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Explainable AI for unveiling deep 
learning pollen classification 
model based on fusion of scattered 
light patterns and fluorescence 
spectroscopy
Sanja Brdar 1*, Marko Panić 1, Predrag Matavulj 1, Mira Stanković 2, Dragana Bartolić 2 & 
Branko Šikoparija 1

Pollen monitoring have become data-intensive in recent years as real-time detectors are deployed 
to classify airborne pollen grains. Machine learning models with a focus on deep learning, have 
an essential role in the pollen classification task. Within this study we developed an explainable 
framework to unveil a deep learning model for pollen classification. Model works on data coming 
from single particle detector (Rapid-E) that records for each particle optical fingerprint with scattered 
light and laser induced fluorescence. Morphological properties of a particle are sensed with the 
light scattering process, while chemical properties are encoded with fluorescence spectrum and 
fluorescence lifetime induced by high-resolution laser. By utilizing these three data modalities, 
scattering, spectrum, and lifetime, deep learning-based models with millions of parameters are 
learned to distinguish different pollen classes, but a proper understanding of such a black-box model 
decisions demands additional methods to employ. Our study provides the first results of applied 
explainable artificial intelligence (xAI) methodology on the pollen classification model. Extracted 
knowledge on the important features that attribute to the predicting particular pollen classes is 
further examined from the perspective of domain knowledge and compared to available reference 
data on pollen sizes, shape, and laboratory spectrofluorometer measurements.

In Europe as much as 40 percentage of population is affected by pollen allergy 1. The substantial costs from the 
disease itself or from productivity loss due to poor management of the disease exceeds several tens of billions 
euros per year 2. The burden of allergic disease can be limited by avoiding allergen exposure or timely therapy, 
which makes airborne pollen data and forecasts of utmost value both for patients and medical workers. Detection 
and quantification of airborne pollen have mainly been carried using standard volumetric method (EN16868) 3 
which relies on labour intensive and lengthy manual identification of each bioaerosol particle under microscope 
resulting in at least 36 h delays for data availability. The stakeholders showed the need for the near real-time 
data 4 since it is expected to help patients relate better their symptoms to exposure thus providing a tool for more 
accurate timely diagnosis and for better assessment of therapy efficiency. In addition, like in meteorology, near 
real-time observations can be integrated into numerical models to provide improved spatial forecasts.

Recent technological developments proved that sampling and characterizing single bioaerosol particles is 
possible 5,6, however the discrimination is still challenging especially when pollen identification relies on com-
plex signals representing both morphology and chemical composition of detected particles. The first attempt 
to resolve pollen classes from optical pollen monitoring based on time-resolved scattering and fluorescence 
was performed with artificial neural network and support vector machines classifiers 7. This classical machine 
learning approach demanded for extensive feature engineering steps for extracting properties of the measured 
signals. Further development of pollen classification models from chemical signatures and scattering information 
was accomplished with deep learning approach based on convolutional neural network (CNN) architecture 8.
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Focus of our study is on data derived from the PLAIR Rapid-E instrument 9. The number of performed 
research and experiments is growing with the number installed devices across Europe 10 and beyond. Opera-
tional system in Serbia and Croatia 11 runs classification model of 26 aerosol classes. The transferability of the 
models is evaluated between models trained on data form device in Serbia and Italy 12. Database with over 100 
thousand samples measured in Romania 13 is available. Case study in Lithuania utilized device for plant diversity 
investigation 14, while in Switzerland comprehensive comparison with other pollen monitoring approaches 4 
was performed. Despite loads of data generated and extensive usage of classification models, mainly black-box 
models, there are no efforts directed toward explainability of such models.

Explainability of the models is essential for understanding and enabling further trust in Artificial Intelligence 
(AI)-based solutions 15–17. Challenges to explain AI models and to provide more transparent and understandable 
results become more complex with the fast development of AI itself. While simpler machine learning methods 
can be intrinsically interpretable and by design offer explanations of the decisions (i.e. decision trees 18) and 
other classical machine learning algorithms have been extensively explored from the aspects of the model inter-
pretation 19–22, deep learning with millions of parameters distributed across deep layers in the model makes 
explanation harder to extract.

In this article, we present an explainable machine learning framework for unveiling the learned model for 
pollen classification. It is based on Integrated Gradients (IG), a gradient-based feature attribution method 23,24 
that attributes the prediction of deep networks to their inputs. It provides instance level interpretations that we 
further aggregate to obtain overall model insights. Instance level interpretation highlights the classification-
relevant parts of the input data, while overall level summarizes information from all samples to rank input fea-
tures with respect to the predicted class. Developed framework can further help with answering questions why 
one model is better than another, what are the differences in the models learned on different devices, what are 
the novel insights concerning scattered light and fluorescence spectroscopy patterns of different pollen classes.

Related work
Several automatic instruments for pollen classification emerged on the market 25 that are based on digital images 
or electrical signals from various types of sensors. Such instruments further demand machine learning algorithms 
to automate the process of pollen classification. Heterogeneous data recorded by instruments can be grouped 
into: (1) digital microscopy, (2) elastic light scattering, (3) light-induced fluorescence and (4) holography. By 
now deep learning was applied on all of these diverse data modalities and achieved good performance in terms of 
classification accuracy for many pollen taxa 26. Extensive comparison of methods spanning from classical machine 
learning algorithms to deep learning in the classification of microscopic images 27 demonstrated that deep learn-
ing methods are favored and produce better quality results. That is especially noticeable on larger data sets with 
a higher number of pollen taxa. Deep learning methods have been also used successfully to classify pollen types 
from holographic images of flowing particle 28 in a mobile and cost-effective sensor, as well as to classify pollen 
types from scattering images 29. Recent approaches in the field of automatic pollen classification utilize multi-
modal identification, for example combining light-induced fluorescence and elastic light scattering data as in 
Rapid-E (Plair SA, Geneva, Switzerland) 8, or adding also holography on these as in Poleno (Swisens AG, Horw, 
Switzerland) 30. Such increased device complexity requires further advances in the machine learning models.

More complex deep learning architectures increased the accuracy 31,32, while combination of CNN autoen-
coders and self-supervised learning with small amounts of laboratory data were also explored 33. An interesting 
approach of using clustering algorithms to group pollen samples based on feature vectors resulting from neural 
network preprocessing 34 unveiled that fluorescent data modality played a more important role than scattering for 
separating fluorescent particles, but also confirmed that particle shape and size properties align with discovered 
scattering clusters. Apart from this indirect approach to extract knowledge learned by deep learning and one 
example of activation map obtained with gradient-based localization 35 in model learned on scattering images 
generated in the laboratory 29 there are no other explainable examples in pollen classification tasks.

Explainable AI (xAI) solutions for biomedical domain are attracting increasing scientific interest 36. Emerging 
applications include drug discoveries 37, cancer diagnosis 38, microbiome studies 39 and clinical decision support 
systems in pandemics 40. We believe that research community working on automatic pollen classification would 
highly benefit as well from xAI solutions providing insights into how classifiers make decisions. Although pol-
len classification models are yet to be unveiled by xAI, applications build upon principles of chemistry, physics 
or spectroscopy can demonstrate potential benefits of this methodology in the broader context. For example 
xAI for optical emission spectroscopy 41 in plasma-based processes unveil why model made certain predictions 
thus allowing to characterize the plasma and the spectra. Study of Gomez-Fernandez et al. 42 examined whether 
domain-specific characteristics are being identified by deep learning models on gamma spectroscopy tasks. In 
particular for the task of isotope classification evaluating the rationale behind the classification and testing if 
it is correlated to the isotope’s characteristic features is paramount in this highly regulated industry. In several 
chemical engineering applications xAI framework for mechanistic explanation generation 43 provided causal 
explanations by combining techniques from machine learning and symbolic AI techniques representing knowl-
edge base. Furthermore xAI can be integrated into interactive visualization techniques to highlight regions of a 
molecule in complex notation of a chemical structure in order to reveal their influence over a predicted prop-
erty 44. Another example is on ultrasound imagery where xAI approach helped in determining where to look for 
artifacts patterns 45. Discovered patterns were not previously known in the ultrasound literature.

Although our study focuses to demonstrate xAI principles on data coming from RAPID-E device other pollen 
monitoring instruments relying on different data modalities can unveil predictive models in similar manner and 
thus help discover the underlying principles.
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Data sources
Our study encompasses data that characterize airborne pollen. Selected 12 classes: (1) Acer, (2) Alnus, (3) Alo-
pecurus, (4) Carex, (5) Cupressus, (6) Dactylis, (7) Juglans, (8) Morus, (9) Platanus, (10) Populus, (11) Salix, 
(12) Ulmus (Fig. 1) enabled us to concurrently examine collected pollen on different devices and link infor-
mation extracted from different sources. High diversity of shapes and sizes as illustrated by scanning electron 
microscopy (SEM) micrographs enabled throughout analysis of data characterizing pollen classes coming from 
different sources. The pollen characterization data were measured using three different devices: Olympus BX51 
bright field upright microscope at x400 magnification, HORIBA Fluororlog-3 spectrofluorometer and PLAIR SA 
Rapid-E single airborne particle analyzer. Microscope and spectrofluorometer were exploited to create reference 
data and extract distinctive features of examined pollen classes.

On the other hand, Rapid-E records three types of measurements representing morphological and chemical 
properties of the particles. The device is packed in a 40 cm × 34 cm × 73 cm box and weights about 20kg. The 
dimensions of the detection chamber including the length of the optical path of light scattering from the particles 
are not revealed by the manufacturer. When a particle enters the device, firstly a deep-UV laser interacts with it. 
The scattered light is collected with 24 detectors from −  45 to 135◦ relative to the direction of the laser beam. If we 
take a look perpendicular to the laser this transforms to the −  45 and 45◦ that we use to denote features. Angles 
range is further reduced in preprocessing to −  37.5 to 37.5◦ . The number of laser interactions with one particle 
depends on the shape and size of the particle, properties that directly influence its moving through the Rapid-E 
measurement chamber. The collected scattering signals are expressed as images of 24 ×N pixels, i.e. 24 different 
angles and N number of interactions. After that, a second, deep-UV laser (337 nm) interacts with a particle. 
The fluorescence spectrum is recorded with 32 detectors representing a spectral range of 350–800 nm repeated 
eight times with an interval of 500 ns from the moment of excitation of the particle by the laser. Additionally, 
fluorescence lifetime is measured at four spectral ranges: 350–400 nm, 420–460 nm, 511–572 nm, and 672–800 
nm for 48 ns with two ns temporal resolution.

Knowledge extracted from reference data was placed into the context of unveiled decision making process 
made by xAI from the model learned on Rapid-E data. SEM images served us to visually represent diversity of 
the examined pollen types, while on visible light microscope images pollen grains sizes were measured. With 
spectrofluorometer detailed spectral characteristics were measured. These data were not used to train, validate 
or test model learned on Rapid-E data, but to examine to what extent reference knowledge is being reflected in 
the unveiled deep learning model. This allowed us to question whether model indeed uses distinctive spectral 
and morphological properties extracted from reference data or builds its decisions on other features available 
in Rapid-E data.

Results
Model and classification results.  CNNs have been proven to be able to classify many pollen types with 
an accuracy that varies depending on the number of classes to be distinguished, the number of samples avail-
able for training, data preprocessing, etc. 8,11,31. Our multimodal CNN 11 (Fig. 2a) takes at the input preprocessed 

Figure 1.   SEM micrographs in µm resolution of 12 examined pollen classes unveiling their diversity in shape 
and sizes.
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data coming from three Rapid-E measurements modalities (spectrum, lifetime and scattering), extracts features 
with convolutional layers for each modality separately and equalizes the sizes of features thus preventing bias in 
model decision based on the number of features per modality. Features are then concatenated, along with five 
more features, one representing estimated particle size and the other representing the ratio of lifetime intensities 
measured at the four spectral ranges to their maximum. Finally, concatenated features are further processed with 
one fully-connected layer and classified with the log-softmax activation function.

Before training data preprocessing is necessary to remove the noisy samples and align the measured signals. 
Figure 2b provides information on number of samples before and after preprocessing steps. We can observe that 
some pollen classes have much more discarded samples than others that can be consequence of the calibration 
process.

Model training, validation and testing pipeline was performed 10 times for an assessment of model accuracy 
and its variation. Obtained averaged accuracy in discriminating the 12 examined classes is 63% with variations 
only in decimals. Normalized and averaged confusion matrix (Fig. 2c) further uncovers which pollen classes 
are better separated than others and where the errors occur. The best classification is achieved for the follow-
ing classes Ulmus, Cupressus and Morus, reaching the model accuracy of 86.1%, 76% and 75.5% respectively. 
Model poorly classified Salix pollen particles with the accuracy of 29.7% by confusing them with particles of 
Platanus, Carex and Populus pollen. If we examine the standard deviation of model accuracy across the classes 

Figure 2.   (a) Input sample and CNN architecture. (b) Number of samples before and after filtering. (c) 
Averaged confusion matrix across 10 experimental runs. (d) Variability in accuracy across pollen classes in 10 
experimental runs.
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we can observe that for some pollen classes (e.g. Alopecurus, Dactylus) it went up to 5% (Fig. 2d). Since the 
overall accuracy does not change in different training-test splits we can conclude that improvements in some 
classes led to decline of the accuracy of others implying that maximal results have been achieved with the model 
trained on current data.

Instance level explanations.  Once the model is learned a question emerges - how the classier makes 
decisions for particular instance. Term attributions is common in model interpretability and multiple attribu-
tion algorithms are associated with it. Algorithms can rely on different principles to quantify attributions such 
as gradients 23,46,47 or perturbations 48–50. For our study we selected integrated gradient attribution method 23 
that uses the input’s gradients after back-propagation and does not require modification of the original network. 
As our network is multi-modal we adjusted xAI implementation 51 to enable multiple inputs into the network.

To illustrate how our model made decision for particular pollen samples Fig. 3 presents two examples of 
instance level explanation. The images on the left in Fig. 3 represent input samples from different data modalities, 
while the images on the right are corresponding attributions derived by integrated gradient approach. Intensity 
of the features in the attribution images corresponds to the impact that particular feature has on the classifier 
decision, while color denotes whether the impact is positive or negative, i.e. blue or red. The first example (Fig. 3a) 

Figure 3.   Instance level explanation for two pollen samples of class (a) Alopecurus and (b) Carex. Input data 
(graphs on the right) are coupled with derived explanations (graphs on the left) for easy inspection of which part 
of input contributes the most to the final decision with colors denoting positive or negative contribution.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3205  | https://doi.org/10.1038/s41598-023-30064-6

www.nature.com/scientificreports/

refers to the correct classification of Alopecurus pollen grain with log probability score of 0.756. We can observe 
that strong positive attribution is related to spectrum data in range of 350 to 393 nm, measured at t = 0, with 
spectral response at 367 nm being the most important from the decision aspect. Observed spectral responses in 
wavelengths above 408 nm reduced the confidence that pollen sample belongs to Alopecurus class, while other 
parts of spectrum data modality were irrelevant for the decision. Attributions from lifetime data modality imply 
that model used ranges of 350–400 nm and 420–460 nm to decide pollen type for particular sample, while other 
two ranges were less relevant. From the aspect of time in lifetime signals, important features are spread across 
indexes 3 to 12. Since lifetime data undergo prepossessing that includes alignments of the maximum values we 
have in all samples maximum at time index 4, and starting from index 5 we have lifetime decay. High positive 
contribution comes from measured response at 350–400 nm prior to reaching maximum. Importance of scatter-
ing features is spread over entire range where signal is detected, having many positive and negative attributions 
that cumulatively impact the final result along with other modalities. The second example (Fig. 3b) is related 
to pollen grain of Carex that was correctly predicted with log probability score of 0.971. Spectrum attributions 
unveiled strong positive impact of measured signal at 451, 466, 524 and 538 nm, while measurements in range 
of 393 to 422 nm had opposite effect. Nevertheless, final prediction when attributions from all data modalities 
are joined is made with high confidence. Interestingly, measured maximum in spectral range 511–572 nm of 
lifetime data positively contributes to the decision that pollen grain is Carex.

Presented examples provide valuable insights of correct class predictions, but such visual inspection can also 
shed light on misclassification patterns and noisy samples (See Supplementary Fig. 1). Overall, instance level 
explanations are useful, however it is hard to detect global patterns just by inspection of attributions instance by 
instance, particularly for our case where signals are complex interplay of timely resolved spectral and scattering 
responses. Therefore we need some global overview over explained individual predictions.

Model level explanations.  Model level explanations aim to uncover how the model behaves on all of 
data samples. This global explanation provides a holistic view of a model’s behavior. Different aggregations of 
knowledge from instance level explanations can provide valuable insights and biases of the model 52. Here we 
aggregated all decisions made on test instances for each pollen class aiming to extract high-level patterns. This 
allowed us to inspect how feature values contribute to the decisions and rank features within each data modality. 
We focused on top ranked features that drive the decision process. Top 10 ranked features within spectrum data 
modality (Supplementary Fig. 2) predominately contains spectrum responses measured at t = 0. Only two pol-
len classes have in top 10 attributions measurements at t = 1, in particular Alopecurus at 379 nm and Morus at 
422 nm. Both have the same pattern in t = 0, but stronger. To get more condensed view over important features 
we grouped information into symbolic heatmap with circles representing averaged attributions of test instances 
per pollen class (Fig. 4). Circle radius is proportional to the mean absolute attribution of particular feature in 
predicted pollen class. Colours encode the information on mean attribution, preserving thus the sign of the 
impact. We distinguish five levels: strong positive, positive, mixed, negative and strong negative, denoted with 
blues, gray and reds.

Top 10 ranked features within lifetime data modality (Supplementary Fig. 3) uncover that spectral range 
420–460 nm is the most frequent in highly ranked features, followed by 350–400 nm and 511 and 572 nm ranges. 
Interestingly, features corresponding to 672–800 nm appear in top 10 ranked features only for Alnus. We can 
further observe that the most important measurements are those around lifetime maximum, i.e., time index 3–7, 
where 5 corresponds to lifetime maximum. Symbolic heatmap with circles (Fig. 5) further aggregates information 
of class level summary plots for lifetime data modality.

Scattering data modality is harder to explain due to higher number of features and noise in light refraction due 
to particles positions variability during passage through a laser beam and particles irregular surface and shape. 
However there are evidences of relationships between laser light scattering and physical properties of airborne 
pollen 53, such as positive relationship between grain size and the intensity of forward scattering and surface 
roughness and the light scattering ratio between side and forward scattering. Scattering data of Rapid-E device 
mainly records side scatter that captures information on pollen surface structure. Looking from the aspect of our 
features, angle of −37.5◦ is more towards forward scattering (somewhere between side and forward), 0◦ is side 
scattering and 37.5◦ is more towards backward scattering (somewhere between side and back).

Based on obtained attributions for scattering data, we discovered that values are spread more across the 
features. Still, top 10 ranked features (Supplementary Fig. 4) mainly correspond to the angle −37.5◦ that refers 
to recorded scattered light on the entrance of the particle to the detector and as previously explained could by 
partially related to the particle size. With scattering data attributions are further spread to the other features 
and we could not extract strong patterns as those from spectrum and lifetime data were high attributions are 
concentrated in top ranking features. Therefore we visualized mean attributions to inspect all features together 
for each pollen class (Fig. 6). Blue color denotes parts of the scattering that contribute positively in predicting 
observed class, while red negatively. Notable pattern emerges for Juglans pollen class. Compared to the other 
classes its attributions appear in wider time window. Since detected signal duration is affected by the particle size 
and shape 9 we note that network uses this pattern in classifying Juglans grains. From the attributions values we 
can observe that model relies less on scatter data in predicting Acer and Ulmus, while for other classes patterns 
related to the pollen surface influence final decision on pollen class.

Ranked lifetime derived features (Supplementary Fig. 5) based on their attributions showed that feature 
denoted as lt feature 3 (calculated from lifetime signal in 511–572 nm spectral range) is the most important from 
this set of features for the majority of pollen classes, followed by lt feature 1 and 2.

Finally, attributions of scattering feature characterizing the particle size (Supplementary Fig. 6) demonstrated 
that network utilized this information for decision making in case of bigger pollen classes of Juglans, Alopecurus, 
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Dactylis and Carex, although for the last less than expected, since Carex is the biggest pollen in examined group 
(see Fig. 1 in Data Sources and Supplementary Table 1 with measurements), but we discovered that the actual 
estimate of the size from measured scattering signal was smaller.

Knowledge extraction from fluorescence spectroscopy measurements.  The transformed refer-
ence spectral measurements (Fig. 7a) for each pollen variety, aligned with the domain wavelengths of Rapid-E 
spectral measurements, are analyzed using Principal Component Analysis (PCA) 54. The 99% of variance present 
in the transformed reference spectral signals is explained with three principal components (PC).

From the depicted 3D and 2D representation of the latent space and projected transformed spectral measure-
ments (Fig. 7b), a clear separability is obvious among two groups of pollen varieties which are resulted from the 
difference in spectrum mean of the transformed spectrum of pollen. The first group contains Ulmus, Morus, 
Dactilus, Acer, and Alopecurus, while the second group is formed from the following pollen varieties: Salix, 
Platanus, Cupressus, Juglans, Carex, Populus, and Alnus. Although in 3D representation seems that projected 
transformed reference spectral measurements for all pollen varieties are non-overlapping among themselves, in 
2D representation this is not the case. Even for three measurements per pollen variety, the overlapping is present 
in 2D latent space among the projected spectrum of Juglans, Platanus, and Salix in the plane formed from the 
first and the second PC, and among Cupressus and Juglans in the plane formed from the second and the third 
PC. Additionally, significant proximity in 2D latent space is observed among Dactylus and Alopecurus.

From the magnitude of PC coefficients, a contribution of spectral measurements on latent space creation, at 
each of the 32 wavelengths defined by the Rapid-E device was obtained. In Fig. 7c magnitude of PC coefficients 
are plotted with annotation of wavelengths at important peaks for each PC.

Figure 4.   Aggregated attributions of spectrum features. Circle radius correspond to mean absolute attributions 
of test instances, while color encoding comes from mean value.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3205  | https://doi.org/10.1038/s41598-023-30064-6

www.nature.com/scientificreports/

Discussion
When using machine learning models, possibility to validate the decisions of a model with domain knowledge 
is always beneficial, but to accomplish that we need xAI for unveiling the decision making of the learned model. 
Domain knowledge relevant for airborne pollen classification model is interplay of spectroscopy, the physics of 
scattering and pollen biodiversity. With additional reference data we tackled the challenge of explaining deep 
learning model for pollen classification.

Measured reference spectrum data which is processed to match coarser Rapid-E spectral resolution was 
further projected to the space of three the most important principal components to allow visual inspection. Prox-
imity of different classes in that space implies that Rapid-E could hardly resolve these classes only by spectrum 
modality due to additional noise coming from Rapid-E data single airborne particle acquisition process compared 
to the laboratory bulk pollen measurements. The high proximity and overlapping between the projected spec-
trum of Platanus and Salix is also visible in the xAI derived spectrum attributions in the fact that only signifi-
cant feature having positive attribution for Salix (spectrum at 524 nm, t = 0) overlaps with Platanus. Scattering 
attributions of those pollen classes differ to some extent, but eventually not enough as reflected on the obtained 
confusion matrix in Fig. 2c. Also, proximity among Dactylus and Alopecurus, which have the similar shapes 
and mean values of the transformed reference spectrum as well produce higher rates of the misclassification. 

Figure 5.   Aggregated attributions of lifetime features. Circle radius correspond to mean absolute attributions of 
test instances, while color coding comes from mean value.
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On the other hand reference spectrum of Juglans and Salix are likewise highly similar, what aligns with obtained 
xAI spectrum attributions, but here scattering modality and derived size feature help in separating these classes. 
Furthermore, PCA of the reference spectral measurements uncovered combination of features that form each 
principal component. From the highlighted wavelengths pointing on local maximums, three of them at 422 nm, 
437 nm and 480 nm are also listed in Fig. 4 with significant contribution on the model classification. Highly 
ranked lifetime features from range 420–460 nm align with information coming from reference data analysis, 
where this range stands out as a part of PC1. On the other hand, network discoverers more patterns to separate 
pollen classes in the range 350–400 nm, than in 511–572, while reference measurements imply that more data 
variability is explained reversely.

For the cross examination of xAI attributions of scattering data modality we had only measured mean sizes 
for examined pollen classes and knowledge from literature. We discovered that xAI attributions of the scattering 
derived size feature positively correlate (61%) with reference size measurements which demonstrates that network 
utilized size feature. Since time resolved scattering captures also information about the surface morphology and 
shape of aerosol particles 9 we were able to identify pollen classes that based their decisions of relevant part of 
scattering image, but here additional reference data would be beneficial (e.g. pollen surface roughness estimated 
from scanning electron micrograph images 53). Furthermore, to extend our understanding of scattering contribu-
tion other xAI techniques should be explored such as calculating class saliency map 55 or a coarse localization map 
highlighting the important regions in the image for predicting the given class 35. Understanding the scattering 
information is highly challenging also in view of the level of hydration that can have effect on pollen morphology. 
The classification model analyzed in this study is aiming to identify pollen suspended in the atmosphere which 
is notably dehydrated pollen and therefore shrivelled. Degree of shrivelling, and resulting size change, could 
affect performance of the model utilizing scattering signal. It is known that pollen dehydration and subsequent 
rehydration occurs within minutes 25 and the character of this process is unknown. Specific hydration level pollen 

Figure 6.   Average contribution in predicting pollen classes across scattering data. Blue and red colors denote 
positive or negative contribution.
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could be more easily classified using scattering signal but to evaluate such hypothesis controlled conditions in 
the laboratory would be required.

xAI capability to reason behind the model’s predictions and to identify the features that the model considers 
the most important can be further used for a variety of tasks, such as model debugging, model improvement 
and decision-making support. Through xAI we seek for the validation by evaluating whether domain knowledge 
is being captured by the algorithm. If some of the explanations match with domain knowledge there is more 
trust in model’s decisions and further setting the hypothesis around new knowledge discovered by xAI. In our 
experiments xAI opens new avenues of the research. Instance level explanations allowed us to inspect individual 
errors of classification, where we discovered that some samples were not acquired well by instrument, but still 
passed all standard filtering steps. This knowledge could be used for designing new filtering approaches for 
reducing the noise. Learned model is a result of underlying optimization and at the global level we can observe 
how learned model prioritizes different areas in the spectrum, lifetime and scattering data for different classes. 
Comparison of different models on the same data, or the same models on different data (e.g. increased number 
of pollen classes) should be examined not only from the aspect of the accuracy, but also from the perspective 
of understanding changes in the underling decision making process. This is especially important for advanced 
deep learning models build with more complex architectures 31,32 and for groups of pollen types, as chosen in 
our study, that have significant overlapping in flowering seasons and were temporal weighting classification 11 
can not help but classifier itself need to improved. Finally, as results pinpoint which parts of the input data are 
not relevant and which are highly relevant for the classification, xAI could guide sensors design towards new 
prototypes of the instruments. Potential improvements could be achieved by increasing the resolution of the 
measurements in the critical ranges for classifying hardly separable pollen classes and reducing the complexity 
of sensing by removing elements that do not contribute to the decision making.

Conclusion
Our study results on 12 pollen classes showed that spectrum data modality strongly influences the decision 
through condensed range of features in a range of 364–538 nm, mainly measured at t = 0. Lifetime comple-
ments spectrum attributions allowing a few pollen classes distinctive patterns not available in spectrum, while 
attributions of scattering data are spread over wide range of features where scattering signal exists. Findings 
align well with collected reference data and pinpoint how specific pollen classes are successfully separated while 
others not. In conclusion, we consider that xAI is a valuable support for explaining models for automatic pollen 

Figure 7.   Fluorescence spectroscopy measurements. (a) Averages of transformed reference spectrum for 
each pollen variety. (b) Representation of spectra from (a) in 3D and 2D latent spaces formed by PCA. (c) 
Magnitudes of PC coefficients with particularly specified prominent peaks and their corresponding wavelengths.
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classification. Presented xAI methodology can be further applied on other types of the instruments for automated 
pollen monitoring system e.g. Swisens Poleno that combines holographic images fluorescence intensity, lifetime, 
and light scattering 30 or BAA500 56 based on image processing of microscopic slides with pollen grains coupled 
with deep learning model 57. Moreover explainable AI can help to derive insights on how to design new instru-
ments optimized to classify targeted types of pollen.

Methods
Collection of pollen and measurements.  Dry pollen grains from 12 plant species were collected in Petri 
dishes directly from the flowers during their natural release and left to dry at room temperature. Plant material 
used in this study is pollen from common anemophilous plants which is naturally produced and released in 
atmosphere in large quantities. No plants or their parts were damaged during this process and all used methods 
were in accordance to relevant regulations.

A small quantity of material from each pollen sample has been put on microscopic slide and embedded in 
Eukitt, a quick-hardening mounting medium that allowed us to confirm sample purity and measure average 
diameters (based on 10 measurements at x400 magnification) as expected for dry pollen grains. The samples 
represent the expected variability of airborne pollen regarding the size of the particle, surface characteristics 
and chemical composition.

In order to have a reference data set, the fluorescence spectroscopy of dry bulk pollen were measured by 
the Fluorolog 3 Model Fl3 221 Spectrofluorometer System, supplied by HORIBA. The system is equipped with 
a 450 W high-pressure Xe lamp and a photomultiplier tube. After excitation at 337 nm, fluorescence emission 
spectra of pollen samples were recorded in the range from 350 to 800 nm with 1 nm spectral resolution using a 
quartz optical fiber (4 mm effective diameter) at a distance of 2 mm 58,59. Both slits were fixed at 3 nm for excita-
tion and emission beams, and the integration time was 0.1 s. Each sample representing bulk pollen of one class 
was measured 3 times. FluorEssence 3.5 software (Horiba Scientific, Kyoto, Japan) was used to process all of the 
measurement data.

Processing of reference fluorescence spectroscopy measurements.  Since the Rapid-E device has 
a coarser spectral resolution (14.51 nm), resulting in 32 spectrum measurements in the range of 350–800 nm, 
the reference spectrum signals need to be transformed to be comparable with the obtained spectrum signals 
from the Rapid-E device. Due to the spectral resolution of reference measurements of 1 nm, all the defined 32 
wavelengths by the Rapid-E device are found among reference wavelengths. Transformed reference spectrum 
signals are created by filtering the reference measurements using the rectangular kernel with the half-width 
equal to the spectral resolution of the Rapid-E device, and then by sampling the filtered signal at defined 32 
wavelengths 60. Therefore, for each pollen variety we obtained three transformed reference spectrum signals, for 
which averages are shown in Fig. 7a.

Rapid‑E data preprocessing.  The collected dataset is first filtered out to exclude wrong measurements. 
Only particles with maximum spectrum intensity greater than 2500, scattering image size smaller than 450, max-
imum lifetime index between 10 and 44, and four maximum spectrum indices between 3 and 10 are included 
in the analysis. The scattering image is centered around the maximum intensity and then cut to take 60 pixels to 
the left and right, obtaining an image of 20 × 120 dimension. At the same time, the multiple recorded fluores-
cence signals are stacked on top of each other to obtain spectrum image and lifetime image of dimensions 4 × 32 
and 4 × 24 after preprocessing, respectively. In case of lifetime signals additional alignment of measurements is 
needed, maximum values are placed at index 4 and signals are than cut to fit size of 24. Specially derived four 
features from lifetime modality are extracted for each spectrum range and represent sum of signal corrected for 
the noise in that range normalized by maximum value among four extracted features. Size feature derived from 
scattering is proportional to the logarithm of sum of pixel values in spectrum image. Data augmentation was not 
used to increase the training data size since it could affect key properties of recorded signals and thus introduce 
more noise into data.

Multi‑modal convolutional neural network architecture and training.  As illustrated in Fig.  2a 
tensors representing scattering, spectrum and lifetime data modalities are the inputs along with specially derived 
features from scattering and lifetime. Scattering image passes through two convolutional layers encompassing 
batch normalization, padding, 2D convolution followed by dropout, maxpool and ReLU function. One-channel 
scattering image is transformed into 10 and 20-channel images that are flatten into 3000 features before applying 
fully connected layers. Similarly spectral data represented as image passes through two convolutional layers with 
distinction that image is transformed into 50 and 100-channel images producing after flattening 800 features. On 
the other hand lifetime data are transformed through 3 convolutional layers with kernel sizes 7, 5, and 3 forming 
70, 140 and 200-channel images producing overall 400 features. Features from different modalities are further 
reduced on 50 each through fully connected layer. Finally features are concatenated including also 4 additional 
lifetime features extracted from initial data and one size related feature from scattering image. This 155 features 
enter the last fully concatenated layer.

We balanced training set by randomly selecting 500 samples of each class, while the rest of the samples is left 
to test the model. Out of training set 10% of samples was used for validation. The model was trained using the 
negative log-likelihood function, and the stochastic gradient descend algorithm with 0.001 learning rate and a 
momentum of 0.9. Batches for training were balanced, representing mixture of 20 randomly picked samples of 
each classes. Training was performed in up to 800 epochs depending on the calculated training and validation 
loss. Experiment run on computer with Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz (4 CPUs),  2.5GHz 
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and Nvidia GeForce GTX 1050 graphics card, with 4GB of dedicated memory. It needs  40 minutes to train the 
network. Overall training-test procedure was run 10 times to obtain mean accuracy and evaluate also stability 
of the results.

Explainable framework.  The core component of the explainable framework is based on Integrative Gra-
dients (IG) method that is attributing the prediction of a deep network to its input features. IG satisfies the 
completeness axiom as the sum of the attributions is the difference between the input signal and the baseline. 
In our experiments baseline is zero denoting absence of signal at detector. IG of ith feature can be calculated as:

where f(x) represents deep neural network function Rn → [0, 1] for input x = (x1, . . . , xn) ∈ Rn.
Calculation can be further simplified with sum of the gradients at points occurring at sufficiently small 

intervals m in M steps along the straight line from the baseline to input:

Developed explainable framework uses Captum, a unified and generic model interpretability library for 
PyTorch 51. Our multi-modal convolutional network is examined through this framework. Its forward function 
takes five tensors as input (spectrum, lifetime and scattering modalities and derived lifetime and size related 
features).

Data availability
The datasets generated from Rapid-E instrument (raw and processed) and analysed during the current study 
are available in the Zenodo repository, https://​doi.​org/​10.​5281/​zenodo.​70555​77. The raw measurements from 
HORIBA Fluororlog-3 spectrofluorometer are available from the corresponding author on reasonable request.
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