massively 

upregulated in hypoxic adipose tissue (4, 42, 79, 149, 156, 241). Gene profiling data from 

the WAT of HIF1α transgenic mice show a widespread induction of fibrotic genes. They 

include multiple types of collagens, such as Col1, 3, 5, 6, and 8 (95). Specifically, Col6 is 

one of the most abundant collagens and it plays an essential role in shaping dysfunctional 

ECM (116). Col6 levels are further increased in the obese adipose tissue (116, 225). 

Clinically, it has been found that the levels of Col6, especially its α3 subunit, strongly 

correlate with the degree of hypoxia in adipose tissue (136, 200, 201). The excessive 

accumulation of Col6 may disrupt the normal structure of the ECM and cause increased 

stiffness of the ECM scaffold. This creates a mechanical stress in the rapidly expanding 

adipose tissue (245). To support this notion, lack of Col6 results in reduced rigidity which 

facilitates the expansion of the adipose tissue in both diet-induced obese and ob/ob mice 

(116). As a result, the lack of Col6 leads to improved metabolic profiles (49, 116).

Regulation of ECM enzymes during obesity—The formation and turnover of the 

ECM are dynamically regulated by different enzymes that act on ECM factors. One of the 
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key enzymes is LOX. As mentioned above, LOX cross-links collagens and elastin and hence 

facilitates the formation of the ECM (4, 39, 160, 202). The function of LOX is tightly 

regulated by hypoxia in obese adipose tissue. Indeed, LOX is a direct transcriptional target 

for HIF1 induction (79). Furthermore, LOX expression has also been shown to be closely 

correlated with elevated Col1 expression during the development of adipose tissue (277). 

Importantly, inhibition of LOX activity not only ameliorates fibrosis but also improves local 

inflammation and several metabolic parameters (79). Clinical results have confirmed that 

LOX levels were significantly increased in obese adipose tissue and weight-loss surgery 

attenuated its expression levels (94, 202).

On the other hand, the ECM digesting enzymes in adipose tissue are also dynamically 

regulated during obesity. Particularly, MMP14 expression and protein levels are significantly 

increased in obese adipose tissue (36, 127, 150). We recently demonstrated that HIF1α binds 

to the promoter regions of MMP14 and hence upregulates its expression (150). Intriguingly, 

the activated MMP14 exerts dichotomous effects on ECM remodeling depending on the 

metabolic status: At the early stages during obesity, MMP14 upregulated by HIF1α 
induction turns over collagen proteins and hence release the mechanical stress on the 

enlarged adipocytes. In that context, MMP14 brings about metabolically beneficial effects 

for the adipose tissue expansion; On the other hand, at the later stages of obesity, 

MMP14 digests Col6 and produces endotrophin, which stimulates local pro-fibrotic and 

pro-inflammatory reactions in obese adipose tissue, thereby worsening the metabolically 

unhealthy microenvironment in the tissue. As a direct result, the mice exhibit metabolic 

dysregulation and insulin resistance (150, 290). Other MMPs and their endogenous 

inhibitors, the TIMPs, are also dramatically changed during obesity. Specifically, the 

expression levels of MMP2, 3, 12, 14, and 19 as well as TIMP1 are dramatically 

upregulated, while MMP7 and TIMP3 were downregulated during obesity in the mice (2, 

29, 126, 161, 170, 224). The studies further indicated that the activities of MMP3 and 

MMP12 are enhanced in the obese adipose tissue (29, 273). TIMP4 levels and activity 

are also increased in the high fat-diet (HFD)-fed mice while suppression of TIMP4 has 

been shown to protect the mice from obesity-induced fibrosis in adipose tissue (224, 

273). All these observations suggest that there is a finely tuned balance between collagen 

digesting enzymes and their inhibitors in obese adipose tissue (29). Of note, the dynamic 

changes of MMPs also exert a profound impact on adipogenesis, angiogenesis, as well as 

inflammation in adipose tissue [reviewed by Ruiz-Ojeda et al. (218)]. Clinical observations 

reveal that the levels of MMP7, MMP9, and TIMP1 correlate well with fat mass during 

obesity. Particularly, MMP9 levels are increased in the insulin-resistant individuals and in 

the patients with higher body mass index (BMI) as well (2, 136).

Fibrosis and angiogenesis

Healthy expansion of adipose tissue requires proper formation and proliferation of new 

blood vessels via angiogenesis and vasculogenesis. The functional blood vessels provide 

nutrients, hormones, growth factors, and stem cells for maintaining the homeostasis of the 

adipose tissue (24, 25, 195, 242). Pro-angiogenic factors, such as VEGF-A and VEGF 

receptors 1 and 2, Angiopoietin receptors, and NOX2 are upregulated by HIFs in most 

tissues, including in the liver, kidney, and tumor tissue (26, 47, 269, 276). In these tissues, 
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the stimulated angiogenesis has been demonstrated to be closely associated with ECM 

remodeling and the level of fibrosis (51). In that context, targeting angiogenesis has been 

considered to be an efficient way to reduce local fibrosis (45, 51). However, in obese adipose 

tissue, HIF1α fails to upregulate VEGF-A for formation of adequate new blood vessels to 

keep the pace with the expansion of adipose tissue (79). This deficiency further exacerbates 

the local hypoxic state in the obese adipose tissue (79). Lack of adequate angiogenesis 

is a unique feature of the obese adipose tissue and the vasculatures may not contribute 

to the development of fibrosis in the tissue. The underlying mechanisms governing this 

phenomenon are not yet completely understood.

Fibrosis and inflammation

Fibrosis induces inflammation—The enhanced stiffness during the development of 

fibrosis causes mechanical stress to the ECM-laden adipocytes, which eventually leads to a 

pro-inflammatory response in the tissue (242). The detailed molecular events governing the 

mechanical stress on adipocytes are not completely understood. Several cellular pathways, 

such as RhoA and NF-κB signals, have been reported to be involved in the whole process. 

Briefly, RhoA is activated by mechanical shear stress and the increased size of adipocytes 

(81). Activation of RhoA signaling pathways reduces PPARγ transcriptional activity on 

adipogenesis, which affects the recruitment of newer adipocytes for healthy expansion (101, 

168). Moreover, RhoA and its downstream RhoA kinase activation stimulate multiple pro-

inflammatory cytokines, including plasminogen activator inhibitor-1 (PAI-1) and mast cell 

protease-1 (MCP-1), which trigger local inflammation (148, 184). Enhanced ECM density 

in adipose tissue also activates the NF-κB pathway, which plays a central role in shaping 

the inflammatory environment by initiating a pro-inflammatory cascade (8). Specifically, the 

activated NF-κB induces activation of monocytes and blunts metabolic signaling in obese 

adipocytes (148).

We and others have observed the fibrosis-induced inflammation in adipose tissue in 

both diet-induced and genetically obese mouse models. In fibrotic obese adipose tissue, 

adipocytes experience a significant enlargement through hypertrophy (163, 179, 243). 

We demonstrated that large lipid droplets rapidly lose their surface covering proteins, 

such as perilipin-1, upon cell death in adipocytes surrounded by the abnormally high 

levels of ECM (246) (Figure 1). The dead adipocytes carrying large lipid droplets attract 

massive infiltration of macrophages, and the accumulated macrophages surrounding the 

lipid droplets form a typical “crown-like” structure, a characteristic feature of inflammation 

in the tissue (180). The infiltrated macrophages, upon disposing lipids from the lipid 

droplets, may polarize into M1-like pro-inflammatory subtypes. They further induce chronic 

mild inflammation which has been recognized as the root cause of obesity-related insulin 

resistance and other metabolic disorders (135, 189). Particularly, this phenomenon has been 

well characterized in our “FAT-ATTAC” (FAT Apoptosis Through Targeted Activation of 

Caspase 8) mouse model, in which the adipocytes are induced to undergo synchronized 

apoptosis via Caspase 8 activation (157, 193, 257). In this model, the adipocytes quickly 

undergo cell death within 2 days upon induction of Caspase 8, while the lipid droplets 

remain in the original regions for many weeks to form “ghost fat cells.” Meanwhile, the 

number of “crown-like” structures is significantly increased, reflecting the increased local 
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inflammation (59, 157, 193). Of note, even though the “FAT-ATTAC” mouse model mimics 

adipocyte death which attracts macrophage accumulation in the obese adipose tissue, it 

may not fully recapitulate all of the pathological changes associated with obesity. Based on 

related observations by us and others, we have built a working model in which inflammation 

happens in the later stages following local hypoxia and fibrosis in adipose tissue (Figure 1).

Inflammation exacerbates fibrosis—Another set of observations support a different 

working model in which hypoxia may trigger local inflammation before the development of 

fibrosis. In this model, fibrosis is induced by inflammation [reviewed in Debari and Abbott 

(46)]. Hypoxia induces infiltration of macrophages and other immune cells in obese adipose 

tissue (93, 270). Abnormal metabolic signaling, in part due to an increase in free FAs 

and prolonged exacerbated circulating glucose levels, promotes activation of immune cells. 

The activated immune cells produce pro-inflammatory cytokines and initiate different levels 

of inflammation. Particularly, the M1-like macrophages secrete IL-6, TNFα, and several 

other cytokines that lead to a chronic low-grade inflammatory response (93, 111, 268, 270). 

Moreover, the innate T cells also exhibit functional abnormalities that further contribute to 

the overall inflamed state (50, 209). The chronic inflammation offers additional mechanisms 

for the development of local fibrosis in the obese adipose tissue (245). The pro-fibrotic 

program is coordinated by a variety of activated or polarized innate and adaptive immune 

cells (158).

Notably, even though we have two models describing the relationship between fibrosis and 

inflammation in the obese adipose tissue, they are not contradictory to each other. Instead, 

the two major pathological changes may promote each other and hence coordinate to shape 

the unhealthy microenvironment in obese adipose tissue. In the future, with the development 

of novel tools applied in vitro and in vivo, it will hopefully be possible to better define which 

is the initial mechanism in response to the stimulation of hypoxia.

Key cellular components involved in fibrosis-induced inflammation—The 

proinflammatory microenvironment in the fibrotic adipose tissue is shaped by a broad 

spectrum of inflammatory factors, adipokines, lipid species, and exosomal mRNAs that 

are produced by different cells (60, 80, 192, 194). Among them, macrophages have been 

recognized as a major contributor for the factors [reviewed in Sun et al. (242)]. Macrophages 

infiltrate into obese adipose tissue, polarize into M1-like subtypes and hence secrete pro-

inflammatory cytokines, such as TNFα, IL-1β, and IL-6. The cytokines not only exert local 

effects in the adipose tissue but also circulate into other metabolically active organs, thereby 

affecting the local inflammatory and metabolic state, ultimately leading to the development 

of metabolic complications in the whole system (75, 213, 270, 275).

Recently, other immune cells have been appreciated to play critical roles in local 

inflammation as well as insulin resistance in the obese adipose tissue (169, 181). In the 

past years, many types of immune cells have been reported to infiltrate unhealthy obese 

adipose tissue [reviewed in Lackey and Olefsky (133)]. They include both innate and 

adaptive immune cells, such as T cells, B cells, NK and NKT cells, dendritic cells, mast 

cells, and neutrophils cells [reviewed in Osborn and Olefsky (191); Ferrante (57)]. Among 

them, neutrophils belong to innate immune cells (109). Even though their overall numbers 
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are relatively small, they are among the first immune cells that are recruited by adipose 

tissue where they exert prolonged pro-inflammatory effects via secreting TNFα, MCP-1, 

and elastase up to 3 months in response to HFD (32, 41, 248, 266). Mast cells also 

belong to innate immune cells and adipose tissue is a major site of residence of mast 

cells. Diet-induced obesity dramatically increases the total number of mast cells in the tissue 

(155, 283). During obesity, mast cells experience a degranulation process which promotes 

the secretion of multiple pro-inflammatory factors, thereby facilitating a chronic low-grade 

pro-inflammation microenvironment in the obese adipose tissue (155, 169, 283). T cells and 

B cells are lymphocytes. Normally they contribute up to 10% of nonadipocytes in adipose 

tissue (169). Specifically, B cells are actively recruited into obese adipose tissue where 

they promote the accumulation of other immune cells, including the M1-like macrophages 

and the T cells (144, 272). T cells represent the second largest population, aside from 

macrophages in the obese adipose tissue (144). T cells have two subtypes, named CD4-

positive and CD8-positive T cells, respectively. CD8-positive T cells are associated with 

metabolically unhealthy outcomes in obese adipose tissue (120). CD4-positive cells are 

further subclassified into several groups: pro-inflammatory T helper (Th1) and Th17 cells, 

anti-inflammatory Th2 cells, and T regulatory (Treg) cells (188). Among them, the Treg 

cells play a key role in maintaining healthy anti-inflammatory state in lean adipose tissue. 

Previous studies have demonstrated that decreased numbers of Treg cells are associated 

with higher level of local inflammation in obese adipose tissue, which might further lead 

to whole-body insulin resistance (58, 292). More recent research further revealed that 

other memory T cells increase in the diet-induced obese adipose tissue, leading to severe 

pathological changes including enhanced lipase activity and calcification of the whole tissue 

(176).

Even though each immune cell exerts its own function in the inflammatory response, the 

interplay between them is essential for their contributions to the chronic local inflammation 

in obese adipose tissue (173). For example, both B cells and T cells, as well as the interplay 

between them, critically influence the M1-like macrophage infiltration in obese adipose 

tissue. Moreover, the CD8-positive T cells promote macrophage differentiation and enhance 

their chemotaxis, thereby leading to their accumulation in the obese adipose tissue (185). 

Based on previous findings, it is well accepted that infiltrating M1-like macrophages are the 

end effectors and orchestrate functional communication among all immune cells [reviewed 

in Lee et al. (144)].

Other pathological consequences of fibrosis

Fibrosis also leads to other effects on adipose tissue. The mechanical stress on the fibrotic 

adipocytes may enhance de novo lipogenesis and lipolysis in the cells, which further induces 

the formation of the abnormally large lipid droplets (46, 128, 129, 150, 243, 288). The 

enlarged lipid droplets caused by fibrosis in adipocytes may further induce the ectopic 

deposition of lipid in other metabolic tissues, an effect known as lipotoxicity (150, 243). 

Fibrosis links directly to adipogenesis in adipose tissue. Indeed, ECM factors have been 

appreciated to play an important role in adipogenesis (6, 38, 140, 289). Consistent with that, 

an abnormal function of MMP14 during fibrosis has been reported to affect adipogenesis 

(36, 150). Moreover, ECM proteins upregulated by TGF-β1 or PAI-1 cause the impaired 
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differentiation of adipocytes in in vitro studies (17, 152). Finally, more recent reports argue 

that the pathologically upregulated HIF1α also drives abnormal adipogenesis in the obese 

adipose tissue (231).

Nonclassical Fibrotic Factors: Endotrophin as an Example

A number of studies have identified numerous novel factors that potently stimulate 

fibrosis in adipose tissue (197). Members of these nonclassical “hormone-like” molecules 

include endostatin, endotrophin, asprosin, and platencin, all of which derive from cleavage 

events under multiple cellular stress situations (250). Among them, endotrophin has been 

highlighted to be a potent pro-fibrotic and pro-inflammatory small molecule that triggers 

profound pathological changes in different tissues and certain types of cancer (226). 

Endotrophin is the proteolytic product of Col6 α3 chain in the adipose tissue (56, 89, 138, 

197–199, 211, 215, 243, 244). Its levels are significantly increased in obese and diabetic 

mice and in humans (243). Endotrophin can be released into circulation and accumulate 

in other metabolic tissues (Figure 2). Recently, extensive studies have demonstrated that 

endotrophin has potent bioactivity, stimulating massive fibrosis and inflammation locally 

in metabolically active tissues, including in adipose tissue, heart, liver, and kidney (54, 

56, 112, 117, 138). It is also enriched in certain types of cancer lesions and serves as 

a driver of malignant tumor growth (22, 196, 197, 199). Particularly in obese adipose 

tissue, endotrophin is a powerful driving factor for local fibrosis, macrophage infiltration, 

and other metabolic unfavorable consequences, including lipotoxicity and insulin resistance 

(243, 290). In line with its function as a necessary and sufficient factor responsible for the 

diet-induced pathological changes, treatment with an anti-endotrophin neutralizing antibody 

significantly reverses the metabolically adverse effects induced by HFD in the obese mice 

(243). Endotrophin has divergent functions on different cell populations in obese adipose 

tissue (290). However, the details regarding the signaling pathway(s) that endotrophin 

triggers in cells remain to be further elucidated.

While numerous studies have demonstrated endotrophin to be a sensitive biomarker of 

local fibrosis and inflammation and have highlighted it as a key regulator in adipose tissue 

dysfunction, insulin resistance, and cancer development, the mechanistic details of the 

cleavage event, including the identity of the key processing enzyme, were unknown for a 

long period of time. In that context, we recently made a major breakthrough by finding that 

MMP14 cleaves Col6 α3 to release endotrophin (150). The cleavage region is located at a 

consensus-cleavage site for MMP14 (Figure 2). The resulting fragment has been confirmed 

using an endotrophin-specific antibody (150). We further found that the levels and activity 

of MMP14 are increased during obesity (150). Aside from MMP14, several other MMPs 

induced by hypoxia, including MMP2, MMP9, and MMP16 in adipose tissue have recently 

been reported to cleave Col VI and produce endotrophin (or endotrophin-like molecules) 

(104).

Importantly, endotrophin is also detected at high levels in many other tissues. Recent 

reports have demonstrated that endotrophin is a sensitive biomarker for local fibrosis and 

inflammation in many diseases (Table 1). For example, endotrophin levels in urine correlate 

with local fibrosis, tubular atrophy, and monocyte infiltration in lupus nephritis patients 
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(66). Studies also established a strong association between the pretransplant plasma levels 

of endotrophin and the risk of the delayed graft function after kidney transplantation, 

pinpointing it as a new marker for the prediction of the effects of the transplantation (250). 

Intriguingly, the levels of endotrophin are significantly higher in the females with polycystic 

ovary syndrome (PCOS), while other adipose-derived hormones, such as adiponectin and 

ghrelin, displayed no changes in the patients, suggesting it may also serve as a unique 

biomarker for the diagnosis of PCOS (72). The circulating levels of endotrophin are also 

tightly associated with many fibrotic diseases, such as fibrotic interstitial lung disease (ILD) 

(44). Moreover, the levels of endotrophin in metabolically active tissues, such as adipose 

tissue, the liver, and the tumor tissues, are also highly correlated with many metabolic 

diseases, such as obesity and related diabetes, cardiovascular disease, kidney disease, and 

cancer (summarized in Table 1).

In summary, endotrophin has drawn a significant attention recently due to its direct link 

to many vital diseases. It has been demonstrated to have potent bioactivity to trigger local 

pro-fibrotic and pro-inflammatory reactions and hence systemic metabolic disorders. Its 

local or circulating levels are highly correlated with the development of these diseases. 

Therefore, endotrophin bears a great potential to serve as a sensitive biomarker and be 

targeted to treat pathological aspects of these diseases.

Cellular Regulation of Fibrosis

While it is clear that the root cause of fibrosis in adipose tissue is obesity, the detailed 

mechanisms governing the development of fibrosis orchestrated by multiple cell populations 

remain to be further clarified. Furthermore, many other factors, including genetic variants 

and environmental factors, may profoundly affect the pathological changes during the 

development of fibrosis. In obese adipose tissue, the large lipid-laden mature adipocytes 

are surrounded by various cell types which are collectively named SVF (86, 203). The 

SVF is composed of endothelial cells, preadipocytes, adipose-derived stem cells (ASCs), 

pericytes, fibroblasts, macrophages, B cells, T cells, and other types of innate immune cells 

(86, 87). Different types of cells respond to the hypoxia condition during obesity and hence 

contribute to the fibrotic development respectively (Figure 3) (86, 87, 290). Recently, the 

development of single-cell or single-nucleus RNA sequencing (specifically for adipocytes) 

provides a powerful tool to characterize the divergent roles of the subpopulations of adipose 

tissue in ECM formation and fibrosis (33, 172, 261).

Adipocytes

As the major type of cells in the adipose tissue, adipocytes are embedded in the dense 

ECM of the adipose depots. Diet-induced obesity induces the upregulation of pro-fibrotic 

genes in adipocytes (105). A recent transcriptome analysis of adipocytes isolated from diet-

induced obese visceral WAT revealed that the adipocytes are switched to a “fibroblast-like” 

phenotype in lieu of the obese adipose tissue (105). Among all the ECM proteins, Col6 is 

highly enriched in the adipocytes (116). Metabolically challenged adipocytes express even 

higher levels of Col6, which has been considered to be a hallmark of adipose tissue fibrosis 

(116). Even though adipocytes have low metabolic rates and a relatively low demand for the 
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oxygen, they are quite sensitive to hypoxic conditions (241). HIFs are induced in adipocytes 

in response to diet-induced obesity (1). By using both gain-of-function and loss-of-function 

genetic tools, we have revealed that HIF1 exerts unique functions on local fibrosis in the 

obese adipose tissue (79, 241). Particularly, LOX is directly upregulated by HIF1 in the 

obese adipocytes (4, 79, 208). LOX promotes over-accumulation of ECM by cross-linking 

collagens and elastin to form the oligomer structures for the collagen and noncollagen fibers 

(79). Furthermore, HIF1 directly binds to the MMP14 promoter region, thereby activating 

their transcription (150). The upregulated MMP14 catalyzes the digestion of Col6 and hence 

produce endotrophin, which triggers massive fibrosis in the unhealthy microenvironments 

in the obese adipose tissue (150). Recently, we found that inhibition of lipid catabolic 

enzymes, such as carboxylesterase 1d (CES1) in adipocytes, may induce the upregulation 

of pro-fibrotic genes including Col3α1, Col6α, and LOX, suggesting the potential role 

of lipid signaling in fibrosis/inflammation in obese adipocytes (147). On the other hand, 

the level of fibrosis in the obese adipocytes is downregulated by the PRDM16-containing 

transcriptional complex, which is mediated by a TFII-I family protein called GTF2IRD1 

in a cell-autonomous manner (82). Mechanistically, GTF2IRD1 suppresses the expression 

level of TGF-β-dependent genes through the recruitment of the PRDM-16 complex (82). 

Intriguingly, some transmembrane glycoproteins, such as CD248 and decorin, exert their 

deleterious effects through triggering the local fibrosis in obese adipocytes (43, 206).

Endothelial cells

Endothelial cells represent the most dynamic composition in the SVF and they line up both 

large and macro vasculature in the adipose tissue. Endothelial cells play a key role in the 

vascular remodeling of adipose tissue during obesity. Even though at the early stage of 

obesity, VEGF-A-mediated endothelial cell activation brings about metabolically beneficial 

effects by counteracting the local hypoxia development via angiogenesis, it eventually leads 

to exacerbated fibrosis, inflammation, and insulin resistance in the established obese adipose 

tissue (246). In unhealthy adipose tissue at the later stages of obesity, endothelial cells may 

form a vascular niche with other cell populations, such as the pericytes, macrophages, and 

hematopoietic stem cells. In this niche, endothelial cells crosstalk with other cell types, 

including adipocytes, immune cells, and fibroblasts, thereby contributing to the local fibrosis 

and inflammation through the so-called “angiocrine pathway” (291). Interestingly, in a 

bleomycin-induced lung fibrosis model and a cardiac fibrosis model, the endothelial cells 

transformed to fibroblasts through endothelial-mesenchymal transition (EMT), suggesting 

that endothelial cells might serve as sources of fibrotic cells under pathological conditions 

(83, 286). Endothelial cells also recruit macrophages during lung injury (137). Even though 

the endothelial cells and the vascular niche that they form have been studied in other fibrotic 

models, it needs to be further examined as to whether they exert similar function on fibrosis 

in adipose tissue.

Macrophages

The function of macrophages on fibrosis has been well established in many tissues/organs 

(186, 187, 249, 274). In particular, inflammatory monocytes reside in obese adipose tissue 

and hence accumulate as mature macrophages in situ. They are the major immune cells 

that initiate local fibrosis and inflammation, which ultimately leads to systemic insulin 
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resistance (210, 237). Macrophage crosstalk with adipocytes via secreting TNF-α and 

FFAs which aggravate local inflammation in obese adipose tissue (53, 132, 240). The 

alternatively activated macrophages have been reported to contribute to tissue fibrosis by 

stimulating the activation of fibroblasts and the formation of the ECM (63). The function 

is through multiple pathways and includes: (i) They secrete several pro-fibrotic cytokines 

including IGF1, CCL17, CCL22, and CTGF; (ii) They overexpress TGF-β which further 

triggers the downstream pro-fibrotic signaling pathways (166); (iii) They stimulate STAT6 

signaling pathways (102, 103); (iv) Finally, the modulation of arginase activity in the 

M2 macrophages promotes fibrogenesis by regulating the production of collagens (251). 

Of note, recent work revealed that senescent macrophages accumulating in diet-induced 

obese adipose tissue promote fibrosis in lieu of the unhealthy microenvironment (210). 

On the other hand, distinct types of macrophages digest the ECM and hence prevent the 

development of fibrosis. For example, the classical activating macrophages secret TSLP, 

MMP2, MMP9, and MMP12, and the enzymes exert their fibrolytic function to release the 

stiffness of the ECM (146, 167, 220). Therefore, the macrophages play dichotomous roles in 

fibrosis and their functions are their polarization dependent.

Adipose tissue-derived stem cells (ASCs)

ASCs are dynamically regulated by different metabolic states (86, 87, 231). Particularly, the 

ASCs in the obese adipose tissue exhibit higher PDGFRα-positive population (98, 162). The 

progenitors are prone to differentiate to the ECM-synthesizing pro-fibrotic cells in the obese 

adipose tissue (98). Specifically, a subset of the PDGFα-positive progenitors with high 

expression of CD9 differentiate into pro-fibrotic cells which directly drive the pathological 

changes of fibrosis (162). A recent study further revealed that both PDGFα-and β-positive 

progenitors contribute essentially to the local ECM development in the diet-induced obese 

adipose tissue (210). Interplays between ASCs and other cell populations also contribute to 

the ECM remodeling.

Fibroblasts

Fibroblasts are a common cell type in the SVF of the adipose tissue. They provide an 

important niche for the adipogenesis and the whole tissue homeostasis (87, 231, 285). 

Fibroblasts are the major source of the ECM and serve as a central regulator for the 

dynamics of ECM remodeling and pathological fibrosis (114). Particularly, the αSMA-

positive myofibroblasts have been recognized to produce the stiff ECM fibers, thereby 

initiating the kidney, liver, and lung fibrosis (254). In particular, fibroblast-specific protein-1 

(FSP-1)-positive fibroblasts play a key role in the ECM remodeling and the whole tissue 

cellular regulation (285). However, the precise functions of fibroblasts in adipose tissue 

remain to be further clarified. Moreover, the origins of the myofibroblasts remain to be 

further defined (164).

Mast cells

Mast cells are a type of immune cell that exist with a large number in connective tissues 

including adipose tissue (207). In response to different cell stimuli, mast cells secrete 

histamine, hormones, and cytokines that promote allergic reactions and inflammation (130). 

Mature mast cells are present in obese adipose tissue in db/db mice where they exert 
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pro-fibrotic function through secretion of MCP-6 (90). Clinically, mast cells are abundant in 

the subcutaneous WAT in the patients with metabolic syndrome (73). In these patients, the 

number of mast cells is correlated with increased fibrosis and the local proinflammatory 

state (73). Moreover, the numbers are also correlated with diabetic parameters, such 

as insulin resistance (48). While it has been appreciated that mast cell accumulation 

in the obese adipose tissue accelerates the process of fibrosis and systemic metabolic 

dysregulation, the details of the whole process remain to be further characterized. Of note, 

while we identify the roles of each cell type in fibrosis (Figure 3), their functions are tightly 

regulated by cell-cell communication. The level of fibrosis is fine-tuned by the interplay 

between them (164). For example, the accrual of macrophages is highly controlled by the 

perivascular mesenchymal cells (230).

Therapeutic Perspectives on Targeting Fibrosis in Adipose Tissue

Given the severe local and systemic pathological consequences caused by adipose tissue 

fibrosis, such as loss of the adipose plasticity, increased local inflammation, impaired 

insulin sensitivity, and the poor prognosis of bariatric surgery (46), targeting fibrosis has 

become an ideal strategy to combat obesity and related metabolic diseases and cancer (46). 

Furthermore, the level of fibrosis has been quantitatively scored clinically and the scores 

have been demonstrated to be reversely correlated with the body-weight loss after the gastric 

bypass surgery, highlighting its significance in the diagnosis and prognosis of obesity-related 

dysregulations (11). Unfortunately, no direct therapies to block or reverse adipose tissue 

fibrosis have been developed to date (163).

HIF1α initiates the whole pathological process of fibrosis and inflammation in the 

established obese adipose tissue. Therefore, targeting HIF1α might be an efficient way 

to suppress hypoxia-induced pathological changes. In that context, we tested the effect of a 

HIF1-specific inhibitor, PX-478 on reversing fibrosis in the diet-induced obese mice. Indeed, 

we found that PX-478 efficiently suppressed the local pro-fibrotic and pro-inflammatory 

reactions in the adipose tissue, thereby improving the whole-body metabolism (241). Further 

probing the efficacy of the PX-478 and other HIF1 inhibitors in obesity and related diseases 

warrants further studies. Hydroxylase domain (PHD) targets and destabilizes HIF1 (13). 

Inhibitors for PHDs, which can increase HIF1 expression, such as GSK1278863 and 

FG-4592, have been in clinical trials to treat kidney anemia. Aside from the observed effect 

on the kidney disease, the inhibitors also showed ability to lower circulating cholesterol 

levels, providing new insights into clinical implications for lipid dysregulations induced by 

obesity (30, 190). However, implication of these agents to directly target adipose tissue 

fibrosis has yet been examined.

The TGF-β pathway plays a central role in pro-fibrotic reaction during obesity. It is 

reasonable to design therapeutic strategies to target TGF-β and its downstream signals to 

block the development of fibrosis, though this is highly challenging. In agreement with 

the notion, berberine, a natural plant product originally known to exert its antidiabetic 

effect via stimulating the activation of AMPK (96), has been shown to decrease TGF-β 
mediated Smad3 phosphorylation, thereby attenuating collagen accumulation and reversing 

the upregulated fibrotic genes in the diet-induced adipose tissue (265).
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Endotrophin is one of the promising targets for consideration. As a molecule that is, 

produced during the pathological expansion of adipose depots, endotrophin shapes an 

unhealthy microenvironment in adipose tissue and other metabolically active organs and 

tumors through triggering local fibrosis and macrophage accumulation in the tissues. 

It not only serves as a sensitive biomarker for the disease but also provides an ideal 

target for treatment. Indeed, blockage of bioactivity of endotrophin significantly reduced/

reversed local fibrosis in the obese adipose tissue and in the tumors in mice (196, 197, 

243). Importantly, we recently developed endotrophin-specific neutralizing antibodies which 

inhibit tumor growth by blocking the bioactivity of endotrophin (22).

MMP14 has been highlighted to be key for the ECM remodeling during obesity. Findings 

from us and others suggest the possible reversibility of adipose tissue fibrosis by inhibiting 

MMP14 (36, 43, 127, 150). Therefore, MMP14 bears a great promise from a therapeutic 

perspective for obesity and type 2 diabetes. Another key ECM remodeling enzyme, LOX in 

adipose tissue has been extensively studied in different diseases and it has been considered 

to be an attractive target for the therapeutic intervention to treat fibrotic diseases [reviewed 

in Yang et al. (278)].

Conclusion

In the past, obesity-induced fibrosis in adipose tissue has been extensively investigated 

in vitro by 3-D culture, ex vivo by high-resolution magnetic resonance imaging (MRI), 

as well as in vivo in different animal models and humans (4, 11, 18, 46, 49, 79, 85, 

86, 116, 118, 124, 150, 163, 241, 243, 245, 290). It has been well established that 

fibrosis developed in obese adipose tissue causes severe pathological changes, including 

adipocyte necrosis, impaired adipogenesis, metabolic disorders, and inflammation locally in 

the adipose tissue, ultimately leading to systemic lipotoxicity and insulin resistance (245). 

Previous findings have demonstrated that different cell populations in obese adipose tissue 

contribute individually to the development of fibrosis. The interplay between these cells 

finetunes the whole pathological process. Many additional findings further highlight the 

central role of hypoxia in the pro-fibrotic and pro-inflammatory reaction in obese adipose 

tissue (79, 241). While HIF1 stimulates both fibrosis and inflammation, the causal-effect 

relationship between the two pathological changes remains to be further defined with 

proper models. Moreover, the detailed mechanisms underlying the overdevelopment of ECM 

resulting in fibrosis need to be further characterized in depth.

It has been proposed that fibrosis can be reduced or reversed to treat obesity and related 

metabolic diseases and cancer. Several key fibrotic pathways, such as TGFβ and its 

downstream signaling, the HIF1-MMP14-endotrophin axis, and HIF1-PHD signaling have 

been considered to be potential targets to ameliorate fibrosis and related pathological 

changes. Excitingly, at least in vitro or in preclinical models, they have been demonstrated to 

be effective to improve metabolic disorders, including dyslipidemia, insulin resistance, and 

tumor growth (22, 150, 241, 243). In the future, well-designed clinical studies will hopefully 

validate this therapeutic relevance of these pathways in patients. Of note, even though 

fibrosis has been demonstrated to be the core constituent of unhealthy microenvironment 

that further induces local inflammation and other pathological changes in the obese adipose 
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tissue, metabolic dysfunction can be caused by many other profound factors, including 

nutritional and genetic factors. Therefore, anti-fibrotic therapeutics themselves may be 

insufficient to reverse the metabolic disorders. In that context, combination of the anti-

fibrotic therapeutics with other interventions, such as reduced energy intake, regular physical 

activity, anti-inflammatory interventions, and/or metabolic (bariatric) surgery bear great 

promise to synergistically treat obesity and type-2 diabetes.
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Didactic Synopsis

Major teaching points

• Obesity is caused by interactions of multiple complex factors, such as 

overnutrition, reduced physical activity, the environmental, and genetic 

factors.

• Hypoxia initiates multiple pathological changes in the obese adipose tissue.

– Fibrosis is one of the major consequences caused byhypoxia.

– Abnormal ECM accumulation during fibrosis is tightly associated 

with chronic low-grade inflammation in the obese adipose tissue.

– The pro-inflammatory factors and free fatty acids released from the 

dysfunctional adipose tissue further circulate to other metabolically 

active tissues/organs, thereby triggering an elevated degree of 

lipotoxicity in the other organs.

• Fibrosis in adipose tissue is a major driver of obesity-related metabolic 

dysregulation.

• The enhanced stiffness during the development of fibrosis causes the 

mechanical stress to the ECM-laden adipocytes, which eventually leads to 

necrosis of adipocytes and a pro-inflammatory reaction response in the tissue.

• The chronic inflammation is an important trigger for the development of the 

local fibrosis in the obese adipose tissue.

• The level of fibrosis is fine-tuned by the interplays between multiple cell 

types in obese adipose tissue.

• Targeting fibrosis has become a viable strategy to combat obesity and related 

metabolic diseases and cancer.
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Figure 1. 
Working model for the development of fibrosis and inflammation in obese adipose tissue. In 

lean adipose tissue, the adipocytes are small and healthy. Adequate blood vessels formed 

by proper angiogenesis provide oxygen, hormones, nutrients, and adipocyte precursors 

to support the healthy expansion of the tissue (A); during diet-induced obesity, adipose 

tissue expands rapidly through hyperplasia and hypertrophy. Meanwhile, new blood vessel 

formation cannot keep up with the expansion, the adipocytes become larger, and local 

hypoxia thus develops (B); At the late phase of obesity, hypoxia stimulates massive 

fibrosis. The mechanical stress induced by the overdeveloped ECM leads to necrosis of 

the adipocytes. As a result, macrophages are accumulated and polarized to the M1 subtype 

in the tissue. They form “crown-like” structures in obese adipose depots. The local fibrosis 

and inflammation further lead to the whole-body insulin resistance (C). Of note, not all the 

adipose tissue expansion has “unhealthy” consequences. In addition to the calorie excess, 

genetic variants and environmental factors also have profound effects on the expansion.
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Figure 2. 
MMP14 digests Col6 and produce endotrophin. During diet-induced obesity, local 

hypoxia induces HIF1α in adipose tissue. As a direct target of HIF1α, MMP14 is 

upregulated. Meanwhile, HIF1α also upregulates Col6 expression. MMP14 digests Col6α3 

chain and produces endotrophin. Accumulation of endotrophin further shapes unhealthy 

microenvironment locally in the adipose tissue via triggering massive fibrosis and 

inflammation. The local pathological changes ultimately lead to systemic insulin resistance 

and other metabolic disorders.
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Figure 3. 
The divergent function of different cell populations on fibrosis in obese adipose tissue. 

The fibrotic program is coordinated by multiple cell types in adipose tissue, including 

adipocytes, macrophages, endothelial cells, ACS, Mast cells and fibroblasts, etc. The cells 

secrete collagens and non-collagenous proteins, pro-inflammatory factors, ECM enzymes, 

and multiple unidentified factors which work together to fine-tune the level of fibrosis in 

response to different cell stimuli. Moreover, the cells interplay with each other and regulate 

their pro-fibrotic function through the cell-cell communication.
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