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Abstract

Both sleep and wake encephalograms (EEG) change over the lifespan. While prior studies have 

characterized age-related changes in the EEG, the datasets span a particular age group, or focused 

on sleep and wake macrostructure rather than the microstructure. Here, we present sex-stratified 

data from 3,372 community-based or clinic-based otherwise neurologically and psychiatrically 

healthy participants ranging from 11 days to 80 years of age. We estimate age norms for 
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key sleep and wake EEG parameters including absolute and relative powers in delta, theta, 

alpha, and sigma bands, as well as sleep spindle density, amplitude, duration, and frequency. 

To illustrate the potential use of the reference measures developed herein, we compare them 

to sleep EEG recordings from age-matched participants with Alzheimer’s disease, severe sleep 

apnea, depression, osteoarthritis, and osteoporosis. Although the partially clinical nature of the 

datasets may bias the findings towards less normal and hence may underestimate pathology in 

practice, age-based EEG reference values enable objective screening of deviations from healthy 

aging among individuals with a variety of disorders that affect brain health.
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Introduction

Sleep serves a multitude of functions with fundamental importance to both brain and body 

physiological homeostasis (Krause et al., 2017; Mander et al., 2017a). Sleep structure 

and circadian rhythms undergo substantial changes with age, reflecting developmental 

trajectories and aging processes (Mander et al., 2017a). In neonates, the time spent in 

sleep can exceed 14 hours per day with intermittent sleep and no clear diurnal circadian 

rhythm (Dias et al., 2018; Eisermann et al., 2013; Jenni et al., 2004). In children and 

adolescents, the brain undergoes critical changes with maturation. For example, the sleep 

electroencephalogram (EEG) delta power (1–4Hz) during non-rapid eye movement (NREM) 

sleep dramatically declines around 11 to 16.5 years of age, attributable to synaptic pruning 

(Campbell and Feinberg, 2009; Chu et al., 2014). Along with sleep EEG changes, gray 

matter maturation follows a posterior-to-anterior temporal order (Feinberg et al., 2011), but 

more precisely from primary sensory and primary motor cortices to posterior association 

cortices and then to the prefrontal cortex (Chu-Shore et al., 2011; Gogtay et al., 2004). 

At the other end of the lifespan, older adults typically sleep less during the night, exhibit 

fragmented sleep architecture, small reductions in rapid eye movement (REM), and major 

changes in NREM sleep (Luca et al., 2015; Ohayon et al., 2004). Prior to sleep, the eyes-

closed awake EEG in the older adults exhibits a slower posterior dominant rhythm (PDR, 

8–12Hz); during sleep, the EEG shows decreased slow wave activity (delta, 1–4Hz) in deep 

sleep (NREM stage 3, N3), reduced spindle density in NREM stage 2 sleep (N2) (Luca et 

al., 2015; Purcell et al., 2017), and weaker slow-wave-spindle coupling during N2 and N3 

stages (Helfrich et al., 2018; Muehlroth et al., 2019). These changes in sleep and awake 

EEG architecture also reflect underlying structural changes in the brain. For example, early 

spindle activity is presumed to reflect maturation of thalamocortical structures (Clawson et 

al., 2016; De Gennaro and Ferrara, 2003). Delta power correlates with cortical thickness in 

middle frontal, prefrontal, and medial posterior regions (Furrer et al., 2019; Goldstone et al., 

2018).

Age-related changes in sleep and awake states in the healthy population can be summarized 

as an “age norm”, i.e., referential ranges of sleep parameters, analogous to growth charts 

used for tracking weight or height as a function of age in childhood. An age norm represents 
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a population-level normal trajectory across the lifespan, which can be used to quantify 

deviations from normal trajectory. Although sleep has been studied across age groups, the 

literature has mostly focused on age norms of sleep macro-architecture such as total sleep 

time, bedtime, waking time, and the percentages of sleep stages (Chaput et al., 2018; Dias 

et al., 2018; Hirshkowitz et al., 2015). However, there is a critical gap for large samples that 

include a wider age range covering the entire lifespan.

Here, we report the age norm of key sleep and eyes-closed awake EEG parameters based 

on a cohort of 3,372 participants whose ages range from 11 days to 80 years of age. 

The age norms provided include EEG spectra, absolute and relative band powers, and 

spindle density, amplitude, duration, and frequency. To delineate applicability, we also 

compare sleep characteristics among patients with selected disease states in relation to 

the age-defined norms. Accordingly, the sleep EEG age norms derived herein provide a 

quantitative reference to measure deviations from the healthy aging trajectory in individuals 

with disorders that may affect brain health from the sleep perspective. The cohorts we used 

here are not “absolutely normal/healthy” (see Datasets below), since they originated from 

clinical or community populations. For the community-based cohort, since it is hard to track 

all disease conditions, the age norm could be affected by the common disease prevalence 

in the community. For the clinical population, although we exclude major diseases that 

affect sleep and wake EEG, the age norm could be affected by a higher prevalence of 

sleep disorders if the cohort is derived from clinical patients. Thus, our input populations 

are “approximately normal” but not “super normal” (i.e., screened to exclude all sleep 

disorders).

Methods

Datasets

The dataset contains EEGs recorded during overnight polysomnography (PSG) from three 

datasets: the Collaborative Home Infant Monitoring Effort (CHIME) (Ramanathan et al., 

2001), the Chicago Pediatric Community dataset (Pediatric) (Hunter et al., 2016), and the 

Massachusetts General Hospital Sleep dataset (MGH) (Biswal et al., 2018). In total, these 

data include 3,396 PSGs from 3,372 participants, ranging in age from 11 days after birth 

to 80 years. A summary of the combined cohort is provided in Figure 1. Summaries of the 

individual datasets are provided in Table S1 in the supplementary material. Utilization of 

the datasets was approved following standard policies including approval by the Institutional 

Review Board without requiring additional consent.

The CHIME dataset was part of a study aimed at evaluating whether home monitors are 

effective in identifying episodes of apnea in infants (Ramanathan et al., 2001). Other 

objectives were to correlate physiological markers, health status, and behavior with the 

propensity for life-threatening events; and provide important information on the maturation 

of heart and respiratory function in sleeping infants. Between May 1994 and February 1998, 

1,079 infants were enrolled, including healthy term infants, preterm infants weighing less 

than 1,750 grams at birth, siblings of babies who died from sudden infant death syndrome, 

and infants who experienced an idiopathic life-threatening event. Here, we used a subset 

of 405 participants with ages ranging from 11 days to 8 months after birth meeting the 
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inclusion criteria: (1) age, sleep EEG, and sleep stages were available; and (2) AHI < 30 

events per hour based on ranges in healthy infants (Katz et al., 2012), where the AHI 

was computed based on automatic detection of apnea and hypopnea events (Nassi et al., 

2021). Note that in Table S1, the average AHI of CHIME is 1.4/h, which is comparable 

to previous study (Katz et al., 2012). The flowchart corresponding to the generation of this 

cohort is shown in Figure S1 in the supplementary material. Sleep EEG was recorded using 

Healthdyne ALICE 3 software system as part of laboratory polysomnographic recordings, 

at a sampling frequency of 100Hz. Four EEG channels corresponding to C3-M2, C4-M1, 

O1-M2, and O2-M1 were included.

The Pediatric dataset was recorded as part of overnight PSG recordings from community 

recruited children participating in research studies. Among 892 participants, we used a 

subset of 708 participants meeting the following inclusion criteria (1) age, sex, and AHI 

are available; and (2) AHI < 15 events per hour. The flowchart for generating this cohort 

is shown in Figure S2. Ages of the Pediatric dataset are 1 to 13 years. Sleep EEG was 

recorded using a Nihon-Kohden Polysmith system at a sampling frequency of 100Hz. Four 

EEG channels, namely C3-M2, C4-M1, O1-M2, and O2-M1 were included.

The MGH cohort is a clinical cohort evaluated in the MGH sleep clinic. We used 2,283 

PSGs from 2,259 unique participants based on the following inclusion criteria, designed 

to ensure that the cohort is representative of normal sleep: (1) age, sex, hypnogram, and 

apnea-hypopnea index (AHI) were available; (2) diagnostic study (no studies with sleep 

apnea CPAP titration were included); (3) no significant neurological or psychiatric disease 

diagnoses within a period five years before to one year after the PSG recording (See Table 

S2 in the supplementary material); (4) not taking benzodiazepine medications (which affect 

sleep EEG); and (5) AHI < 15 events per hour. The flowchart generating this cohort is in 

Figure S3. Ages of patients in the MGH dataset ranged from 13 to 80 years. Sleep EEG 

was recorded using a Grass recording system at a sampling frequency of 200Hz. Six EEG 

channels were included in the PSG according to the international 10–20 system: F3-M2, 

F4-M1, C3-M2, C4-M1, O1-M2, and O2-M1.

Sleep Staging

For the MGH dataset, EEG sleep stages were manually scored by a sleep technician per 

recording following American Academy of Sleep Medicine (AASM) standards (Berry et 

al., 2012). Each 30-second epoch is scored as one of the five stages: wake (W), rapid eye 

movement (REM), NREM stage 1 (N1), NREM stage 2 (N2), and NREM stage 3 (N3). For 

the Pediatric dataset, sleep stages were similarly scored every 30 seconds for 117 EEGs. 

There were another 591 EEGs without sleep stages, where automated sleep staging was 

performed using a previously established algorithm (Sun et al., 2017). For the CHIME 

dataset, each 30-second epoch was manually scored as one of four stages: wake (W), 

quiet sleep (Q), active sleep (A), and indeterminate (I) (ANDERS, 1971; Grigg-Damberger, 

2016).
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EEG Pre-Processing and Artifact Removal

EEG signals in the MGH dataset were downsampled to 100Hz to harmonize the sampling 

frequency across datasets. EEG signals were notch-filtered at 60Hz to reduce line noise 

and bandpass filtered from 0.5Hz to 20Hz to reduce muscle artifact. 30-second epochs 

with absolute amplitude larger than 500μV were removed to minimize movement artifacts. 

30-second epochs containing flat signal (voltage < 1 microvolts) for more than 2 seconds 

were also removed. For the remaining epochs, we trained a linear discriminant analysis 

(LDA) classifier to classify each epoch into artifact vs. clean. We used total power and the 

2nd order difference (for abrupt non-physiological changes) of the spectrum as inputs to 

the LDA classifier. To train the classifier, we manually labeled each epoch in 20 randomly 

selected EEGs indicating high total power or non-physiological spectra. Since LDA outputs 

a probability, we determined the optimal threshold as the one that maximizes the Youden 

index (sensitivity + specificity − 1) in the receiver operating characteristic (ROC) curve. 

Visual inspection of the artifact classification confirmed that this achieved an acceptable 

tradeoff between retaining high quality signal and rejecting artifactual epochs. To reduce the 

impact of sleep apnea, reduction in oxygen saturation, or respiratory effort-related arousals, 

we further removed epochs that contained sleep apnea using automated apnea detection from 

the abdominal respiratory effort belt (Nassi et al., 2021). The total proportions of 30-second 

epochs removed by these preprocessing procedures were 19% in the MGH dataset, 30% in 

the Pediatric dataset, and 24% in the CHIME dataset.

Calculation of Age Norms

First, sleep EEG spectrograms were obtained by applying multitaper spectral estimation 

(Riedel and Sidorenko, 1995) to consecutive 30-second epochs using 4 tapers, and frequency 

bandwidth 0.46Hz (i.e., time half bandwidth product = 2 × #tapers − 1 = 30s × 0.23Hz). 

Power spectral density (PSD, μV2/Hz) was converted to decibel (dB = 10×log10(PSD)). 

Band powers included delta (1 – 4Hz), theta (4 – 8Hz), alpha (8 – 12Hz), and sigma (11 – 

15Hz). We note that the sigma band overlaps with the alpha band, in order to include the 

lower limit of the frequency range slow spindles. Nevertheless, the sigma band is primarily 

of interest during N2 sleep, while the alpha band is most relevant to the awake (W) state. To 

compute relative power in each band, we divide the band power by the total power across the 

0.5 – 20Hz range.

We next estimated the spectrum mean and standard deviation using a neural network as a 

function of age for each sex, sleep stage, and EEG channel, which minimizes the mean 

squared error (MSE) compared to the actual spectrogram (See Supplementary Method and 

Figure S8). The motivation for this neural network approach was to take advantage of the 

large sample size while still ensuring smoothness of estimates between adjacent ages, hence 

smoothness across all ages. We also note that the number of participants between 6 to 

12 months is small (n = 10), where simply using mean and standard deviation leads to 

biased estimates for this age range. Here, the model is a multi-layer neural network with an 

exponential linear unit (ELU) activation function (Clevert et al., 2015) to ensure smoothness 

of the output. The model inputs were the polynomial series of age (age1, age2, …, ageK). 

The model jointly estimates the mean and standard deviation of the power spectral density 

for each spectral frequency bin. The model was fit using mini-batch stochastic gradient 
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descent with batch size of 64 30-second epochs and learning rate 0.001. The learning 

rate was reduced by 10% whenever two consecutive training rounds failed to reduce the 

loss. Training was stopped when five consecutive training rounds did not reduce the MSE. 

Hyperparameters tuned for this model included the highest order of polynomial series of 

age, K, ranging from 5 to 10; the number of hidden layers (2 vs 3); and the number of 

hidden nodes at each layer, ranging from 50 to 100. We randomly split data into 10% 

validation and 90% model fitting sets. Hyperparameters that achieved the minimum average 

loss on the validation set across sleep stages and sexes were K = 5; number of hidden layers 

= 3; and number of hidden nodes = 50 for each hidden layer.

Comparison of Age Norms in Males vs. Females for Pediatric and MGH Datasets

We compared age norms in terms of the means of the age-related spectrograms for males 

vs. females in Pediatric and MGH datasets. Note that there is no sex information for the 

CHIME dataset; we included CHIMES data in the analyses for both males and females since 

it provides context for smoothing, and prior literature reports no significant sex-dependent 

differences in EEG spectral power in this age range (Myers et al., 2012). Since the neural 

network model estimates the mean and standard deviation of the age-related spectrogram 

jointly for males and females, the 95% confidence interval is constructed using mean +/− 

1.96 times the standard error (standard deviation / N age ). The participant number N(age) 

for each age was determined as the number of participants who with a similar age, was 

defined as +/−5 age bins around this age, where each age bin was half month for ages 

younger than 4 years, and one year otherwise.

Sleep Spindle Detection

We used Luna (Purcell et al., 2017) to detect sleep spindles in each channel and to 

compute spindle density, duration, amplitude, and frequency during N2 sleep (not for N3) 

for participants > 1 year old, and during Q stage sleep for participants < 1 year old. 

Using wavelet transformation with wavelet cycle number 12, a spindle was detected if 

the normalized wavelet coefficient exceeded 4.5 times the mean value across all N2 or Q 

epochs for that channel and participant. Spindles were required to be between 0.5 seconds 

to 3 seconds long. Distinguishing between slow and fast spindles is important, due to their 

different maturational trajectories in the first years of life (D’Atri et al., 2018), and in 

healthy (Mander et al., 2017b) and pathological (Gorgoni et al., 2016) older adults. Slow 

spindles are mostly observed in frontal head regions, while fast spindles are mostly at central 

regions. Therefore, for a given channel and a given age, we used the peak sigma frequency 

of the spectra at that channel and that age as the center frequency parameter for the Luna 

spindle detector (see Figure S4 to S7 in the supplementary material for details).

Comparison of the Age Norm to Diseased Patients

To compare with age norms, additional sleep EEGs were extracted from MGH medical 

records of patients with Alzheimer’s disease (AD), severe sleep apnea (SA), depression, 

osteoarthritis, or osteoporosis. The sleep EEG recordings of each disease group were 

collected following the same procedure as in those for the age norm. AD was selected 

because it is associated with disturbed sleep and structural degeneration of the brain (Ju et 

Sun et al. Page 6

Neurobiol Aging. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 2014). SA was selected because it is common in older people (22% in men (Franklin and 

Lindberg, 2015)) and linked to increased risk of neurodegenerative disease. Depression was 

selected because of its association with reduced slow wave power (Trivedi and Rush, 2000). 

Other psychiatric disorders such as schizophrenia were not included due to the small sample 

size (n=3) in our dataset. Osteoarthritis and osteoporosis were selected as negative controls 

where we assumed these conditions should not markedly affect sleep EEG. Participants 

included in disease groups were excluded from the calculation of the age norm. Of note, we 

did not compare other common systemic disorders including diabetes or hypertension to the 

age norm since the cohort used to develop the age norm did not exclude them.

The AD cohort included 178 patients with an average age of 72 years of age and 76 were 

female (43%), based on previously published inclusion criteria (Ye et al., 2020): (1) age at 

the time of sleep study ≥ 50 years of age; and (2) AD diagnosed based on encounter note 

or ICD diagnoses either before or 1 year after the sleep study. Exclusion criteria included 

a diagnosis of tumor/neoplasm, stroke, or developmental delay based on encounter notes 

or ICD codes within 1 year before or after the sleep study. The SA cohort included 175 

patients where the average age is 58 years and 55 patients (31%) were female, satisfying 

the following inclusion criteria: (1) diagnostic sleep study; (2) AHI > 30 events/hour. The 

depression cohort included 343 patients where average age is 46 years and 225 were female 

(66%), with inclusion criterion being diagnosis of depression based on ICD codes either 

before or 1 year after the sleep study. The osteoarthritis cohort included 115 patients where 

average age is 64 years and 67 are female (58%), with inclusion criterion being diagnosis 

of osteoarthritis or degenerative joint diseases based on ICD codes either before or 1 year 

after the sleep study. The osteoporosis cohort included 135 patients where the average age is 

64 years and 101 are female (75%), with inclusion criterion being diagnosis of osteoporosis 

based on ICD codes either before or 1 year after the sleep study.

For interpretability, we limited the analysis to sleep parameters that are well known in the 

literature, and whose associations with underlying physiological processes are relatively 

well studied, including absolute/relative alpha band power in the occipital region during 

wakefulness; absolute/relative theta band power over the central region during N1 sleep; 

absolute/relative sigma band power over the central region during N2 sleep; absolute/relative 

delta band power over the central region during N3 sleep; and spindle characteristics 

(density, duration, amplitude, frequency) over the central region during N2 sleep.

When comparing each disease entity, for each participant in the diseased group, we matched 

four participants from the healthy set such that the age difference was less than one year, 

and participants were of the same sex. The value of four was decided by the largest possible 

value that still preserves the distributions of ages in the healthy vs. diseased groups, based on 

a Kolmogorov-Smirnov test p>0.1.

Statistical Analyses

For each age, we compared the medians of the EEG parameters for males vs. females that 

are of similar age (defined above) using the Mann-Whitney U test. The family-wise error 

rate (FWER) was controlled using the Holm-Bonferroni multiple comparison correction at 

the 0.05 level. When comparing age norms to parameter values in disease groups, we used 
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Mann-Whitney U test to test the null hypothesis that the medians of the matched healthy 

vs. disease groups are the same. The FWER across all diseases and sleep parameters was 

controlled using the Holm-Bonferroni multiple comparison correction at the 0.05 level.

Results

Age Norm for Spectrum

Age-related EEG spectral changes by sleep and wake state and sex are shown in Figure 

2, where the contours in Figure 2c outline regions where sex differences are statistically 

significant (p<0.05, t-test). In the occipital regions, there is a rapid increase in power below 

10Hz during the wake state from 0 to 1 year. The peak frequency of the posterior dominant 

alpha rhythm (PDR) increases to 10Hz until age 20, then slowly decreases to 8 Hz thereafter. 

For ages < 15 years, there is considerably more delta activity below 4 Hz. Comparison 

by sex shows that, in the closed-eye awake state, females display higher power at all 

frequencies except within the alpha band between ages 30 to 50 years.

In general, the sleep spectrograms in all sleep stages show a rapid increase in total power up 

to 1 year of age, a sharp decrease in total power between ages 2 to 18 years, and a gradual 

decrease after 18 years of age. During N1, the EEG is generally slower in comparison 

to wake, and the dominant oscillation is in the theta frequency range. Theta band power 

increases gradually after 50 years of age. Females show a dip in power across all frequencies 

between 10 to 18 years of age (adolescent), followed by an increase in power across all 

frequencies after that.

During N2, the peak frequency of the sigma band at the central channel increases from 11 

Hz to 13.5Hz between year 1 and year 20 and remains stable at older ages. Power in the 

sigma band gradually decreases and becomes indistinct after age 70. Comparison of males 

vs. females shows females have in general higher power during N2 than males except 10 to 

18 years of age.

During N3, delta power is higher compared to N2. Delta power increases sharply from 0 to 

1 year, plateaus from 1 to 8 years, and decreases rapidly from 8 to 18 years. Sex-dependent 

differences are similar to those reported in N2.

During REM, there is more power in the delta range below 4Hz before 18 years of age. At 

older ages the spectrogram structure is relatively constant. Power in the alpha band can be 

seen throughout adulthood, reminiscent of the awake state, albeit with reduced power.

Age Norm for Band Powers

Figure 3 shows age vs. absolute power relationships in the delta, theta, alpha, and sigma 

bands presented in a manner complementary to Figure 2. Total spectral power decreases 

in childhood and adolescence, mainly because of a decrease in delta power. Sex-dependent 

changes are shown in the right column. Females have higher central sigma and delta band 

powers during N2 and N3 stages respectively in most of adulthood from 20 to 75 years of 

age, with a less steep decrease around 18 to 20 years of age.
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In Figure 4, the relative band powers (i.e., band power in percentage divided by total power) 

show a similar pattern, although sex differences are not as apparent as for measures of 

absolute power. Relative alpha band power increases until 20 years of age. Relative N2 

sigma band power peaks at age 20, remains stable until age 60, and decreases thereafter. 

Relative delta band power quickly decreases before 2 years of age, then keeps relatively 

constant (slowly increasing) until 12 years, and slowly decreases thereafter. There is no 

significant difference in relative band power between males and females, except between 25 

to 30 years of age in relative delta band power.

Age Norm for Sleep Spindles

In Figure 5, for spindle parameters in the central channel (solid line) (mostly fast spindle), 

the spindle frequency shows a sharp decrease from 13.2Hz to below 12Hz in the first year 

of life, then gradually increase back to 13.5Hz at around 20 years of age and then constant 

thereafter. The spindle density rises and reaches a maximum at 3 per minute at 18 years for 

females and 25 years of age for males, then gradually decreases. Spindle duration rapidly 

rises to longer than 1 second in the first year of life, stabilizes by around 12 years of 

age, shortens to below 1 second at 18 years, then slowly decreases to around 0.8 second 

thereafter. Spindle amplitude follows a similar pattern as duration.

For spindle parameters in the frontal channel (dashed line) (mostly slow spindle), since we 

only have data from the MGH dataset, we cannot describe the changes younger than 13 

years of age. The spindle frequency at the frontal channel shows a slow and steady decrease 

after 13 years of age. The spindle density clearly shows that the peak in frontal channel 

occurs earlier than that in central channel in both female and male, although the exact peak 

could not be determined due to lack of data before 13 years of age. Both the spindle duration 

and amplitude show slow and steady decrease trend.

Females have slightly higher frequency than males from 25 to 50 years. Females have higher 

spindle density than males from ages 50 to 70 years. Males undergo a decrease in spindle 

amplitude from 12 to 20 years of age, resulting in higher spindle amplitudes in females 

than males throughout adulthood. Spindle duration shows no significant differences between 

female and male.

Age Norm in Early Life

The evolution of EEG spectra from 0 to 36 months after birth is shown in Figure 6. Spectra 

during the wake state in the occipital region show high delta band power. The PDR in the 

alpha band begins to emerge around 12 to 16 months. Spectra during quiet sleep in the 

central region show a single peak frequency in the sigma band beginning around 2 months at 

~13Hz (Figure 6c, d, g), which is replaced by lower peak frequency at 11 to 12 Hz starting 

after 18 months (Figure 6g, green to red curves). Sleep spectra during quiet and active sleep 

show high delta band power.

Figure 6i–k shows that spindle density, duration and amplitude averaged between C3-M2 

and C4-M1 (central channels) are slowly increasing over the first 5 months of life. Figure 6l 

shows spindle frequency is stable at 13.2Hz over the first 5 months of life.
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Comparison of the Age Norm to Diseased Patients

As an exploration of the potential clinical utility of these age-norm measures, we compared 

average sleep EEG parameters in three disorders against age norms: Alzheimer’s disease, 

sleep apnea, and depression; and two other diseases we considered as negative controls: 

osteoarthritis and osteoporosis, as shown in Figure 7. Assuming an effect size of 0.3, to 

reach 80% power, we need at least 109 participants in the diseased group assuming 1:4 ratio 

for diseased vs. healthy groups, which has been satisfied.

Alzheimer’s disease (AD) showed higher theta power during N1, lower relative alpha power 

during the awake state, lower relative sigma power during N2, lower relative delta power 

during N3, and lower spindle density during N2. Severe sleep apnea (AHI >30/hour) showed 

lower spindle density during N2. Depression showed lower relative delta power during 

N3. As for the two diseases as negative controls, sleep in patients with osteoarthritis is 

not significantly different from the normative dataset. Sleep in patients with osteoporosis 

showed higher theta power during N1, but no other significant differences.

It is important to note that patients with one disease could have other known or unknown 

diseases, and some diseases such as Alzheimer’s and sleep apnea are associated. Therefore, 

the results should not be understood as the effect of solely one disease on the sleep EEG.

Discussion

This study presents empirical age norms for the sleep EEG across the lifespan from 

11 days to 80 years. These age norms provide a reference to assess deviations from 

normal developmental and aging trajectories. The reference values can also be used to 

analyze which aspects of sleep brain activity deviate from what is normal for age in 

any given participant. The discussion is organized by different EEG patterns, where 

early life, childhood, and adulthood are discussed respectively for each pattern, followed 

by the difference between absolute vs. relative band powers, sex-dependent differences, 

comparisons to diseased patients, and limitations.

For children under 1 year of age, strong delta oscillations initially occur as “tracé alternant” 

pattern, consisting of bilateral bursts of high amplitude delta waves superimposed on 

continuous low amplitude theta activity lasting 3 to 8 seconds. This pattern evolves into 

continuous diffuse delta (and sometimes theta) activity by early infancy. Sleep spindles are 

typically present by two months after birth (Jenni et al., 2004), consistent with Figure 6c. 

Alpha peak frequency is not observable from the spectra in this age range, however it does 

not rule out transient immature alpha oscillations.

For children above 1 year of age, it is hypothesized that the absolute delta power reflects 

brain myelin content in developing children from 2 to 12 years of age(LeBourgeois et al., 

2019). The reduction in absolute delta power after 12 years of age occurs about the time 

of puberty, where the human brain undergoes extensive reorganization driven by synaptic 

plasticity results in a net reduction in synaptic density (Feinberg and Campbell, 2010; Furrer 

et al., 2019). Alpha peak frequency becomes observable from spectrum beginning from 3 

years of age at 8Hz (Figure 6f). Spindles keep increasing in duration and amplitude and 
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decreasing in frequency across early childhood (McClain et al., 2016), which are related to 

maturation of thalamocortical structures (Page et al., 2018). Our result about spindle density 

is consistent with (Scholle et al., 2007). However, our spindle duration result differs from 

them, possibly due to different methods (wavelet vs. visual) in determining the exact start 

and end time of a spindle.

In later adulthood, age-related changes in EEG spectral power in NREM sleep have been 

described (Luca et al., 2015), including decreased absolute delta band power, decreased 

absolute sigma band power, and increased absolute theta band power. In REM sleep, there 

is also decreased absolute delta band power. EEG connectivity across brain regions in delta 

and theta bands during N3 and REM increases with age while EEG connectivity in the 

sigma band (11–15Hz) during N2 decreases with age (Bouchard et al., 2020; Ujma et al., 

2019). An earlier study by Gaudreau et al. examined age-related changes in NREM sleep 

from 54 participants including children (6 years of age) all the way to middle-age (60 years 

of age) (Gaudreau et al., 2001). Their documented changes in absolute delta, theta, alpha, 

and sigma powers are consistent with our findings in Figure 3.

The differences between absolute (Figure 3) vs. relative band powers (Figure 4) reflect the 

frequency band of interest corrected by theta and delta powers at different ages. This is 

because at all ages, the power of different brain frequencies follows a 1/f pattern (Ward 

and Greenwood, 2007), where lower (e.g., delta and theta) frequencies have higher power. 

The absolute power plots show the raw values without normalization; while the relative 

plots show the relative proportion of each frequency after accounting for the power in other 

bands (primarily delta and theta). For this reason, the absolute and relative values follow 

similar patterns for theta and delta frequencies and dramatically different patterns for higher 

frequencies at alpha and sigma bands. That being said, an outstanding difference is still 

present in delta band during N3: the absolute delta power quickly increases (Figure 3) vs. 

the relative power quickly decreases (Figure 4) under 2 years of age. The increasing absolute 

delta power is related to the rapid increase in size of neurons and the myelination process 

(Bosch-Bayard et al., 2022), leading to overall stronger and more synchronized neuronal 

oscillations. The decreasing relative power is due to the quick decay of tracé alternant 

pattern at delta band into continuous diffuse delta (and sometimes theta) activity, giving 

ways to the emergence of oscillations at higher frequencies.

There are several sex-dependent differences. For example, females show a dip in power 

across all frequencies between 10 to 18 years of age (adolescent) (Figure 2), consistent 

with an earlier puberty-related power decline in females than that in males (Campbell et 

al., 2012). Females also show consistently higher absolute sigma band power and delta 

power during deep sleep after 20 years of age (Figure 3), possibly reflecting both biological 

(due to hormones) and social differences (higher prevalence of alcohol use and smoking 

in males). Females have a higher spindle density and amplitude as shown in Figure 5, 

consistent with the prior literature (Huupponen et al., 2002; Ujma et al., 2014; Warby et 

al., 2014). The diminished difference between the oldest males and females (> 75 years of 

age) could be due to survival bias where males have shorter lifespans so that males who 

survive to older ages are healthier and thus more similar to females. The higher spindle 

density and amplitude could be related to better correlation between spindle parameters 
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and intelligence in females (Bódizs et al., 2014; Ujma et al., 2014). However, relative 

band powers are similar in males and females as indicated by Figure 4, suggesting that 

sex-dependent changes affect all frequency bands equally. EEG frequencies and power are 

only a limited subset of many other possible measures of brain health and other measures 

may not show the same sex-related divergence.

The comparisons to patients with certain diseases provide a practical proof-of-concept 

example of how the age norms presented herein might be used in practice. Although the 

age norm cannot be readily used as a diagnostic instrument at the individual level, it could 

serve as a screening tool when querying a dataset. However, even at individual level, a 

marked deviation from the norm should reasonably results in further evaluation. Deviation 

from the age norm is a nonspecific indicator of abnormalities in sleep and brain health, 

which can be followed up using cognitive tests or neuroimaging biomarker examination. Our 

results are consistent with prior literature for Alzheimer’s disease (Ju et al., 2014), severe 

obstructive sleep apnea (Mohammadi et al., 2021), and depression (Trivedi and Rush, 2000). 

For the negative control disease, there could be several hypotheses to explain the elevated 

theta power during N1 in osteoporosis patients. For example, osteoporosis is a frailty and 

pain-related disease that is often linked with sleep disturbances (Ensrud et al., 2009), where 

one line of evidence is the association between chronic insomnia and increased theta power 

during N1 (Riedner et al., 2016). These hypotheses point to the fact that when comparing 

diseases to age norms, it is often not only the disease of interest itself that leads to deviations 

from the age norm, but other comorbidities of the disease of interest must be considered as 

well.

This study has several important limitations. First, the MGH dataset is a clinical sample, 

which may bias findings towards “less normal”, in which case the age norms may 

underdiagnose pathology when applied to new individuals. Our effort to exclude patients 

with neurologic or psychiatric diagnoses and exclude epochs containing sleep apnea 

mitigates this bias to some extent, but may not address it fully. Second, there is a possible 

survivor bias in our estimates of age norms at the oldest ages such that those who survive 

to older ages are more likely to reflect relatively healthier individuals. A survivor bias may 

also arise from our inclusion criteria including no significant neurological disease near the 

time of the PSG recording and AHI less than 15 events per hour. There is a higher incidence 

of neurological disease and higher AHI in the older population, thus reducing the number 

of samples and biasing them towards better health. Third, we used only one specific sleep 

spindle detector. While our results are in line with previous findings (in terms of general 

trends), poor convergent validity of sleep spindle detectors is a known issue (Warby et al., 

2014). Therefore, the spindle norms are likely dependent on the specific detector used and 

its parameters including spectral estimation (wavelet in Luna) and threshold (4.5 times the 

overall mean normalized wavelet coefficient in Luna). Other limitations include that this was 

a cross-sectional study where different ages come from different participants with different 

comorbid conditions. Night-to-night variation in sleep EEG band powers and patterns is also 

not considered – this dimension would require multi-night data in health across all ages. We 

also did not study the dynamics of sleep across the night. It is known that there is less N3 

and more REM during the latter half of a typical night of sleep. As N3 decreases with age, 

this trend becomes more attenuated with older age (Purcell et al., 2017). Our study did not 
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include participants older than 80 years due to limited data beyond this age. Based on an 

early study of ten centenarians, the average alpha peak frequency was 8.62 Hz, with slower 

and smaller amplitude total spectral power (Hubbard et al., 1976). Additionally, patients 

with AD, sleep apnea, or depression are more likely to receive sleep-aid medications or 

devices, so that the potential trajectory if no treatment intervention is given could be worse 

than age norms.
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Highlights

• There is a gap in the sleep literature: studies focusing on sleep EEG changes 

across the entire lifespan.

• Sex-stratified data from 3,372 participants ranging from 11 days to 80 years 

old.

• The results provide reference sleep EEG parameters, quantifying deviations 

from normal.
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Figure 1. 
Characteristics of the combined cohort. The x-axis is age divided into 3 parts: 0 to 11 

months (increment 1 month), 1 to 19 years (increment 1 year), and 20 to 80 years (increment 

5 years). The two vertical dashed lines in the panels indicate the division. The first panel 

is the histogram of PSGs in different age bins. Different colors indicate different datasets 

which are stacked when overlapping age bins exist. The second panel shows the percentage 

of male and female in each age bin. The third panel shows the boxplots of BMI in each age 

bin when available. The middle orange line of each box indicates the median, the boundary 

of the box indicates the 75% and 25% percentiles, and the whiskers extend the box by 1.5 

times the inter-quartile range. The numbers at the top show the median values. The fourth 

panel shows the boxplots of AHI in each age bin. The bottom panel shows the distribution 

of sleep stages. For the CHIME dataset, the sleep stages are quiet sleep (Q) which resembles 

NREM, active sleep (A) which resembles REM, indeterminate or transitional (I), and awake 

(W).
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Figure 2. 
Left two columns: Age vs. spectrum for all five sleep stages in males (a) vs. females (b). The 

x-axis is age after birth in years. The y-axis is frequency from 0.5Hz to 20Hz. The power 

is shown in the unit of decibels. (c) Difference between males and females in the Pediatric 

dataset and MGH dataset. Red means females have higher mean power; blue means males 

have higher mean power. The contours outline regions within which sex differences are 

statistically significant. (d) Example spectra at 3 months, 1, 5, 18, 30, 50, and 80 years of 

age in males and the five sleep stages. The triangle markers indicate alpha peak frequency in 

W and sigma peak frequency in N2. (e) Example spectra at 3 months, 1, 5, 18, 30, 50, and 

80 years of age in females and the five sleep stages.
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Figure 3. 
Age vs. absolute band power in μV2 (but shown in decibels). Rows show different frequency 

bands in different sleep stages. Left column, males; middle column, females; right column, 

both sexes. The ranges are derived from population data. In the right column, the solid lines 

beneath the red and blue curves indicate age ranges where median values for males and 

females are significantly different after Holm-Bonferroni correction.
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Figure 4. 
Age vs. relative band power (%). Rows show frequency bands in different sleep stages. Left 

column: males; middle column: females; right column: comparing sexes. Solid underlines 

indicate the age range where the median parameters of male and female are significantly 

different after Holm-Bonferroni correction.
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Figure 5. 
Age vs. spindle frequency (1st row), density (2nd row), duration (3rd row), and amplitude 

(4th row). Left column: males; middle column females; right column: both sexes combined. 

The solid lines represent spindle parameters from the average of C3-M2 and C4-M1 (central 

channels). The dashed lines represent spindle parameters from the average of F3-M2 and 

F4-M1 (frontal channels). In the right column, the lines at the bottom (dashed for frontal 

channel, solid for central channel) indicate age range where the median value of males and 

females are significantly different after Holm-Bonferroni correction.
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Figure 6. 
Age-related spectra for wake (a), quiet sleep (Q or NREM) (b), and active sleep (A or REM) 

(e) in the first 3 years of life. Panel c and d we show zooms of areas of white and blue 

regions respectively with a different color range to highlight the subtle spectral changes. 

(f, g, h) The averaged spectra for each 3-month bin for each sleep stage respectively. The 

x-axis is frequency in Hz. The y-axis is power spectral density (PSD) in decibels (dB). The 

triangle markers indicate alpha peak frequency in wake and sigma peak frequency in quiet 

sleep. (i, j, k, l) Age vs. spindle density, duration, amplitude, and frequency during quiet 

sleep in the central channel for the first 5 months of life. Spindles parameters are obtained 

from the average of C3-M2 and C4-M1 (central channels). Pearson’s correlation p-values 

are significant for density, duration, amplitude, except for frequency.
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Figure 7. 
(a) Comparison against age norms of several sleep parameters (y-axis) in five diseases 

(x-axis). The color of the circles indicates effect size (Cohen’s d). Red color means the 

disease group has an elevated value relative to the age norm, and vice versa for blue. 

The radius of the circles indicates the p-value of the difference (1 − p6 ). Only significant 

differences after Holm-Bonferroni correction are shown. (b) The scatter plot of age vs. sleep 

EEG patterns for patients with these five diseases. The curves represent age norms (red 

is female and blue is male). The shaded areas represent the 95% range of the sleep EEG 

patterns.
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