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Abstract

Squamous cell carcinoma of the oral cavity (OSCC) is the most common type of head and neck 

cancer; survival is poor and response to treatment varies. Metastasis or recurrence in the regional 

lymph nodes is associated with poor survival. Consequently, overt or occult spread to the lymph 

nodes is used to identify patients who will receive adjuvant radiation therapy. Perineural invasion 

and diameter of nerves exhibiting perineural invasion have also been suggested to be of prognostic 

significance. The explosion of interest in cancer neuroscience in the last two decades has led to 

novel biologic insights on interactions between nerves and tumor cells. However, our criteria for 

defining perineural invasion have lagged behind current knowledge. It is important to re-evaluate 

the concept of perineural invasion and identify other neural phenotypes in OSCC that could impact 

treatment selection and prognosis. In addition to perineural invasion, neural phenotypes that are of 

potential relevance to tumor progression include nerve-tumor distance, nerve diameter, and nerve 

density. This manuscript discusses the translational significance of recent mechanistic studies on 

progression of oral cancer.

Graphical Abstract

Squamous cell carcinoma of the oral cavity (OSCC) is the most common type of head and 

neck cancer. This paper discusses the clinical significance of recent studies on nerve-tumor 

distance, diameter of nerves within the tumor, and nerve density on progression of oral cancer and 

highlights gaps in knowledge.
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Short Summary

Squamous cell carcinoma of the oral cavity (OSCC) is the most common type of head and neck 

cancer. Tumor recurrence and variability in response to treatment are persistent challenges to 

successful clinical outcomes. In an attempt to improve patient survival, histopathologic neural 

parameters such as perineural invasion and diameter of nerves exhibiting perineural invasion, 

have been suggested to be of prognostic significance. Moreover, mechanistic and translational 

studies highlight emerging neural parameters that could be of prognostic significance. This 

manuscript discusses the clinical significance of recent studies on nerve-tumor distance, diameter 

of nerves within the tumor, and nerve density on progression of oral cancer and highlights gaps in 

knowledge.
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Introduction

Squamous cell carcinoma constitutes more than 90% of head and neck cancers, which 

include malignancies of the oral cavity, oropharynx, hypopharynx, larynx, and nasopharynx 

(1). There are more than 600,000 new cases each year (2, 3). Oral cavity squamous cell 

carcinoma (OSCC) is the most common type of head and neck cancer (3); OSCC occurs 

most frequently on the vermilion of the lip, particularly the lower lip. Excluding the 
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vermilion, more than half of all OSCC occur on the tongue, with the posterolateral and 

ventral surfaces of the tongue being the predominant sites (4). Floor of mouth cancers are 

the next most frequent site of intraoral OSCC followed by cancers on the gingiva/ alveolar 

ridge (4).

OSCC usually occurs in individuals 60 years and older, and has a strong male predilection 

(4). Lip OSCC is linked to sun exposure whereas tobacco, alcohol, and intrinsic factors such 

as iron deficiency, are risk factors for other OSCC. Additionally, human papillomaviruses 16 

(HPV16) has been linked to oral cancer; however, this association is stronger in squamous 

cell carcinoma of the oropharynx than the oral cavity. Although the incidence of HPV16-

related oropharyngeal cancer has exceeded that of cervical cancer in the United States (5), 

OSCC is still the most common head and neck cancer, and is clinically and biologically 

distinct from HPV16-positive oropharyngeal cancer (6).

OSCC arise from pre-malignant lesions in the epithelial lining of the oral mucosa and 

vermillion region of the lip. In pre-malignant lesions, also known as epithelial dysplasia, 

transformed epithelial cells are retained within the surface epithelium, i.e. above the 

basement membrane (7). In OSCC, transformed epithelial cells destroy the basement 

membrane to invade the underlying fibrovascular tissue. From here, cancer cells can spread 

into adjacent sites, or enter vasculature and nerves to spread to regional and distant sites 

such as the lymph nodes and lung, respectively (8).

Clinically, OSCC presents as an ulcerated, exophytic, endophytic, white (leukoplakia), or 

red (erythroplakia) lesion (4). The patient may be asymptomatic with the lesion discovered 

on routine exam, or may complain of pain or paresthesia. Pain or paresthesia suggest neural 

involvement, an adverse phenotype that is associated with metastasis and poor survival. For 

example, neural invasion in lower lip cancers could lead to tumor spread to the mandible 

via the mental foramen. One fifth of patients with OSCC complain of pain as their initial 

symptom (9). In a prospective study of 339 patients, Scharpf et al (10) reported that ~54% 

of patients with head and neck cancer complained of pain, which is not surprising given 

the remarkable innervation of the head and neck. They reported that post-treatment pain 

was an independent predictor of recurrence in patients with head and neck cancer; higher 

post-treatment pain was associated with poorer survival than lower post-treatment pain. 

Paresthesia of the mental nerve region (“numb chin syndrome”) reported with OSCC of 

the gingiva or floor of mouth, has been attributed to invasion of OSCC into the mental or 

alveolar nerve (11). In this small group of eleven patients, the mean survival was ~2 years 

(11).

Pain may emanate from damaged nerves (neurotrophic pain) or in response to an external 

stimulus (nociceptive pain). Nociceptive pain, the nociceptor-mediated response to external 

injury, develops rapidly and disappears as the noxious stimulus is eliminated or nerve 

damage heals. In contrast, neurotrophic pain is persistent, prolonged, and due to damage 

within the nervous system such as that due to anti-cancer agents (12). Patients with OSCC 

may develop nociceptive or neurotrophic pain (13). While mild to moderate pain in patients 

with OSCC is treated with non-steroidal anti-inflammatory drugs, opioids are used to treat 

severe pain (14). The μ-opioid receptor, which is also present on tumor cells, is the target 
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of prescription opioids (15). This receptor, which has two subtypes mediating pain and 

adverse effects of opioids, is present in sensory terminals of peripheral tissue, including oral 

mucosa (15). Based on heteromer formation with receptors of ligands that have a role in 

axon guidance and neurite outgrowth, the μ-opioid receptor may have a role in perineural 

invasion (15).

Neural involvement by OSCC is often associated with perineural spread or perineural 

invasion. Perineural spread is a clinical/radiographic phenotype whereby the cancer grows 

so extensively around the nerve that it is detectable radiographically (16). In contrast, 

perineural invasion denotes nerve involvement by cancer that is observed microscopically on 

tissue biopsies but not radiographically (16). Combining a standardized pain questionnaire 

and pathology reports, Salvo et al, reported that perineural invasion in OSCC is associated 

with mechanical allodynia and spontaneous pain in patients (17). In an independent study of 

162 patients with oral cancer, there was a significant association of high levels of pain and 

perineural invasion, after adjusting for covariates (18).

In contrast to OSCC, neural phenotypes other than perineural invasion have not been 

investigated in HPV16-positive oropharyngeal cancer. Moreover, there are conflicting 

reports on association of perineural invasion with poor survival in oropharyngeal cancer 

(19–21); this is an area that requires further investigation. This review will focus on 

perineural invasion and other histopathologic neural phenotypes in OSCC, including 

nerve-tumor distance, nerve diameter, and nerve density, which are associated with tumor 

progression.

Innervation of the oral cavity

The oral mucosa is innervated by the peripheral nervous system, which is comprised of 

12 pairs of cranial and 31 pairs of spinal nerves. The afferent (sensory) and efferent 

(motor) nerves of the peripheral nervous system transmit information towards or from 

the central nervous system (brain and spinal cord), respectively. The two main divisions 

of the peripheral nervous system, the viscero and somatic sub-divisions, have motor and 

sensory components (22). Thus, sensory nerves may be somatosensory or viscerosensory, 

and motor nerves may be somatic or visceral (autonomic) (22, 23). Somatic nerves innervate 

the skeletal muscle to control voluntary movement (24). The autonomic nervous system 

consists of sympathetic, parasympathetic, and enteric branches. The sympathetic branch 

controls ‘fight or flight’ responses whereas the parasympathetic branch controls involuntary 

physiologic functions of organs and tissues including salivary glands (22, 25).

Nerves innervating the oral cavity are also described as somatic or branchial depending 

on the embryologic derivation of the structures they innervate. For example, since the 

hypoglossal nerve innervates tongue muscles that are somite-derived, it is a somatic-

efferent nerve. Since the muscles of mastication, facial expression and larynx/ pharynx are 

embryologically derived from the branchial arches, the nerves innervating these muscles are 

the branchial-efferent nerves (22). These include trigeminal (V) (26) and facial (VII) nerves, 

innervating muscles of mastication and facial expression, respectively, and glossopharyngeal 
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(IX), vagus (X) and accessory (XI) nerves, which innervate laryngeal and pharyngeal 

muscles. All branchial-efferent nerves are mixed, i.e. both motor and sensory.

Cranial nerves, including some that innervate the oral region, arise in the brainstem and 

may be exclusively sensory, motor, or mixed, which contain afferent and efferent fibers (24). 

For example, the hypoglossal nerve (XII) is exclusively a motor cranial nerve whereas the 

trigeminal nerve (V) is both motor and sensory. Spinal nerves arise from the spinal cord and 

are mixed nerves containing sensory and motor components (23).

Neurons consist of the cell body or soma, single or multiple afferent processes termed 

dendrites, and a single efferent process termed axon. Pre-ganglionic neurons in the 

CNS are generally multipolar, characterized by a single axon and many dendrites 

(27). Post-ganglionic neurons connect to the periphery. Sensory post-ganglionic neurons 

are pseudounipolar; these have no dendrites and one single axon that connects the 

periphery to the pre-ganglionic neurons. Bipolar neurons, with a single axon and a single 

dendrite, are found in sensory organs such as the retina (27). Post-ganglionic sympathetic 

and parasympathetic neurons are multipolar. The pre-ganglionic neurons of the cranial 

parasympathetic system are in the brainstem whereas soma of the post-ganglionic neurons 

lie outside the central nervous system, in submandibular, pterygopalatine, and otic ganglia, 

and microganglia along facial and glossopharyngeal nerves. Soma of sympathetic post-

ganglionic neurons innervating the oral cavity are primarily aggregated in superior cervical 

ganglia (28). The motor root of the trigeminal nerve originates in the brain and courses 

through the nerve; the trigeminal ganglion itself has only post-ganglionic sensory neurons. 

The soma for spinal sensory and motor neurons are in the dorsal root ganglia and grey 

matter respectively.

The nerve fiber is surrounded by Schwann cells that maintain, repair, and myelinate 

fibers in the peripheral nervous system (16). Nerve fibers and associated vasculature are 

surrounded by collagen, extracellular matrix, and fibroblasts that together constitute the 

endoneurium. Several nerve fibers with surrounding endoneurium are grouped into fascicles 

by perineurium, which consists of epithelial-like cells with basement membrane on both 

sides forming a protective barrier (29). The epineurium, consisting of connective tissue, 

collagen and elastic fibers, surrounds the nerve, wrapping several fascicles together.

Immunohistochemical markers used to characterize nerves include neuron-specific class III 

β-tubulin (TUJ1), or S100 (Schwann cells), or protein gene product 9.5 (PGP9.5, neuronal/

neuroendocrine marker), (all nerves); calcitonin gene related peptide (CGRP) or Substance 

P or Nav1.8 or Receptor Potential Vanilloid type 1 channel (TRPV1), (sensory nerves); 

Tyrosine Hydroxylase (TH, sympathetic or adrenergic), Vasoactive Intestinal Polypeptide 

(VIP), or nNOS, or vesicular acetylcholine transporter (VAChT) or choline acetyl transferase 

(ChAT) (30) (parasympathetic or cholinergic); and growth associated protein 43 (GAP43, 

neurite growth). ChAT and VAChT are expressed by lower motor neurons connecting to 

the periphery, including branchial, visceral, and somatic motor neurons (31). In rat, light 

and heavy neurofilaments (NF-L and NF-H, respectively) are used to identify nascent and 

mature nerve fibers (30). For a more comprehensive review of nerve markers, please refer to 

Hernandez et al. (32).

D’Silva et al. Page 5

Adv Biol (Weinh). Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Site-specific Innervation (Figure 1)

The trigeminal (V), facial (VII), glossopharyngeal (IX), vagus (X), and hypoglossal (XII) 

cranial nerves and the spinal accessory nerve innervate the oral cavity (33). The maxillary 

and mandibular branches of the trigeminal nerve innervate the mucosal lining of the oral 

cavity. The lingual branch of the mandibular nerve provides general sensory innervation 

(pain and touch) for the anterior two-thirds of the tongue. The taste sensory innervation of 

this region is from the chorda tympani nerve, a branch of the facial nerve that arises from 

the geniculate ganglion (34). The posterior third of the tongue that differs in embryologic 

origin from the anterior two-thirds, has taste and general sensory innervation from the 

glossopharyngeal nerve. The base of the tongue is supplied by the superior laryngeal 

branch of the vagus nerve. The hypoglossal nerve innervates the tongue muscles, except 

the palatoglossus muscle that is innervated by the vagus nerve (33).

The maxillary and mandibular divisions of the trigeminal nerve innervate the gingiva (35). 

The maxillary nerve innervates the maxillary labial gingiva and teeth via the superior 

alveolar branch, whereas the nasopalatine and greater palatine branches innervate the palatal 

gingiva and hard palate. Sensory innervation of the soft palate is from the lesser palatine 

branch of the maxillary nerve. The buccal and inferior alveolar nerves, both from the 

mandibular nerve, innervate the mandibular labial gingiva and teeth, whereas the lingual 

nerve provides innervation of the lingual gingiva (35).

The labial branch of the infraorbital nerve from the maxillary division of the trigeminal 

nerve provides sensory supply to the upper lip. The mental branch of the inferior alveolar 

nerve from the mandibular division of the trigeminal nerve innervates the lower lip. The 

buccal branch of the mandibular nerve provides sensory innervation for the buccal mucosa 

(36).

The motor innervation of the muscles of the lips and cheek is from the buccal branch of the 

facial nerve. The mylohyoid branch of the inferior alveolar nerve innervates the mylohyoid 

and anterior belly of the digastric muscles. The glossopharyngeal and vagus nerves form the 

pharyngeal plexus that innervates the tonsils and soft palate muscles, except for the tensor 

veli palatine (37). The ganglionic branches of the maxillary nerve innervate the mucosa 

of the pharynx and palate. Thus, sensory, motor, and autonomic nerve fibers innervate the 

oral cavity and could interact with tumors arising in this location. The current literature on 

nerve-oral cancer interactions is described in the following section.

Neural influence in oral cavity cancer

Nerves are an essential component of the tumor microenvironment contributing to growth, 

progression, and spread of cancer. Nerves were historically considered passive bystanders 

in perineural invasion with cancer cells being the aggressor. However, in a landmark in 

vitro study in prostate cancer, Ayala et al, (38) showed dynamic interaction between cancer 

and nerves that led to cancer cells invading nerves, which project neurites towards cancer 

cells. In an in vitro model of perineural invasion, prostate cancer-related axonogenesis 

may be regulated by Semaphorin 4F (S4F) (39). PC-12-derived neuronal cells, treated 

with conditioned medium from a co-culture of dorsal root ganglia with DU145 human 
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prostate cancer cells, showed higher neurite outgrowth when compared with PC-12 cells 

treated with conditioned medium from cancer cells alone or blank conditioned medium 

(39). Furthermore, N1E-115 cells stimulated with conditioned medium from prostate cancer 

cells overexpressing Semaphorin 4F developed more neurite sprouting, interestingly siRNA-

mediated downregulation of Semaphorin 4F reversed this effect (39). More recently, in 

establishing the dynamic interaction between cancer and nerves in oral cancer, Scanlon et 

al (40) used in vitro and in vivo approaches to show that nerves release the neuropeptide 

galanin to induce galanin receptor 2 on cancer cells. Cancer cells reciprocate by releasing 

galanin and prostaglandin E2 (PGE2) to enhance neurite outgrowth and invasion. In an 

earlier study, the same group showed that galanin receptor 2 also enhances tumor growth 

and survival of oral cancer cells (41). In a subsequent study, Madeo et al (42) showed that 

exosomes released by head and neck cancer cells induce axon outgrowth from neuronal 

cells. Deletion of Rab27a/b, which blocks secretion, or biochemical inhibition of exosome 

release, suppresses this activity. Ephrin B1, an axon guidance molecule transported within 

exosomes, enhances axonal outgrowth from neuronal cells. Using TUJ1, TH, VIP and 

TRPV1 on tissue sections from 15 human head and neck SCC, Madeo et al (42) reported 

that these tumors are innervated by sensory (TUJ1 and TRPV1 positive) rather than 

sympathetic (TH) or parasympathetic nerves (VIP).

Recent studies exploring the interaction between nerves and cancer highlighted the role 

of the autonomic nervous system in tumor progression. In a ground breaking study, using 

chemical and surgical sympathectomy, Magnon et al, (43) showed that adrenergic nerves are 

required for tumor initiation, whereas the parasympathetic nervous system facilitates cancer 

progression. They used Hi-Myc transgenic mice, a prostate cancer model that has complete 

penetrance of intraepithelial neoplasia at post-natal week 2. Sympathectomy in neonate 

mice abrogated tumor initiation but these effects were attenuated if a sympathectomy 

was performed in 1 month old mice. In adult mice, sympathectomy had no effect in 

blocking tumor initiation. In mice with established prostate cancer, cholinergic agonists 

enhanced metastases to lymph nodes, which was abrogated with cholinergic antagonists. 

This carbachol-induced spread to lymph nodes was also reduced in cholinergic receptor 

knockout mice (Chrm1−/−). Together these biochemical and genetic studies established the 

role of the autonomic nervous system in stroma-dependent, initiation and progression of 

prostate cancer.

In the oral cavity, an in vivo study showed that sympathetic nerves also influence tumor 

progression and gene expression within the tumor. Sympathectomy reduced interstitial 

fluid pressure, lymphatic vessels and growth in rat tongue tumors (44), altering the 

gene profile of these tumors compared to control and sham groups (45). Genes related 

with cancer progression such as Akr1b8, Anxa1, Cdh3, Cxcl2, Hif1a, Itgb1, Mip2b, 

Mmp3, Pdpn, Postn, Timp1, and Pcna were found upregulated in the sham group 

(45). Cathecolamines such as norepinephrine are stress-derived molecules produced by 

the sympathetic nervous system. Norepinephrine acts through its α- and β-adrenergic 

receptors (ADRA, ADRB). Norepinephrine has been associated with OSCC proliferation 

and invasion through ADRB2/ERK/CREB signaling pathway (46). As expected, ERK and 

CREB inhibitors suppressed the norepinephrine-induced effects (46). Furthermore, an in 

vitro study reveals that norepinephrine-stimulated oral cancer cells reduced the cleavage of 
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capsase-3, inhibited apoptosis, and consequently, induced resistance to cisplatin through the 

ADRB/Akt/ABCG2 (ATP-binding cassette subfamily G, isoform 2 protein) pathway (47). 

Since ADRB2 is present in oral cancer cells, β-blocker treatment has been explored (48). 

In an in vitro study, propranolol showed an anti-tumor effect, inhibiting cancer cell viability 

and the expression of pAkt, NF-κB, and VEGF in head and neck cancer cells (48). A 

subsequent elegant study from Amit et al (49), established the origin of sympathetic nerves 

that innervate oral cancer showing that these nerves are derived from trans-differentiation 

of sensory nerves. p53 is one of the most commonly mutated genes in OSCC (50). Using 

in vitro approaches, p53−/− mice, and injection of OSCC cell lines in mice, Amit et al 

(49), showed that cancer cells with mutant/inactive p53 induce neuritogenesis modulating 

the release of factors transported within exosomes. OSCC cells with mutant p53 do not 

secrete microRNA miR-34a; the absence of miR-34a coupled with the presence of miR-21 

and miR-324 allows trans-differentiation of sensory to TH+ sympathetic neurons. This 

phenotypic switch is important for neural innervation of OSCC. However, Atherton et 

al. identified postganglionic sympathetic nerves in C57Bl/6 mouse tongue tumors using a 

retrograde tracer that labeled neurons in the superior cervical ganglion (51). Importantly, 

increased TH-positive nerve density is associated with aggressive OSCC (49).

Neural innervation of OSCC can be enhanced by a diet rich in palmitic acid. Pascual et al 

(52) showed that tumors from mice exposed to palmitic acid, or cancer cells briefly exposed 

to palmitic acid, acquire an aggressive metastatic phenotype. In response to dietary palmitic 

acid, tumor cells express CD36; these tumor cells then release galanin to stimulate Schwann 

cell colonization in the tumor bulk. This phenotype is retained even after several passages in 

mice, attributed to transcriptional and chromatin changes induced by palmitic acid. Included 

in these changes is a neural signature that leads to release of factors that induce a switch in 

intra-tumoral Schwann cells to a ‘proregenerative’ phenotype. The proregenerative Schwann 

cells release extracellular matrix factors that facilitate metastasis of OSCC (52).

Together these studies have provided major insights on the biology of neural involvement 

in oral cancer progression with significant implications for neural phenotypes observed 

in biopsies of human OSCC. For more information on other types of cancers and their 

interactions with the nervous system, please refer to recent review articles cited here (53–

56).

Neural phenotypes in Oral Cancer

Given the emergence of the field of cancer neuroscience (57), with its elucidation of the 

mechanistic basis of cancer-nerve interactions, it is important to re-evaluate diagnostic 

criteria for perineural invasion and assess other neural phenotypes in the context of OSCC 

progression and patient survival. In addition to perineural invasion, neural phenotypes that 

have emerged as potentially important for prognosis in OSCC are nerve-tumor distance, 

nerve diameter, and nerve density (Figure 2). These phenotypes are supported by the biology 

of OSCC.

Perineural invasion is the best recognized histopathologic neural phenotype that highlights 

the interaction between nerves and cancer cells. Perineural invasion was originally defined 
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as ‘cancer within, around or through the nerve’ (58). Subsequently, this definition was 

updated to cancer ‘surrounding at least 33% of the nerve’ or within the epineurium, 

endoneurium or perineurium (59), which is the current definition.

Perineural invasion has been repeatedly associated with poor outcomes in OSCC 

and multiple other cancers. Since OSCC with perineural invasion may be treated 

aggressively (60), it is important to accurately identify this phenotype in diagnostic 

biopsies. Using current criteria, detection of perineural invasion in SCC is enhanced by 

immunohistochemical staining with S100 or TUJ1, and cytokeratin to highlight nerves 

and tumor cells, respectively (61–64). In a study on biopsy tissue from 142 patients 

with OSCC, detection of perineural invasion was significantly increased from 26.1% on 

routine hematoxylin and eosin (H&E) stained sections to 43% when H&E was used in 

conjunction with immunohistochemistry (61, 62). Together these studies support the use of 

immunohistochemistry to enhance detection of perineural invasion in OSCC.

Previous studies reported perineural invasion in 5.2 to 90% of OSCC (16). This wide 

variability could be due to differences in interpretation between pathologists of what 

represents perineural invasion. As reported by Chi et al (65, 66), there is only fair 

to moderate agreement among pathologists in identifying perineural invasion in OSCC, 

possibly due to variations in interpretation of current criteria. The wide range in reported 

incidence of perineural invasion could also be due to reliance on pathology reports in these 

studies. These reports may not include perineural invasion in the microscopic description 

of the tumor; consequently, studies that use reports alone would underestimate this neural 

phenotype (16, 61, 62). Moreover, diagnostic criteria for perineural invasion have evolved 

thereby impacting conclusions in studies that relied solely on archival pathology reports. 

Standardization of reporting criteria in pathology reports or evaluation of tissue specimens 

rather than review of reports could provide more accurate information for this important 

phenotype.

Perineural invasion in OSCC has been reported as a surrogate marker for lymph node 

involvement. Metastases to the lymph nodes and locoregional recurrence in the lymph 

nodes after initial treatment, are associated with poor prognosis in head and neck SCC (62, 

67). Consequently, patients with metastases to the lymph node at the time of diagnosis 

receive aggressive treatment (16, 68–71). It is important to accurately identify lymph node 

metastases due to the impact on the treatment plan. Perineural invasion could predict occult 

lymph node metastases at the time of diagnosis; for example, in tongue tumors, perineural 

invasion is associated with occult lymph node metastases (72). Perineural invasion in 

primary OSCC also increases the risk of recurrence in regional lymph nodes (60, 73). 

Perineural invasion is an independent risk factor for poor disease-specific survival (60–62). 

Studying biopsy tissue from 142 patients, Schmitd et al. (62), reported that OSCC with 

perineural invasion and negative lymph nodes (PNI+, N0), was associated with significantly 

poorer disease-specific survival, disease-free survival, and overall survival than in the 

absence of perineural invasion (PNI-, N0). Despite receiving adjuvant radiation, the PNI+, 

N0 group had a significantly higher hazard ratio than the PNI-, N0 group. An independent 

study also showed that perineural invasion is associated with worse disease-free interval, and 

locoregional control (60).
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The impact of number of nerves exhibiting perineural invasion on survival has been 

disputed. Multifocal perineural invasion has been associated with poorer survival than 

unifocal involvement (74). However, two studies, including a large recent study showed 

no relationship between the number of nerves exhibiting perineural invasion and survival 

(60, 62). Even in patients with early stage OSCC (Stages I and II), no survival difference 

was observed between patients with less than 5 or more than 5 nerves exhibiting perineural 

invasion (62). This could be due to differences in treatment because early stage lesions with 

multifocal perineural invasion are more likely to receive adjuvant therapy in addition to 

surgery, than early lesions with unifocal nerve involvement (62).

In OSCC, perineural invasion in a nerve with a diameter of >1 mm has been linked to higher 

loco-regional recurrence (74, 75). However, Tarsitano et al (76) reported an association of 

perineural invasion with loco-regional recurrence regardless of nerve diameter. In a more 

recent study in OSCC, only 7 of more than 9000 nerves that were measured had a diameter 

larger than 1 mm (62). Moreover, no association was observed between nerve diameter and 

survival even when nerves exhibiting perineural invasion were grouped into tertiles of small 

(<29.2 μm), medium (29.2 to 47.5 μm) and large (>47.5 μm).

In summary, using current criteria, perineural invasion in OSCC is an independent risk factor 

for poor survival regardless of the diameter and number of nerves exhibiting this phenotype; 

immunohistochemical stains for cancer cells and nerves enhance detection of perineural 

invasion.

Nerve-Tumor Distance:

The pitfall of the current definition of perineural invasion requiring cancer to approximate 

at least 33% of the nerve, is that it does not consider recent findings of crosstalk between 

nerves and OSCC (1, 40). For example, studies in several cancers, including OSCC, show 

that cancer and nerves have dynamic interactions even prior to physical contact (38, 40). 

This suggests that the distance between nerves and cancer cells in OSCC tissue could 

be relevant to clinical outcome. To address this knowledge gap, recent studies in OSCC 

evaluated nerve-tumor distance with respect to survival (61, 62).

Nerve-tumor distance is defined as the shortest distance between any nerve and the nearest 

tumor island, regardless of whether the tumor surrounds the nerve. In a cohort of 142 

patients with OSCC, the minimum nerve-tumor distance within a patient was linked to 

disease-specific survival, disease-free survival, and overall survival (62); the smaller the 

distance, the poorer the survival. Shorter nerve-tumor distance in patients whose tumors 

would be considered negative for perineural invasion under current criteria, was also 

associated with poor survival. Importantly, this study showed that shorter nerve-tumor 

distance is associated with poor disease-specific survival regardless of whether American 

Joint Commission on Cancer (AJCC) 7th or 8th edition criteria were used to adjust the Cox 

regression model. In contrast to the 7th edition, the 8th edition classification incorporates 

depth of invasion and extracapsular extension (77).

Assessing nerve-tumor distance in over 9000 nerves in OSCC from 142 patients, Schmitd et 

al (62), reported that the death rate decreases gradually with increasing nerve-tumor distance 
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with the highest death rate at distance 0 μm (61, 62). Even in patients without lymph 

node involvement (N0), nerve-tumor distance < 27 μm, was associated with poor survival. 

Using a Cox generalized additive model to investigate the association between nerve-tumor 

distance and death, this study showed that the hazard of death decreases as nerve-tumor 

distance increases and stabilizes at ~500 μm. Not surprisingly, GAP43, a marker for nerve 

regeneration, was expressed more strongly in nerves close to tumor and in nerves exhibiting 

perineural invasion (61). These finding are consistent with mechanistic studies that show that 

nerves and OSCC cells in proximity to each other have very dynamic communication (40).

Together, these findings translating the biology of nerve-tumor interactions into clinical 

practice support inclusion of nerve-tumor distance as a neural phenotype of relevance to 

survival.

Nerve Diameter:

Nerve diameter is the smallest dimension of the nerve section. Large diameter of nerves 

in the tumor bulk is associated with poor survival. Schmitd et al (62) used regression tree 

methods to split subjects into two groups based on diameter that was most different with 

respect to survival. Patients with OSCC that did not exhibit perineural invasion but had 

nerves 32 μm or greater in the tumor bulk, had as poor survival as those whose tumors 

had perineural invasion. An inverse relationship between larger nerve diameter and disease-

specific survival was observed even in N0 patients. The association between large nerves in 

the tumor bulk and poor survival was retained even after adjustments for comorbidities and 

AJCC 8th edition staging. Similar findings were also reported recently in pancreatic cancer; 

larger nerves were associated with poorer survival regardless of the presence of perineural 

invasion (78). It is possible that nerve diameter is a surrogate marker for nerve activity, i.e., 

the higher the activity, the stronger the attraction between cancer cells and nerves. In support 

of this possibility, GAP43 is expressed more strongly at the periphery of large nerves (61).

Nerve Density:

This is the area or number of nerves divided by the area analyzed in a tissue section (79). 

Changes in nerve density may be due to neurites growing into the tumor (axonogenesis), 

new neurons in the tumor due to differentiation of precursor cells (neurogenesis), or cancer 

cells growing towards nerves (neurotropism). Nerve fibers are quantified to determine 

nerve density due to axonogenesis and neurogenesis whereas nerve trunks or fascicles are 

quantified to assess nerve density due to neurotropism (79).

Factors secreted by nerves, including neurotransmitters, chemokines, neuropeptides, and 

neurotrophins, enhance neurite growth and cancer progression. In OSCC, the neuropeptide 

galanin enhances neurite outgrowth as well as growth, invasion, and metastasis of cancer 

cells (40, 52). This suggests that increased nerve density is associated with poor survival. 

In fact, using immunofluorescence to evaluate density of TH+ and VAChT+ nerves, Amit 

et al (49), reported that high density of TH+ nerves is associated with poor overall and 

recurrence-free survival.

Another study in OSCC determined that if the density of nerves exhibiting perineural 

invasion is >1, then patients have poor recurrence-free survival (80). This association could 

D’Silva et al. Page 11

Adv Biol (Weinh). Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be due to perineural invasion itself rather than the number of nerves exhibiting perineural 

invasion. As mentioned earlier, other studies have shown no association between the number 

of nerves exhibiting perineural invasion and survival (60, 62). Since perineural invasion is 

usually detected in only one nerve in a section of OSCC (62), nerve density, regardless of 

perineural invasion, may be a more consistent phenotype of aggressive tumors. Additional 

studies and clear criteria for nerve density would help establish whether this phenotype is 

relevant for tumor progression.

Conclusions and Future Directions

Given the expanding literature elucidating the biology of interactions between nerves and 

cancer, it is important to translate these findings into clinical practice. Moreover, although 

perineural invasion and other neural phenotypes have been associated with progression 

of OSCC, all relevant neural phenotypes are not included in current assessment criteria 

for treatment selection and outcomes in OSCC. Given the neural phenotypes that have 

been associated with adverse outcomes, it is time to develop a comprehensive set of 

neural parameters that can be used to facilitate treatment selection and predict response 

to treatment of oral cancer. This could include perineural invasion, nerve-tumor distance, 

nerve diameter and potentially nerve density (Table I, Figure 2). Moreover, histopathologic 

criteria of neural phenotypes such as perineural invasion should be revised in the context 

of current knowledge of the biology of OSCC. With this motivation, replacement of 

perineural invasion by nerve-tumor distance could be valuable. Standardized approaches 

for quantification would enhance the value of nerve density as a neural parameter; this 

is an area that requires further investigation. It is likely that the significance of neural 

phenotypes in OSCC will vary by site due to differences in innervation in the oral cavity. 

Since tongue is one of the most common sites of OSCC, most studies focus on tongue 

or the majority of patients in a study have tongue OSCC. Additional studies would reveal 

if neural phenotypes at other intraoral sites that vary in innervation from the tongue, are 

clinically-relevant for survival. This would allow a more personalized approach to treatment 

selection for OSCC by site with the potential to improve outcomes. Importantly, this could 

provide cost-effective, rapid, and universally deployable criteria for assessing prognosis of 

OSCC.
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Figure 1: 
Innervation of the oral cavity.
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Figure 2: 
Neural phenotypes observed in human OSCC tissue sections that could be of relevance to 

prognosis and treatment selection in oral cavity cancer (panel A, bar = 100 μm; panel C, bar 

= 200 μm).
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Table I:

Summary of neural phenotypes that could be of relevance to clinical outcome.

Phenotype Definition Criteria or Comments Methods References

Perineural 
invasion

Nerve invaded by or has at least 
33% of its perimeter surrounded 

by tumor cells.

Detection enhanced by IHC. H&E
IHC: Pan-cytokeratin for 

epithelium, S100 or TUJ1 for 
nerve.

(59) (61–63)

Nerve-tumor 
distance

Shortest distance between any 
nerve and nearest tumor island.

PNI negative according to current 
criteria but nerve-tumor distance less 

than 27 μm*; could increase up to 
~100 μm.

H&E
IHC: Pan-cytokeratin for 

epithelium, S100 or TUJ1 for 
nerve.

Software to measure distance.

(61, 62)

Nerve diameter Smallest axis of cross-section of 
nerve.

Greater than 32 μm*; could increase 
up to ~50 μm.

Nerves >2 mm from tumor bulk 
excluded.

H&E
Software to measure distance.

(62)

Nerve density Area or number of nerves 
divided by the area analyzed in 

a tissue section.

Requires further standardization H&E
IHC: Pan-cytokeratin for 

epithelium, S100 or TUJ1 for 
nerve.

(49, 79)

H&E: hematoxylin and eosin

IHC: immunohistochemistry
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