Table 2.
Overall classification performance for each model.
|
Model |
Precision | Recall | F1 score | Accuracy |
|---|---|---|---|---|
| ERT | 0.505 0.125 | 0.522 0.139 | 0.498 0.129 | 0.511 0.121 |
| XGBoost | 0.394 0.064 | 0.436 0.078 | 0.374 0.077 | 0.397 0.067 |
| SVM (RBF) | 0.475 0.066 | 0.482 0.062 | 0.467 0.070 | 0.489 0.067 |
| SVM(Linear) | 0.441 0.087 | 0.514 0.109 | 0.420 0.092 | 0.455 0.085 |
| Mlogit | 0.464 0.061 | 0.446 0.061 | 0.422 0.049 | 0.466 0.067 |
Mean SD. ERT, extremely randomized trees; XGBoost, extreme gradient boosting; SVM, support vector machine; Mlogit, multinomial logistic regression.