Skip to main content
. 2023 Feb 13;9(2):e13692. doi: 10.1016/j.heliyon.2023.e13692

Table 2.

Overall classification performance for each model.


Model
Precision Recall F1 score Accuracy
ERT 0.505 ± 0.125 0.522 ± 0.139 0.498 ± 0.129 0.511 ± 0.121
XGBoost 0.394 ± 0.064 0.436 ± 0.078 0.374 ± 0.077 0.397 ± 0.067
SVM (RBF) 0.475 ± 0.066 0.482 ± 0.062 0.467 ± 0.070 0.489 ± 0.067
SVM(Linear) 0.441 ± 0.087 0.514 ± 0.109 0.420 ± 0.092 0.455 ± 0.085
Mlogit 0.464 ± 0.061 0.446 ± 0.061 0.422 ± 0.049 0.466 ± 0.067

Mean ± SD. ERT, extremely randomized trees; XGBoost, extreme gradient boosting; SVM, support vector machine; Mlogit, multinomial logistic regression.