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Arabidopsis histone H3 lysine 9 methyltransferases
KYP/SUVH5/6 are involved in leaf development by
interacting with AS1-AS2 to repress KNATT and
KNATZ

Fu-Yu Hung® 22, Yun-Ru Feng'?, Kuan-Ting Hsin3, Yuan-Hsin Shih!, Chung-Han Chang', Wenjian Zhong?,
You-Cheng Lai', Yingchao Xu# Songguang Yang?® Keiko Sugimoto® 2, Yi-Sheng Cheng® 3 &
Kegiang Wu® '™

The Arabidopsis H3K9 methyltransferases KRYPTONITE/SUPPRESSOR OF VARIEGATION
3-9 HOMOLOG 4 (KYP/SUVH4), SUVH5 and SUVH®6 are redundantly involved in silencing
of transposable elements (TEs). Our recent study indicated that KYP/SUVH5/6 can directly
interact with the histone deacetylase HDA6 to synergistically regulate TE expression.
However, the function of KYP/SUVH5/6 in plant development is still unclear. The tran-
scriptional factors ASYMMETRIC LEAVEST (AST) and AS2 form a transcription complex,
which is involved in leaf development by repressing the homeobox genes KNOTTED-LIKE
FROM ARABIDOPSIS THALIANA 1 (KNATT) and KNAT2. In this study, we found that KYP and
SUVH5/6 directly interact with AS1-AS2 to repress KNATT and KNAT2 by altering histone H3
acetylation and H3K9 dimethylation levels. In addition, KYP can directly target the promoters
of KNATT and KNATZ2, and the binding of KYP depends on AS1. Furthermore, the genome-
wide occupancy profile of KYP indicated that KYP is enriched in the promoter regions of
coding genes, and the binding of KYP is positively correlated with that of AST and HDA®6.
Together, these results indicate that Arabidopsis H3K9 methyltransferases KYP/SUVH5/6
are involved in leaf development by interacting with AS1-AS2 to alter histone H3 acetylation
and H3K9 dimethylation from KNATT and KNAT2 loci.
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of the cells flanking the shoot apical meristem (SAM).

Meristem activity in the shoot apex is specified in part by
the class I KNOTTED-LIKE HOMOBOX (KNOX) genesl‘3. Lat-
eral organs such as leaves are initiated on the flank of the shoot
apical meristem, and down-regulation of KNOX gene expression
is essential to facilitate this process'*. Moreover, silencing of
KNOX genes is important in developing organs since ectopic
KNOX expression during organogenesis results in patterning
defects and hyper-proliferation of cells>7. In Arabidopsis, the
members of the KNOX family can be divided into three classes.
Class I KNOX genes include BREVIPEDICELLUS/KNOTTED-
LIKE FROM ARABIDOPSIS THALIANAI (BP/KNATI), KNAT2,
KNTA6, and SHOOTMERISTEMLESS (STM)3. Class I KNOX
genes comprise KNAT3, KNAT4, KNATS5, and KNAT7, which are
broadly expressed and have been shown to function redundantly
to influence lateral organ differentiation in Arabidopsis®. Class III
only contains KNATM, which is a KNOX gene lacking the
homeodomain!®. In Arabidopsis, KNATI is expressed in the
vegetative meristem and stem, and is down-regulated as leaf
primordia are initiated®. Thus, the precise balance between the
differentiation and proliferation of stem cells is achieved in part
through proper regulation of KNOX expression.

KNOX repression during organogenesis is mediated by the
transcription complex composed of the MYB domain protein
ASYMMETRIC LEAVES1 (AS1) and the AS2/LATERAL
ORGAN BOUNDARIES (AS2/LOB) domain protein AS2 in
Arabidopsis'1=16. KNAT1 and KNAT2 are mis-expressed in the
leaves and flowers of the asl/as2 double mutant, suggesting that
AS1 and AS2 promote leaf differentiation by repressing KNOX!4.
The AS1-AS2 complex (AS1/2) can recruit a chromatin-remodeling
protein HISTONE REGULATORY HOMOLOG 1 (HIRA) to
regulate target gene expression during organogenesis!”. In addition,
AS1/2 can also recruit POLYCOMB-REPRESSIVE COMPLEX 2
(PRC2) to repress KNOX genes by histone H3 lysine 27
methylation!8, Collectively, these studies suggest that the repression
activity of AS1/2 is associated with histone modifications.

Histone modifications including methylation, acetylation, phos-
phorylation, and ubiquitination can influence transcription, DNA
repair, replication, and recombination!®20. Lysine methylation on
the side chains of histones is regulated by histone methyl-
transferases (HMTs) and histone demethylases (HDMs)!%20.
Methylation on lysine 9 and 27 of histone H3 (H3K9me and
H3K27me) is associated with transcription repression, while
methylation on lysine 4 and 36 of histone H3 (H3K4me and
H3K36me) is associated with transcription activation!®20, For
instance, H3K9 mono-methylation (H3K9mel) and H3K9 dime-
thylation (H3K9me2) mainly function in repressing transposon
activities. H3K9me2 is enriched in transposons and repeated
sequences?! =24, In addition, the level of histone acetylation is con-
trolled by histone acetyltransferases (HATs) and histone deacety-
lases (HDACs). HATs can add acetyl groups to lysine, which
loosens the chromatin confirmation and leads to transcription
activation. In contrast, removing acetyl groups from lysine by
HDAC:s leads to condensed chromatin structure and transcription
repression! %20,

Histone lysine methyltransferases (HKMTs) have a specific
conserved domain called SET (SUPPRESSOR OF VARIEGATION,
ENHANCER OF ZESTE AND TRITHORAX) domain, which is
mainly responsible for histone methylation activity. In Arabidopsis,
49 SET Domain Group (SDG) proteins have been identified, and 31
of them are known or predicted to have HKMT activity. These SDG
proteins can be further classified into five classes (class I to V) based
on their domain architectures or their target lysine residues®.
Previous studies have revealed that the Class V SDG proteins
including SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG

T he initiation of leaf primordia is established by recruitment

(SUVH) and SUPPRESSOR OF VARIEGATION 3-9 RELATED
(SUVR) proteins are associated with H3K9 methylation involved
in heterochromatin maintenance and DNA methylation26-2°. All
SUVH proteins contain a SET domain, a pre-SET domain, a post-
SET domain, and a STE and RING-associated (SRA) domain. The
SRA domain is responsible for recognizing methylated DNA30.
KRYPTONITE (KYP, also called SUVH4), SUVH5 and SUVHG6 are
the best-characterized SUVH proteins in Arabidopsis and they
function as histone H3K9 methyltransferases. KYP is required for
the maintenance of CHG methylation controlled by CHROMO-
METHYLASE 3 (CMT3)31-33, Furthermore, KYP, SUVHS5, and
SUVHS6 act redundantly to silence transposable elements (TEs)
by regulating H3K9mel and H3K9me2 at their target loci. The
kyp/suvh5/suvh6 triple mutant displays a loss of non-CG methyla-
tion similar to the cmt3 mutant?223-27:31-35 The histone deacetylase
HDAG is also involved in transposon silencing®. In addition,
HDAG® interacts and functions synergistically with KYP, SUVH5,
and SUVHS6 to co-regulate transposon silencing through histone
H3K9 methylation and H3 deacetylation”.

Although it has been established that KYP/SUVH5/6 are
important regulators of TE silencing, their function in plant
development remains elusive. In this study, we found that KYP/
SUVH5/6 interacts with AS1/2 and regulates leaf development by
repressing KNAT1 and KNAT2 expression through H3K9me2
and H3 deacetylation.

Results

Arabidopsis KYP/SUVHS5/6 are involved in leaf development.
Although the involvement of Arabidopsis H3K9 demethylases in
plant developmental processes has been reported38-41, the func-
tion of KYP and SUVH5/6 in plant development remains elusive.
Our recent study has revealed that KYP and SUVHS5/6 interact
with the histone deacetylase HDA6 and they function synergis-
tically to regulate TE expression’’. To further investigate the
biological function of KYP/SUVH5/6, we analyzed the growth
phenotypes of hda6 and kyp single, kyp/hda6 double, kyp/suvh5/6
triple, and hda6/kyp/suvh5/6 quadruple mutants. As reported
previously*?, the hda6 mutant had curling and serrated leaves.
Compared to Col-0 wild type (WT), hda6, kyp and kyp/suvh5/6
mutants also displayed a slight curling leaf phenotype (Fig. la-d,
Fig. Sla). The curling leaf phenotype was enhanced in kyp/hda6
(Fig. 1a-d, Fig. Sla) compared with hda6 and kyp. Interestingly,
we found a further enhanced leaf developmental defect in the
hda6/kyp/suvh5/6 quadruple mutant compared with hda6 and
kyp/hda6. Furthermore, the leaves of hda6/kyp/suvh5/6 plants
were also much smaller (Fig. 1a-d). Quantitative analyses indi-
cated that nearly 80% of leaves in the hda6/kyp/suvh5/6 quad-
ruple mutant were developmental defective (Fig. le, Fig. Sla). The
defective leaf phenotype of hda6/kyp/suvh5/6 was also more
severe when compared to hda6/suvh5 and hda6/suvh5/6 (Fig. S1b,
Slc). Collectively, these results suggest that HDA6 functions
synergistically with KYP/SUVH5/6 in the regulation of leaf
development.

KYP/SUVHS5/6 interact with AS1/2. Our previous study showed
that Arabidopsis HDA6 is functionally associated with AS1/242.
We performed bimolecular fluorescence complementation (BiFC)
assays and co-immunoprecipitation (Co-IP) assays to investigate
whether KYP/SUVHS5/6 can interact with AS1/2. We found that
KYP, SUVH5 and SUVHS can interact with both AS1 and AS2 in
BiFC assays by using Agrobacterium-infiltrated tobacco leaves
(Fig. 2a—c) and Arabidopsis protoplasts (Fig. S2a). The interaction
of KYP with AS1 was further confirmed by Co-IP assays using
KYPpro::KYP:GFP/kyp transgenic plants carrying KYP fused with
GFP driven by the KYP native promoter. The endogenous AS1
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Fig. 1 Arabidopsis KYP, SUVH5 and SUVH6 are involved in leaf development. a-d Leaf development phenotypes of WT, hda6, kyp, hda6/kyp, kyp/suvh5/
6 and hda6/kyp/suvh5/6 mutant plants. Plants were grown under long-day for 20 days. |, I, lll, and IV indicate the first, second, third, and fourth pair of
leaves, respectively. Bars= 5 mm (a-c) or 2 mm (d). e Quantitative analysis of leaf development phenotypes of WT, hdaé, kyp, hda6/kyp, kyp/suvh5/6 and
hda6/kyp/suvh5/6 plants. The fourth pair rosette leaves were classified as normal, defective and highly-defective leaves. The ratio of defective and total

leaves was calculated. At least 40 leaves for each line were scored.

protein was detected in transformed plants by using an anti-AS1
antibody. As shown in Fig. 2d and S2B, AS1 interacted with
KYP in Co-IP assays. In addition, the interaction between KYP
with AS2-GFP was also confirmed by Co-IP assays using
KYPpro:KYP:FLAG/kyp protoplasts (Fig. S2c).

To further confirm whether KYP can interact with AS1 and
AS2 in vitro, we performed quartz crystal microbalance (QCM)
assays with KYP, AS1, and AS2 recombinant proteins. The results
showed that KYP interacted with AS1 and AS2 in vitro (Fig. 2e).
The average Kd and standard deviation values obtained from 3
replicates of the AS1-AS2, ASI-KYP, and AS2-KYP pairs were
253+12.8uM, 33.6+0.43 uM and 18.6 + 13.7 uM, respectively
(Fig. S2d).

Various deletion constructs of AS1 and AS2 were also
generated to determine the domains responsible for their
interaction with KYP using BiFC assays (Fig. 2a). Although the
N-terminus of AS1 interacted strongly with KYP, the interaction
between KYP and the C-terminus of AS1 was strongly decreased
(Fig. 2b). Similarly, the YFP signal could be detected in the
nucleus when KYP co-expressed with the N-terminus of AS2, but
not with the C-terminus of AS2 (Fig. 2b). These data indicate that
the N-terminus of AS1 or AS2 is responsible for the interaction.

In addition, the leaf development phenotype of the
hda6/kyp/suvh5/6 quadruple mutant displayed a defective leaf
phenotype similar to asI and as2 (Fig. S3a). We also generated the
asl/kyp double, asl/hda6/kyp triple and asl/hda6/kyp/suvhé

quadruple mutant plants. Compared to WT, these mutants also
displayed a defective leaf phenotype similar to asl (Fig. S3b),
suggesting that the function of HDA6-KYP/SUVH5/6 in leaf
development is at least partially dependent on ASI1. Collectively,
these results indicate that KYP, SUVHS5, and SUVHS6 are involved
in leaf development by interacting with AS1 and AS2.

KYP/SUVH5/6 repress KNATI/2 by altering H3K9me2 and
H3Ac levels of KNAT1/2 loci. AS1 and AS2 are transcription
repressors of the class I KNOX genes!”. To investigate whether
KYP and SUVHS5/6 affect the expression of KNOX genes, we
analyzed the expression of KNATI, KNAT2, KNAT6 and STM in
WT, hda6, kyp, hda6/kyp, kyp/suvh5/6 and hda6/kyp/suvh5/6.
The expression of KNATI, KNAT2 and KNAT6 was significantly
increased in the mutants compared to WT (Fig. 3a). Furthermore,
the highest expression levels of these class I KNOX genes were
observed in the hda6/kyp/suvh5/6 quadruple mutant (Fig. 3a),
indicating that KYP, SUVH5/6, and HDAG6 act synergistically to
repress the expression of the class I KNOX genes.

We further investigated whether KYP/SUVH5/6 and HDA6
affected the level of H3K9me2 and H3Ac on KNATI and KNAT2
loci by chromatin immunoprecipitation followed by quantitative
PCR (ChIP-qPCR). The previously identified AS1/2 binding sites
(X and Y)!7 and other regions such as the promoter (P), first exon
(S) and coding region (E) of KNATI and KNAT2 were selected
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for ChIP-qPCR analysis (Fig. 3b). Compared to WT, we found
that the H3K9me?2 level of KNATI and KNAT2 was decreased in
kyp, hda6/kyp, kyp/suvh5/6 and hda6/kyp/suvh5/6, but not in
hda6 (Fig. 3c). In addition, the H3Ac level of KNAT1 and KNAT2
was increased in hda6 and hda6/kyp/suvh5/6 compared to
WT (Fig. 3d). These results suggest that KYP/SUVH5/6 and

4

HDAG regulate KNAT1/2 expression through H3K9me2 and H3
deacetylation. Interestingly, we found that the H3K9me?2 level of
KNAT1/2 was not decreased in hda6 (Fig. 3c). Furthermore, the
H3Ac level of KNAT1/2 was not significantly changed in kyp and
kyp/suvh5/6 (Fig. 3d). The expression of KNAT1/2 was highest in
the hda6/kyp/suvh5/6 quadruple mutant (Fig. 3a), indicating that
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Fig. 2 KYP, SUVH5 and SUVH6 interact with AS1 and AS2. a Schematic representation of deletions in AST and AS2 constructs. MYB: MYB domain of
AST; LOB: LOB-domain of AS2. b, ¢ BiFC assays in N. benthamiana leaves showing interaction of KYP (b), SUVH5/SUVH6 (¢) with AST and AS2 in living
cells. Full-length KYP, SUVH5, SUVH®, and different regions of AS1/2 were fused with the N terminus (YN) or C terminus (YC) of YFP and co-delivered
into tobacco leaves by Agrobacterium GV3101. The nucleus was indicated by mCherry carrying a nuclear localization signal. Bars = 20 um. d Co-IP assays
using the KYP native promoter driven KYP:GFP (KYPpro:KYP:GFP) or 35Spro::GFP in transformed Arabidopsis. Western blots (WB) were performed with the
indicated antibodies. e QCM binding assays among AS1, AS2, and KYP recombinant proteins. The raw frequency curve and regression curve obtained from
the AS1-AS2, AS2-KYP, and AS1-KYP pairs were presented. Arrows indicate injection points. Three replicates of AS1-AS2, AST-KYP, and AS2-KYP pairs
were performed, and data from one representative replicate for each protein pair were shown.

both decreased H3K9me2 and increased H3Ac contribute to
KNATI1/2 expression changes.

ChIP-qPCR assays were used to identify whether KYP can
directly target to KNATI and KNAT2. KYPpro:KYP:FLAG/kyp
transgenic lines were generated, in which the KYP genome sequence
containing the KYP native promoter fused with the 3xFLAG epitope
tag was transformed into the kyp background. Both the KYP
transcript and KYP protein were detected in the KYPpro:KYP:-
FLAG/kyp transgenic lines (Fig. S4). The expression of several TEs
which are highly activated in kyp was analyzed by RT-qPCR. We
found that these TEs were not activated in the KYPpro:KYP:FLAG/
kyp transgenic plants. These results indicate that KYPpro:KYP:-
FLAG is functional, since it complemented the TEs activation
phenotype of the kyp mutant. ChIP assays were performed with an
anti-FLAG antibody using KYPpro::KYP:FLAG transgenic seedlings
and the binding of KYP to KNATI and KNAT2 was analyzed by
ChIP-qPCR. We found that KYP was highly enriched in the
promoter regions of KNATI and KNAT?2 (Fig. 4a, b). Furthermore,
the KYP-enriched promoter regions highly overlapped with the
binding regions of AS1/217. These results indicate that KYP
regulates KNAT1 and KNAT2 expression by directly targeting the
KNATI and KNAT?2 promoters.

To further identify the functional correlation between KYP and
AS1, we expressed KYPpro:KYP:FLAG in the asl mutant back-
ground (KYPpro:KYP:FLAG/asl). The protein levels of KYP in
KYPpro:KYP:FLAG/asl and KYPpro:KYP:FLAG were similar
(Fig. S4B). We found that the binding of KYP to KNATI and
KNAT2 was significantly reduced in KYPpro:KYP:FLAG]/asl
(Fig. 4c), indicating that the binding of KYP to KNATI and
KNAT2 is at least partially dependent on AS1. Furthermore, the
H3K9me?2 level of KNATI and KNAT2 was decreased but the H3Ac
level was increased in the asl/as2 mutant (Fig. S5), suggesting that
AS1/2-regulated KNATI and KNAT2 expression is associated with
H3K9me2 demethylation and H3 acetylation.

Genome-wide occupancy profiles of KYP. To investigate the
genome-wide function of KYP in gene regulation, we mapped the
genome-wide occupancy of KYP by chromatin immunoprecipi-
tation followed by sequencing (ChIP-seq) wusing the
KYPpro::KYP:3xFLAG/kyp transgenic line. KYP-occupied 3,924
genomic regions, including KNATI and KNAT2. The genome
browser views of the ChIP-Seq data show that KYP can target the
promoters of KNATI and KNAT?2 (Fig. 5a), which is consistent
with our ChIP-qPCR data. Compared to the Arabidopsis genomic
region distribution, the binding of KYP was more enriched in the
1kb promoter regions, but less enriched in the gene bodies
(Fig. 5b). In Arabidopsis, there are several histone H2A variants,
such as H2A.X, H2A.Z, and H2A.-W*3. H2A X and H2A.Z are
associated with transcription regulation, whereas H2A.W is
highly enriched in the heterochromatin region*4-46. H2A.W can
therefore be used as a heterochromatin marker*447. Previous
studies have indicated that KYP is responsible for silencing TEs,
which are mainly located in heterochromatic regions?3-3233, We
compared the binding of KYP with different H2A variants. Sur-
prisingly, the binding patterns of KYP and H2A.W are different,
indicating that in addition to the heterochromatic region, KYP

can also target to the euchromatin regions (Fig. 5c). Indeed, we
found that most of the KYP-targeted genes are protein-coding
genes (Fig. 5d).

We further compared the binding profiles of KYP among the
protein coding genes and TE genes. In both protein coding genes
and TE genes, the general binding of KYP was more enriched on
the promoter but less enriched on the gene body (Fig. 5e).
Furthermore, the binding of KYP is strongly enriched near the
upstream regions of transcription start sites (TSS) of protein
coding genes, but not in TE genes (Fig. 5e). These results support
that the function of KYP is associated with the regulation of
protein coding genes. In addition, we further compared the
binding of KYP in all annotated coding genes (27420 genes) and
TEs (31189 TEs) in Arabidopsis. We found that there was no
significant difference in KYP binding in coding genes and TEs
(Fig. 5f). However, the binding of KYP is higher in the top 10%
highly targeted TEs compared to the top 10% highly targeted
coding genes (Fig. 5f). Collectively, these results suggest that KYP
function is important in the regulation of both TEs and protein
coding genes.

The genome-wide binding of KYP is positively correlated with
AS1 and HDAG6. To further analyze the functional correlation
between KYP and H3K9me2, we compared the KYP global binding
pattern with the H3K9me2 ChIP-seq data of WT and kyp in the
published dataset*8. We found that the binding of KYP was more
correlated with those genes with lower relative H3K9me?2 levels in
kyp compared to WT (Fig. 6a). In contrast, there was no correlation
between the H3 level and the binding of KYP (Fig. 6a). Similar
results were also obtained when we compared the relative
H3K9me?2 levels in kyp/suvh5/6 and WT (Fig. S6a). We also found
that among those genes showing changed H3K9me?2 levels in kyp,
the general binding pattern of KYP was substantially higher in the
genes with decreased H3K9me?2 than in those genes with increased
H3K9me?2 (Fig. S6b). These results indicate that the binding of KYP
is indeed correlated with H3K9me2.

We also compared the binding of KYP with the previously
published chromatin immunoprecipitation coupled with DNA
microarray (ChIP-on-chip) data of AS14%. Plotprofile and plot
heatmap analyses indicate that the center of AS1-binding regions
was associated with the enrichment of KYP (Fig. 6b), supporting
that KYP can be recruited by AS1 to regulate gene expression. In
addition, we also compared the KYP-occupied genomic regions
with our previously published HDA6 ChIP-seq data®?. We found
that the general binding of HDA6 was enriched in the center of
KYP-occupied genomic regions (Fig. 6¢), supporting that HDA6
interacts with KYP to synergistically regulate gene expression.
Furthermore, we also compared the KYP global binding pattern
with the H3Ac ChIP-seq data of WT and hdaé6 from the published
dataset®®. The binding of KYP was more correlated with the genes
with increased H3Ac levels in hda6 compared to WT (Fig. 6d).
Collectively, these results suggest that the binding of KYP is
associated with the H3Ac changes regulated by HDAS®.

In addition, several cis-elements were enriched within the KYP
binding sites, including “GATGTCATGTGTATG”, “RACTTYG
GCTACACC” and (AG/AAG), repeat sequences (Fig. 6e).
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Interestingly, the (AG/AAG),, repeat was also found in the AS1-
occupied genomic regions identified previously by ChIP-on-chip
(Fig. 6e). In addition, the (AG/AAG),, repeat was also enriched in
the HDA6 occupied genomic regions®). Together, these results
support that KYP co-target on the similar genomic regions with
HDAG6 and AS1. The KYP-targeted genes were further analyzed
according to Gene Ontology Biological Processes (GO-BP). We

found that the KYP-targeted genes are involved in multiple
biological processes, including abscisic acid (ABA)/stress
responses and different development pathways (Fig. 6f). The
involvement of KYP in ABA and stress responses has been
reported”!. Interestingly, we also found that the GO term “leaf
development (GO:0048366)” was enriched in the KYP-targeted
genes (Fig. 6f), supporting a role for KYP in leaf development.
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KYP and HDAG6 co-target a subset of leaf development genes.
In addition to KNAT1 and KNAT?2, previous studies indicated that
AS1/2 can deactivate the abaxial genes ETTIN/AUXIN RESPONSE
FACTOR3 (ETT/ARF3), AUXIN RESPONSE FACTOR 4 (ARF4)
and YABBY5 (YAB5)#5253, We found that KYP and HDA6 can
also target the TSS region of ARF4 (Fig. 7a). We also identified
additional genes that were targeted by KYP, such as KNAT3,
KNAT5, NUCLEOLIN 1 (NUCI), GROWTH-REGULATING
FACTOR 4 (GRF4) and CYCLIN DEPENDENT PROTEIN
KINASE 2 (CDKC2) (Fig. 7a). The class II KNOX genes KNAT3
and KNATS5 are involved in the development of the above-ground
organs in Arabidopsis and knat3/4/5 mutant plants display devel-
opmental defective leaves®. Arabidopsis NUCI is a nucleolin pro-
tein that is involved in rRNA processing, ribosome biosynthesis,
and vascular pattern formation®*, NUCI is also involved in leaf
development and is functionally associated with AS2>°. The tran-
scription factor GRF4 and the cell cycle regulator CDKC2 are also
involved in the regulation of leaf development®®>7. These results
indicate that HDA6-KYP/SUVH5/6 may regulate leaf development
in multiple regulation pathways. In addition to leaf development,
KYP target genes such as NUCI, GRF4, and MLP328 are also
involved in other biological processes, such as flowering, root
development, stress responses and cell wall formation8-63,

Genome browser views of the KYP ChIP-Seq data indicated that
the KYP-enriched regions were highly correlated with the HDA6-
enriched regions (Fig. 7a). In contrast, there are no binding peaks of
KYP and HDA6 on AT2G12520 and ZINC RIBBON 3 (ZR3). In
addition, we also found that the KYP and HDAG6 binding sites on
these target genes are substantially closed to the (AG/AAG),, repeat
motif (Fig. 7a). The binding of KYP on these genes was further
confirmed by ChIP-qPCR (Fig. 7b). RT-qPCR analyses indicated
that the expression of these KYP-HDAG6 co-targeted genes was
significantly increased in the hda6/kyp/suvh5/6 quadruple mutant
compared to WT (Fig. 7¢). Collectively, these results indicate that
KYP and HDA6 co-targets a subset of genes involved in leaf
development.

Discussion
In Arabidopsis, 31 SDG proteins predicted to have HKMT activity
can be further classified into five classes (class I to class V) based on

their domain architectures or their target lysine residues?”. There
are 15 class V SDG proteins including 10 SUVH proteins and 5
SUVR proteins in Arabidopsis. Several class V SDG proteins have
been found to be associated with H3K9 methylation involved in
heterochromatin maintenance and DNA methylation26-2°, SUVHs
contain an N-terminal SRA domain and a SET domain at the
C-terminus?7046>. The SRA domain is required for direct binding
to methylated DNA?76>, KYP, SUVHS5, and SUVHS, the best
characterized SUVH proteins in Arabidopsis, are H3K9mel/2
methyltransferases responsible for chromatin silencing?>32-33. Two
other SUVH proteins, SUVH2 and SUVHY, are inactive for histone
methyltransferase activity, but they can recruit RNA polymerase V
to chromatin by associating with the DDR (DRD1 peptide-DMS3-
RDM1) complex®®67, In addition, the SUVR proteins SUVR4 and
SUVRS5 have been found to be involved in H3K9me in vivo%8-70,
Collectively, these studies indicate that the class V SDG proteins are
important in gene silencing by regulating H3K9me.

H3K9me2 is a crucial histone modification marker during
embryo development in both plant and mammalian systems?67172,
Recent studies have also shown that H3K9me2 is important in
regulating gene expression in Arabidopsis development38-41,
Although KYP and SUVH5/6 have been identified as crucial reg-
ulators of H3K9me?2 in Arabidopsis, their function in plant devel-
opment remains elusive. In the present study, we found that KYP
and SUVHS5/6 are functionally associated with HDA6. Further-
more, HDA6 and KYP/SUVHS5/6 function synergistically to reg-
ulate the core leaf development genes, including KNATI and
KNAT2. A recent study also demonstrated that another class V
SDG protein, SUVHDY, is involved in embryonic development by
regulating asymmetric DNA methylation”2. Taken together, these
results indicate that the Class V SDG proteins including KYP and
SUVHS5/6 play important roles in plant developmental processes.

KNATI and KNAT2 are class I KNOX homeobox genes and
play important roles in meristem development and leaf
morphogenesis®~873. Previous studies have demonstrated that the
expression of KNATI and KNAT?2 is associated with the changes
in H3Ac, H3K9me2, and H3K27me3184274 In this study, we
found that KYP/SUVHS5/6 and HDAG6 function synergistically
to regulate KNATI and KNAT2 by altering H3K9me2 and
H3Ac levels. Furthermore, the expression of the KNOX genes was
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Fig. 5 Genome-wide occupancy profile of KYP. a Integrated Genome Viewer showing the binding of KYP on KNATT and KNAT2 genomic regions. Bars:
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increased in the hda6/kyp/suvh5/6 quadruple mutant compared
with hda6 and kyp/suvh5/6. Similarly, the expression of TEs was
also increased in the hda6/kyp/suvh5/6 quadruple mutant com-
pared with hda6 or kyp/suvh5/6. These results suggest that both
H3K9me2 decreases and H3Ac increases are required for gene
activation. Interestingly, it has been shown that there is an
antagonistic pattern of H3K9me2 and H3Ac enrichment during
embryogenesis in both plants and mammals’>7, indicating a
functional crosstalk between H3K9me2 and H3Ac in develop-
mental processes. Our recent studies demonstrated that Arabi-
dopsis HDAG6 is also functionally associated with the H3K4

demethylases LDL1/2 and FLD>%77-79, It remains to be deter-
mined whether KYP/SUVH5/6 are also functionally associated
with H3K4 demethylases.

In yeast and animal systems, HDAC:s are the core components
of several multi-protein complexes, such as Mi2/NuRD and
CoREST3981. Previous studies have demonstrated that the
interactions between the core protein components of Mi2/NuRD
and CoREST complexes are relatively stable. However, they can
dynamically interact with different transcription factors depend-
ing on environmental conditions’87%:8283, indicating that HDAC
complexes require various transcription factors to recognize
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specific genomic regions. In this study, we found that KYP and
SUVH5/6 can directly interact with AS1-AS2 and regulate the
expression of KNAT1/2 by altering H3Ac and H3K9me2 levels. In
addition, the binding of KYP to KNATI and KNAT2 was reduced
in the absence of AS1, indicating that KYP is recruited by ASI to
the KNAT1/2 loci.

Accumulation of H3K9me2 is highly associated with DNA
methylation at CHG and CHH sites?0-2°. The triple mutant of the

non-CG DNA methylases, drm1/drm2/cmt3 (ddc), is defective in
leaf development with decreased hypocotyl elongation, which is
associated with increased expression of the F-box domain gene
SUPPRESSOR OF drm1 drm2 cmt3 (SDC)3485, In addition, the
DNA methylation mediated by SDC is associated with periodic
adjustment of circadian rhythm8. The involvement of HDA6-
mediated histone modifications in the regulation of circadian
rhythm has also been reported’87. Interestingly, AS1-AS2 is also
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required for maintaining DNA methylation on ETT/ARE34%>>,
suggesting that AS1-AS2 and KYP/SUVH5/6 may also function
together in the regulation of DNA methylation. Recent studies
indicated that AS2 is highly associated with chromocenter
including ribosomal DNA repeat regions, and is involved in the
regulation of cell division8®87. In addition, the abaxial genes ETT/
ARF3 and ARF4 can be indirectly repressed by AS1/2 through
the trans-acting siRNA (tasiRNA) called tasiR-ARFs#%2387, Tt
remains to be determined whether KYP/SUVH5/6 are also
involved in these processes.

In addition to KNATI/2, other leaf development genes
including KNAT3, KNAT5, NUCI, GRF4 and CDKC2%>4->7 are
also regulated by HDA6-KYP/SUVH5/6. GO-BP analysis indi-
cates that KYP-targeted genes are associated with stress respon-
ses, hormone responses and different developmental processes. It
has been shown that KYP is involved in regulating seed dormancy
by repressing ABA signaling genes®!. Furthermore, SUVH5 can
act as a positive regulator of light-mediated seed germination®8
Interestingly, we found that the GO-terms “response to abscisic
acid” and “response to light stimulus” were also enriched in KYP-
targeted genes. Taken together, these results indicate that KYP/
SUH5/6 is involved in various developmental processes and
pathways. By analyzing the genome-wide occupancy profile of
KYP, we found that the binding of KYP was highly enriched in

promoter regions, and most of the KYP-targeted genes are pro-
tein coding genes. Furthermore, the binding of KYP is highly
correlated with the binding of AS1 and HDAG6. Together, these
data support the notion that AS1/2 recruits the transcriptional
repression complex containing HDA6 and KYP/SUVH5/6 to
regulate gene expression.

In conclusion, this study provides insight into understanding
how the H3K9 methyltransferases KYP and SUVH5/6 are
involved in leaf development by interacting with ASI-AS2
(Fig. 8). The AS1-AS2 complex acts as a transcription repressor
complex by recruiting HDA6-KYP/SUVHS5/6 histone modifica-
tion proteins to repress the expression of the KNOX genes
KNATI and KNAT2 via H3K9me2 and H3 deacetylation. In
addition, the HDA6-KYP/SUVH5/6 histone modification com-
plex can also regulate gene expression involved in other devel-
opmental processes.

Materials and methods

Plant materials and growth conditions. Arabidopsis (Arabidopsis thaliana) plants
were germinated and grown in 22°C under long day (LD) (16 h light /8 h dark
cycle) conditions. kyp/suvh4-3, (SALK_130630), suvh5 (GABI_263C05), suvh6
(SAIL_1244_F04), hda6-6 (axel-5) as well as the kyp/suvh5/suvh6 (kyp/suvh5/6)
triple mutant and the hda6/kyp/suvh5/suvh6 (hda6/kyp/suvh5/6) quadruple mutant
were reported previously?”-3/°1:89, The hda6/kyp double mutant was generated by

10 COMMUNICATIONS BIOLOGY | (2023)6:219 | https://doi.org/10.1038/s42003-023-04607-6 | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04607-6

ARTICLE

Leaf development genes
. KNAT1/2 (ARF4, KNAT3, KNATS,...)
0= @' gt :
s — KNAT1/2

'

—[.—‘—

Fig. 8 A model for the KYP/SUVH5/6 function in the regulation of
KNAT1/2 and leaf development genes. Arabidopsis KYP/SUVH5/6 are
involved in leaf development by repressing KNAT1/2. AS1-AS2 recruit
HDA6-KYP/SUVH5/6 and act as transcription repressors of KNAT1/2 by
altering H3Ac/H3K9me2 levels. KYP/SUVH5/6 plays an important role in
leaf development by regulating the expression of KNAT1/2 and other leaf
development genes.

Leaf development

crossing kyp (suvh4-3) and hda6-6 (axel-5). All mutants used in this study are in
the Col-0 background.

Plasmid construction and plant transformation. The full-length coding sequences
(CDS) of KYP, SUVHS5, SUVH6, AS1, and AS2 were reported in the previously
published studies3”#2 To generate the KYPpro:KYP:GFP and KYPpro:KYP:3xFLAG
constructs, the 5 kb KYP genomic DNA sequence containing the 2 kb KYP native
promoter was PCR-amplified and cloned into the pCR8/GW/TOPO vector (Invi-
trogen), then recombined into a modified pEarleyGate302 vector containing the
3xFLAG tag or PMDCI107 vector with the mGFP tag. The maltose-binding protein
(MBP) fused AS1 (MBP-AS1) and AS2 (MBP-AS1) were reported previouslygo. KYP
CDS was cloned into the pMAL-c5v vector to generate MBP-KYP.
KYPpro::KYP:GFP/kyp and KYPpro:KYP:3xFLAG/kyp transgenic plants were
generated by transforming KYPpro:KYP:GFP or KYPpro:KYP:3xFLAG into the kyp
mutant by the floral dip method. To express KYPpro:KYP:3xFLAG in the as] mutant
background, KYPpro:KYP:3xFLAG plants were crossed with the asI mutant.

Bimolecular fluorescence complementation and co-immunoprecipitation
assays. To generate the constructs for BiFC assays, full-length or truncated cDNA
fragments of KYP, SUVHS5, SUVH6, ASI and AS2 were PCR-amplified and cloned into
the pCR8/GW/TOPO vector (Invitrogen), and then recombined into the YN vector
pEarleyGate201-YN and the YC vector pEarleyGate202-YC. Constructed vectors were
transiently transformed into Arabidopsis protoplasts or tobacco (Nicotiana ben-
thamiana) leaves. Transfected protoplasts or leaves were then examined by using a TCS
SP5 confocal spectral microscope imaging system (Leica, https://www.leica.com/).

For co-immunoprecipitation assays, anti-GFP (Santa Cruz Biotechnologies,
catalog no. SC-9996; 1:3000 dilution) and anti-AS1 (Luo et al., 2012; 1:3000
dilution) antibodies were used as primary antibodies for Western blot, the resulting
signals were detected by using a Pierce ECL Western blotting kit (Pierce, https://
www.lifetechnologies.com/).

Quartz crystal microbalance (QCM) assays. MBP-KYP, MBP-AS1, and MBP-
AS2 recombinant proteins were expressed using E. coli BL21(DE3). To measure the
binding ability among AS1, AS2, and KYP recombinant proteins, the quartz crystal
microbalance (QCM) technique was applied. The pairwise protein-protein pairs were
analyzed using an AffinixQN QCM biosensor (Initium, Tokyo, Japan). To determine
Kd, one has to describe the relationship between resonance and the number of
proteins on the surface undergoing adsorption by applying the Langmuir equation®!.

Prior to usage, the QCM biosensor was cleaned twice with 3 pL of piranha
solution (H,SO, and H,O, in a 3:1 ratio) and incubated with 1% SDS for 5 min. Then,
440 pL of reaction buffer (50 mM Tris-HCI, 150 mM NaCl, and 1 mM dithiothreitol
(DTT)) was applied to the dried sensor to balance and set up the magnetic stir
frequency at 1000 rpm at 25 °C. For the AS1-KYP pair, 6 pL AS1 protein (2.0 mg/mL)
was injected into the reaction buffer and immobilized on the Au electrode plate until
saturation. Next, 4 uL KYP protein (2.0 mg/mL) was injected. The injection process
was repeated until the frequency curve reaches saturation. The frequency change
values were recorded as multiple binding curves using the AffinixQN v2 software
(Initium, Tokyo, Japan). Data obtained from three independent repeats were
processed using AQUA v2 software (Initium, Tokyo, Japan).

Quantitative reverse transcription PCR analysis. Total RNA was isolated using
TRIZOL reagent (Invitrogen, 15596026) according to the manufacturer’s instruc-
tions. Two micrograms of total RNA treated with DNAse (Promega, RQ1 #M6101)
were used to synthesize cDNA (Promega, #1012891). RT-qPCR (Real-Time

quantitative PCR) was performed using iQ SYBR Green Supermix solution (Bio-
Rad, #170-8880). The CFX96 Real-Time PCR Detection System (Bio-Rad
Laboratories, Inc.) was used with the following cycling conditions: 95 °C for

10 min, followed by 45 cycles of 95 °C for 15, 60 °C for 30's, and then fluorescent
detection. This was immediately followed by a melting curve analysis (65-95 °C,
incrementing 0.5 °C for 5s, and plate reading) to confirm the absence of non-
specific products. Each sample was quantified at least in triplicate, and normalized
by calculating delta Cq (quantification cycle) to the expression of the internal
control Ubiquitin10 (UBQI0). The Cq and relative expression level are calculated
by the Biorad CFX Manager 3.1 based on the MIQE guidelines. Standard deviations
represent at least 3 technical and 2 biological replicates. The variance in average
data is represented by SEM (standard error of the mean). The SD (standard
deviation), SEM determination and P-value were calculated using Student’s paired ¢
test. The gene-specific primers used for QRT-PCR are listed in Table SI.

Chromatin immunoprecipitation assays. Chromatin extracts were prepared from
seedlings treated with 1% formaldehyde. Chromatin was sheared to the mean length of
500 bp by sonication, proteins and DNA fragments were then immunoprecipitated
using antibodies against anti-FLAG (SIGMA, catalog no. M2), H3Ac (Millipore, cat-
alog no. 06-599), H3K9me2 (diagenode, C15410060) or total H3 (Abcam, ab1791).
The DNA cross-linked to immunoprecipitated proteins were reversed, and then
analyzed by real-time PCR using specific primers (Table S1). Percent input was cal-
culated as follows: 2A(Cq(IN)-Cq(IP))X100. Cq is the quantification cycle as calculated
by the Biorad CFX Manager 3.1 based on the MIQE guidelines. Standard deviations
represent at least 3 technical and 2 biological replicates. The variance in average data is
represented by SEM (standard error of the mean). The SD (standard deviation), SEM
determination and P-value were calculated using Student’s paired  test.

ChlP-seq and data analyses. 2 ng of DNA from ChIP was pooled to ensure that
there are enough starting DNA for library construction. The ChIP DNA was first
tested by qPCR and then used to prepare ChIP-seq libraries. End repair, adaptor
ligation, and amplification were carried out using the NEBNext® Ultra™ I DNA
Library Prep kit (cat no. E7645) according to the manufacturer’s protocol. The
Novoseq PE150 was used for high-throughput sequencing of the ChIP-seq
libraries. The raw sequence data were processed using the GAPipeline Illumina
sequence data analysis pipeline. Bowtie2 was then employed to map the reads to
the Arabidopsis genome (TAIR10)°2. Two independent KYPpro:KYP:3xFLAG/kyp
transgenic lines were used as biological replicates for ChIP-seq experiment.
Approximately 24 and 16 million mapped reads of KYPpro:KYP:3xFLAG trans-
genic line #1 and #4 were used for analysis (pair-end, 150 bp). The alignments were
first converted to Wiggle (WIG) files using deepTools. The data were then
imported into the Integrated Genome Viewer (IGV)?? for visualization. The dis-
tribution of the ChIP binding peaks was analyzed with ChIPseeker (supplementary
data 1)%4, and a high-read random Arabidopsis genomic region subset (1,350,000
regions) was used to represent the ratio of the total Arabidopsis genomic regions.
To identify DNA motifs enriched sites, 400-bp sequences encompassing each peak
summit (200 bp upstream and 200 bp downstream) were extracted and searched
for enriched DNA motifs using MEME-ChIP with the default parameters °°.

The KYP:FLAG ChIP-seq short read data have been submitted to the NCBI
Gene Expression Omnibus (GEO) database (GSE195735).

Statistics and reproducibility. All graphical data represent the mean + standard
deviation of at least three biological replicates as described in figure legends. p-values
calculated by paired two-tailed Student’s ¢ test were used to identify significant dif-
ference between controls and samples, as described in each figure legends.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Short read data of KYP ChIP-seq have been submitted to the NCBI-Gene Expression
Omnibus (GEO) database (GSE195735). The distribution of the ChIP binding peaks was
provided in supplementary data 1. Un-cropped images of western-blots were provided in
the Supplementary Figures. The source data to generate plots was provided in
supplementary data 2.
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