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Abstract 

Progress in dementia research has been limited, with substantial gaps in our knowledge of targets for prevention, 
mechanisms for disease progression, and disease-modifying treatments. The growing availability of multimodal data 
sets opens possibilities for the application of machine learning and artificial intelligence (AI) to help answer key ques-
tions in the field. We provide an overview of the state of the science, highlighting current challenges and opportuni-
ties for utilisation of AI approaches to move the field forward in the areas of genetics, experimental medicine, drug 
discovery and trials optimisation, imaging, and prevention. Machine learning methods can enhance results of genetic 
studies, help determine biological effects and facilitate the identification of drug targets based on genetic and tran-
scriptomic information. The use of unsupervised learning for understanding disease mechanisms for drug discovery 
is promising, while analysis of multimodal data sets to characterise and quantify disease severity and subtype are also 
beginning to contribute to optimisation of clinical trial recruitment. Data-driven experimental medicine is needed 
to analyse data across modalities and develop novel algorithms to translate insights from animal models to human 
disease biology. AI methods in neuroimaging outperform traditional approaches for diagnostic classification, and 
although challenges around validation and translation remain, there is optimism for their meaningful integration to 
clinical practice in the near future. AI-based models can also clarify our understanding of the causality and commonal-
ity of dementia risk factors, informing and improving risk prediction models along with the development of preventa-
tive interventions. The complexity and heterogeneity of dementia requires an alternative approach beyond traditional 
design and analytical approaches. Although not yet widely used in dementia research, machine learning and AI have 
the potential to unlock current challenges and advance precision dementia medicine.
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1  Introduction
Dementia is a syndrome caused by an acquired and 
sustained decline in brain function, leading to diffi-
culty with everyday activities. With multiple under-
lying aetiologies, clinical presentation can vary and 
includes problems with memory, attention, reasoning 
and judgement, communication, language, and even 
visual perception [1]. Many people living with demen-
tia remain undiagnosed, and clinicians struggle to deal 
with this complex and variable condition for which 
there is currently no cure. The intimidating challenge 
that dementia represents reflects the sheer complexity 
of the human brain. Dementia research has been his-
torically neglected, reflecting the belief that dementia 
is part of normal ageing or that it’s simply too difficult 
to solve. The realisation that adults age differently, and 
that the presence of disease does not necessarily lead 
to the clinical syndrome of dementia, has led to a more 
optimistic outlook. Research in dementia aims to iden-
tify risk factors, potential mechanisms for disease pro-
gression, and development of treatments for symptom 
alleviation and disease modification. However, progress 
has been limited and we are still looking for better ways 
to prevent, predict and treat this condition. There is an 
increasing availability of rich, multimodal data from a 
variety of sources, including pre-clinical experimen-
tal data, genetic, imaging and phenotypic information 
from population-based cohorts and clinical trials, clini-
cal data from electronic health records, and real-world 

measurements from digital wearables. Therefore, the 
conventional approach of specialists working in silos, 
generating relatively small-scale data analysed using 
traditional statistics, no longer seems suited to com-
bat dementia. There is growing interest in analysing 
and combining data in novel and innovative ways, and 
AI and machine learning offer an alternative approach 
which can help to embrace the complexity and het-
erogeneity which characterises dementia. As shown 
in Fig.  1, the field of AI applied to dementia research 
is relatively new though rapidly growing. By the end of 
2022, there were 2385 articles with the majority pub-
lished in 2020 or later.

Here, we provide an overview of the state of the sci-
ence in 5 key areas, where AI has the potential to achieve 
impact and enhance dementia research and healthcare: 
genetics and omics, experimental medicine, drug discov-
ery and trials optimisation, imaging, and prevention.

2 � Genetics
Now is an exceptional time to be a data scientist work-
ing with genomic data to gain insight into the aetiology of 
dementia. Data-generating methods are proliferating rap-
idly, spurred on by the falling costs of DNA sequencing 
and microfluidic technologies which have enabled single 
cell genomics. A major advance enabling the application 
of data science to dementia is the emergence of reason-
ably well-powered genome-wide association studies 
(GWAS): there are now 38 genome-wide significant risk 

Fig. 1  Growth in citations related to AI in dementia research. Source: PubMed citations using the search term (Alzheimer*[Title/Abstract] OR 
dement*[Title/Abstract]) AND (AI[Title/Abstract] OR artificial intelligence[Title/Abstract] OR machine learning[Title/Abstract])
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loci which have been discovered from studies of a total 
1,126,563 participants [2] While 38 loci does not sound 
as though it falls within the realm of ‘big data’, recently 
developed statistical methods such as linkage disequilib-
rium score regression [3] and MAGMA [4] have enabled 
the full genomic signal to be considered by accounting for 
confound from linkage disequilibrium (i.e., correlation of 
nearby variants). Many hurdles stand between us and a 
clear understanding of dementia aetiology though [5]: 
we do not know what effect most genetic variants have; 
we do not know how they relate to cellular changes seen 
in disease; nor how genetic factors interact with modifi-
able risks. Integrative data set analyses are likely to help 
answer these questions.

2.1 � How do we determine the biological effect of genetic 
variants?

The results of a GWAS tell us which variants are associ-
ated with disease. While these are commonly discussed 
as Single Nucleotide Polymorphisms (SNPs), it should 
not be assumed that this means we know the actual base 
pair in the genome responsible for increased disease risk. 
Alleles found at nearby genetic variants are correlated, 
known as linkage disequilibrium. A family of statisti-
cal techniques have been developed to determine which 
genetic variant in a region is likely to be causal, by con-
sidering conditional probabilities and functional (e.g., 
epigenetic) annotations [6]. Supervised learning is a use-
ful adjunct to statistical fine mapping: the genomic fea-
tures associated with known expression-quantitative trait 
loci were used to train a classifier, whose output from 
new variants could then be used to set the priors for sta-
tistical fine mapping [7]. Identifying the causal variant 
does not tell us what those variants do though; toward 
this end, various machine learning models [8] has been 
developed to predict genomic features, such as transcrip-
tion factor binding [9], Ribonucleic Acid (RNA) protein 
binding [10], RNA splicing [11], and 3D genome struc-
ture [12]. These models use cutting-edge machine learn-
ing techniques, such as attentional networks, to enable 
predictions of variant effects to be made over long dis-
tances (e.g., 100,000 bp) [9].

2.2 � How do we get from genetic epidemiology and ‑omics 
to practical applications?

GWAS investigate the associations of dementia with 
genetic variants across the genome, and individual asso-
ciations often have relatively small effect sizes.

Early stage clinical drug trials that are successful have 
substantial corroboration in independent GWAS, and 
targets with genetic evidence of disease association are 
almost twice as likely to succeed across multiple phases 
[13]. Similarly, GWAS provides an opportunity to 

identify existing drugs which could be repurposed from 
their original target condition on the basis of shared tar-
gets [14]. This suggests that clinical drug trials could be 
substantially more efficient in terms of duration and cost, 
on the basis of genetic and transcriptomic information. 
Polygenic risk scores are single values which reflect an 
individual’s cumulative, additive genetic risk for a trait, 
and which are often applied as predictors of traits in 
independent cohorts. Common complex traits and dis-
orders primarily have polygenic, high-frequency but low-
penetrance architectures. These scores have substantial 
potential utility in predicting lifetime risk of dementia. 
However, major challenges remain including how these 
scores can be used reliably at the individual level, their 
application across ethnicities, and whether their applica-
bility varies at different stages of the lifecourse [15], plus 
the potential use of genetics and wide-ranging -omics 
generally in predictive modelling and machine learning 
[16, 17].

Genetic information can be leveraged, whereby vari-
ants in a gene that encode for a drug target are used to 
predict the on- and off-target effects of pharmacological 
modification. One example is the use of PCSK9 SNPs to 
mimic the low-density lipoprotein cholesterol-lowering 
PCSK9 inhibitor drug, where genetic evidence showed 
an additional association with increased risk of type-2 
diabetes [18]. There is substantial scope to expand this 
approach to neurodegenerative and dementia-related 
outcomes, especially where expensive randomized con-
trolled trials are underpowered to test for rare or particu-
larly long-term outcomes including accelerated cognitive 
decline.

2.3 � How can we best communicate genetic/‑omic 
information, and what it means, to real people?

There is evidence that members of the general public 
want to know their genetic risk for health conditions 
[19]. However, clinical dementia services do not consist-
ently provide genotyping or testing for purported com-
mon dementia risk polymorphisms (e.g., Apolipoprotein 
E [APOE]). It is possible that the genetic risk of develop-
ing dementia may be mitigated by adherence to a healthy 
lifestyle. However, there is generally poor understanding 
regarding the interplay of modifiable risk factors, such as 
smoking, problem drinking and/or sedentary behaviour, 
and ‘risk’ genotypes [20]. For example, studies that exam-
ined whether the risk reduction associated with healthy 
lifestyle varies by APOE ε4 genotype have been incon-
sistent: some findings have shown beneficial effects of a 
multidomain lifestyle intervention irrespective of APOE 
ε4 status [21], whereas others indicate that following a 
healthier lifestyle is associated with reduced dementia 
risk only in APOE ε4 non-carriers [22]. Addressing both 
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groups of factors in combinations such as in the form of 
composite lifestyle scores and polygenic risk scores for 
Alzheimer’s disease and dementia risk has also shown 
mixed evidence. A recent large observational study [23] 
suggested that genetic and lifestyle factors are independ-
ent and additive; a favourable lifestyle profile was associ-
ated with reduced dementia risk across genetic groups 
including those with a high genetic risk. In contrast, 
another large cohort study [24] found that a healthy life-
style could not offset high genetic risk, and the observed 
associations of a favourable lifestyle against dementia 
were most pronounced for younger individuals at low 
genetic risk. In short, while we can say that there are 
genetic and environmental risk factors for dementia, we 
cannot clearly tell people whether one increases vulner-
ability to the other. In terms of the multitudes of -omics, 
there is a significant challenge in determining added 
value from more detailed phenotyping, e.g., for telomere 
length or specific methylation sites, in terms of risk pre-
diction [25].

Translating data into  usable information which ben-
efits public health  is a major challenge.  Areas in which 
AI and machine learning can help include meta-analyses 
of  GWAS and ribonucleic acid sequencing data, devel-
opment of  polygenic scores for dementia subtypes, and 
combining  -omics data to enhance  our understanding 
of functional implications of identified genetic associa-
tions. A fundamental priority of genetics in dementia is 
to successfully integrate these promising approaches for 
real-world impact.

3 � Experimental medicine
Animal [24] and cellular [25] models can provide vital 
evidence of mechanism. These are used to dissect and 
better understand disease hypotheses and potential 
causal pathways. These results can give rise to new drug 
targets, and discovery of new biomarkers to allow identi-
fication of dementia-related diseases in their preclinical 
form. Experimental models for dementia include a spec-
trum of mice with specific genetic mutations or knock-ins 
[26], patient-derived induced pluripotent stem cell (iPSC) 
cultures, and human tissues [27, 28]. We have addition-
ally seen the development of complex multi-cellular and 
multi-species models, including organoids of the human 
brain [28, 29], multi-species models of the blood–brain 
barrier [30] and chimeric mouse models, containing live 
human cells [31, 32]. All these models capture different 
aspects and states of disease biology and allow varying 
extents of control over genetic and environmental experi-
mental intervention.

Current developments in intelligent experimen-
tal medicine encapsulate some of the most promising 

opportunities for innovation using AI in dementia 
research. Data-driven experimental medicine is essen-
tial to tackle the challenge of integrative analyses across 
multiple studies and heterogeneous model systems. 
Advanced informatics methodologies can detect results 
that might be missed by a direct analysis. For example, 
by integrating data modalities within a single cohort 
researchers can make stronger inferences of underlying 
changes and specific patterns. Using machine learning 
and AI, researchers can find new associations or interac-
tions that may be obscured by data noise or restrictive 
traditional methods to make new disease inferences.

Integrating across biological modalities and incor-
porating aspects of AI-computation, simulated digital 
brains, which recapture brain circuitry and biological 
processes at different scales (e.g., microcircuitry involv-
ing individual synapses, or global brain activation pat-
terns) are a new class of model that holds great promise 
for basic neuroscience research and personalized medi-
cine applications [33]. In particular, the development of 
digital twin brain models, which link patient specific bio-
logical features, including brain structure, pathology and 
functional characteristics with an in silico brain, could 
revolutionize drug development and individualized treat-
ment and rehabilitation in neurological conditions.34

To progress the field of experimental medicine in 
dementia research, three key questions need to be 
addressed.

3.1 � What makes a good experimental model?
To quantify validity in modern experimental medicine, 
we need measurable criteria for how to determine suit-
ability and representativeness of experimental models. 
Which aspects of disease biology can be captured by vari-
ous model systems? For example, given that iPSC-derived 
cell cultures or organoids show gene regulatory ageing 
markers of very early development, do they represent 
suitable models of neurodegenerative disease processes 
in the context of old age? Or could ageing signatures even 
be simulated experimentally or computationally in these 
in vitro systems?

3.2 � How can we make best use of multimodal data?
Robust studies should control for experimental factors 
and batch effects that can have an impact on the meas-
ured phenotype, by harmonising, randomising across 
experimental conditions and including appropriate 
covariates in analyses. This is challenging for small, single 
modality studies, with limited statistical power and reli-
ability. Development of analytic methods and tools that 
can span across modalities and leverage these links, is a 
rapidly evolving and promising field. Connecting brain 
activity with gene expression patterns, for example, could 
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give new insights into gene regulation in the context of 
functional activation of neurons. In the same way, atlases 
across phenotypes and omics, carefully collected on 
matched samples are set to provide novel insights into 
disease biology [35, 36].

3.3 � How can we translate insights from experimental 
models to human disease biology?

Clinical trials for drugs developed using animal models 
are generally unsuccessful [37, 38]. We need strong quan-
titative approaches for cross-model translation. Machine 
learning approaches can be leveraged to translate gene-
regulatory networks and the response to experimen-
tal perturbation across species. By reviewing existing 
approaches and those used in other fields, we can address 
these kinds of translational challenges. Armed with prior 
biological knowledge and large-scale reference data sets 
for baseline and perturbed conditions, development of 
novel translation algorithms is possible.

4 � Drug discovery and trials optimisation
Despite a concerted and sustained international research 
effort in developing and testing disease-modifying ther-
apies for dementia, progress has been poor. For Alzhei-
mer’s disease, there are a small number of treatments 
which can produce short-term symptomatic relief, but 
the disease continues unabated. A plethora of experimen-
tal drugs have been tested in hundreds of clinical trials 
over the past two decades. However, so far only Adu-
canumab has been approved by the US Food and Drug 
Administration [39–41]. Data science, AI and related 
methods will prove invaluable for addressing these chal-
lenges, by improving the precision of predictions and 
making the most of available data [42, 43]. There is grow-
ing interest in applying data science methods to enhance 
clinical trials and computational drug discovery, such as 
using unsupervised learning to discover unseen patterns 
in data [44], and meta models for understanding disease 
mechanisms [45, 46].

Clinical trials aim to recruit at-risk individuals who may 
benefit from an experimental drug. The ideal scenario is 
to recruit a large, population-representative sample of 
individuals at the same stage of disease progression or 
with the same risk of developing a disease. In reality, sam-
ple sizes are limited by financial budgets, and assessment 
of disease severity and risk is not straightforward; these 
diseases are heterogeneous and lack a well-defined dis-
ease progression axis [47–49]. In an attempt to overcome 
this, recent efforts to improve recruitment and screen-
ing for clinical trials in Alzheimer’s disease have included 
use of biomarker data [50–52]. This reflects a shift in the 
research definition of Alzheimer’s disease to incorporate 
biomarkers, especially in the pre-symptomatic phase 

[53–56]. Current biomarker-based screening is quite 
crude; for example, values are typically dichotomised 
using predefined cut points which may have contributed 
to the failure of biomarker-based screening to improve 
the low success rate for clinical trials in Alzheimer’s dis-
ease [48, 57, 58]. There is much room for improvement.

Identifying of suitable candidates for clinical trials is 
a challenge well-suited to advanced data science meth-
ods. Multimodal data from large cohort and population 
studies can be used [42, 43] to characterise and quan-
tify disease severity [59, 60] and subtype [61] even in the 
absence of a well-defined disease progression axis [62]. 
Such approaches promise the precision that has been 
hampering clinical trials to date [63].

While data from large observational studies is becom-
ing increasingly available, this is not the case for inter-
ventional studies. Patient-level data from clinical trials is 
needed to perform some of the analyses we envisage [64, 
65]. However, the pharmaceutical sponsors of clinical tri-
als in neurology have a track record of being extremely 
protective of this data. Indeed, most pharma companies 
involved in Alzheimer’s disease clinical trials have an 
explicit policy only to share patient-level data after regu-
latory approval of an experimental drug. Opportunities 
for optimising clinical trials include utilising publicly 
available data, and improving the state of the art in pre-
cision understanding and forecasting of dementias [16, 
66]. The former lends itself to traditional data science 
methods (e.g., gradient boosting for feature selection or 
weighting) and AI (e.g., feature generation from neuro-
imaging data). The latter is an active area of research that 
will benefit from large multidisciplinary collaborative ini-
tiatives leveraging available data. Examples include data 
science competitions such as the TADPOLE Challenge 
[67] and international collaborations focussed on novel 
statistical methods such as the series of workshops led 
by the EuroPOND consortium (http://​europ​ond.​eu) or 
the Fraunhofer SCAI (http://​www.​disea​sepro​gress​ionmo​
dels.​eu/).

Another challenge is that following participants over 
the time which dementia typically develops is gener-
ally impractical and prohibitively expensive, particularly 
for dementia prevention trials. One low-cost solution 
is interrogation of electronic health records to identify 
patients who are subsequently diagnosed with demen-
tia or experience adverse events. Relevant information 
is often recorded in free-text clinical notes which can 
be problematic for conventional analytic approaches 
[68]. Advances in text mining and natural language pro-
cessing facilitate analysis of relevant information. Using 
population-level electronic health record data, this 
approach can also inform future care by identifying how 
new treatments benefit patient subgroups, and develop 

http://europond.eu
http://www.diseaseprogressionmodels.eu/
http://www.diseaseprogressionmodels.eu/
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drug-response predictive models, thus capturing real-
world effectiveness.

5 � Neuroimaging
Structural neuroimaging using Computed Tomography 
(CT) or Magnetic Resonance Imaging (MRI) is routine 
in the diagnosis and management of dementia, pro-
viding insight into differential diagnosis and exclud-
ing other causes of cognitive impairment. Additional 
neuroimaging modalities can help analyse: (1) brain 
activity (often referred to as functional neuroimaging) 
using functional MRI [69], electroencephalography [70] 
or magnetoencephalography [71, 72]; (2) metabolic 
changes using positron emission tomography (PET); 
(3) specific pathologies using PET ligands for protein 
aggregation, such as beta-amyloid [73, 74] or tau [75].

Neuroimaging generates large, complex data which is 
increasingly beyond the ability of human interpretation 
or traditional statistical approaches, but ideally suited 
to AI methods for understanding disease mechanisms 
and supporting clinical diagnosis. Large data sets have 
accelerated the development of AI tools, including 
the Alzheimer’s Disease Neuroimaging Initiative [76], 
National Alzheimer’s Coordinating Center [77], Open 
Access Series of Imaging Studies [78], Genetic Fronto-
temporal dementia Initiative [79], and data reposito-
ries, such as Dementias Platform UK [80].

Over 250 AI studies of neuroimaging have addressed 
clinical questions of dementia diagnosis or prognosis. 
AI methods in structural MRI outperform traditional 
approaches when compared head-to-head, for example, 
using hippocampal volume for diagnostic classification 
[81, 82], or conversion from mild cognitive impairment 
to Alzheimer’s disease. One promising approach com-
bined structural MRI, PET and clinical data to train a 
machine learning model that subsequently predicted 
conversion from mild cognitive impairment to Alz-
heimer’s disease using structural MRI alone [83, 84]. 
While barriers remain in validation and translation to 
the clinic, we are optimistic that meaningful AI deci-
sion support tools for neuroimaging will be in clinical 
practice within the next decade [85].

The anatomical specificity of neuroimaging enables 
more than simple classification, it can provide insights 
into disease mechanisms of neurodegeneration across 
the brain. The first study to apply a ‘big data’ approach 
to this challenge used multimodal MRI and PET imag-
ing combined with plasma and cerebrospinal fluid 
markers in a multifactorial generative model to infer 
that vascular changes occurred earliest in Alzheimer’s 
disease [86]. This approach using neuroimaging, with 
or without other biomarkers, to infer disease progres-
sion has since been extended, most notably using the 

Subtype and Stage Interference model. This model has 
been applied to genetic frontotemporal dementia [61] 
investigating the complex relationship between geno-
type and pattern of structural brain changes, and more 
recently in Alzheimer’s disease to identify four dis-
tinct patterns of tau accumulation [87]. We expect AI 
applied to neuroimaging to continue to shed light on 
the interplay between mechanisms of neurodegenera-
tion across the brain.

The issue of interpretability remains a challenge, par-
ticularly with the increasing use of ‘black box’ deep learn-
ing methods [88, 89]. Understanding the features used 
for classification is important to relate changes to ana-
tomical brain regions, and to ensure that classification is 
not based on noise signals, such as motion in functional 
imaging methods. This can be achieved using simpler 
‘white-box’ machine learning models, where model fea-
tures are readily accessible. Various methods to identify 
features within neural networks are emerging and have 
been successfully applied to neuroimaging data in Alz-
heimer’s disease [90].

While we are optimistic about AI in neuroimaging for 
dementia, some challenges remain [91]. One key chal-
lenge is ensuring that research populations represent the 
real-world setting they are drawn from. AI is notoriously 
sensitive to bias within the data that trains its algorithms, 
and selection bias has been highlighted in data sets of 
neuroimaging for dementia. Future data collection must 
recruit strategically to address this issue.

A second key challenge is the practical issue of regula-
tory approval. Only four AI methods have been approved 
for clinical use in neuroimaging for dementia in the US or 
EU, but most of these perform image segmentation, and 
none directly classify patient groups [92]. This low rate of 
success suggests a significant barrier at the point of trans-
lation from research to clinical practice. Neuroimaging 
has a central part to play in data science and AI applied 
to dementia research. The development of AI tools and 
increasing availability of richly phenotyped neuroimaging 
data means that now is the time to address the remaining 
challenges in our field and harness these powerful tools 
for the benefit of patients.

6 � Prevention
Epidemiological evidence shows a decrease in age-spe-
cific dementia incidence in recent birth cohorts, dem-
onstrating the potential for dementia prevention by 
targeting modifiable risk factors [93, 94]. The most recent 
Lancet Commission on Dementia Prevention, Interven-
tion and Care identified 12 modifiable risk factors, which 
could prevent up to 40% of new dementia cases [93]. 
These are: low education (early life); hearing loss, trau-
matic brain injury, hypertension, high alcohol intake, 
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and obesity (midlife); smoking, depression, social isola-
tion, physical inactivity, air pollution and diabetes (late 
life). Several recent systematic reviews have highlighted 
additional risk factors [95–98] with highly suggestive evi-
dence emerging for sleep disturbances, stroke, benzodi-
azepine use, gait speed, vitamin D deficiency, and high 
homocysteine levels. Additional risk factors have been 
emphasised albeit the strength of evidence tends to fluc-
tuate depending on the methodological criteria of the 
systematic review; these include cognitive inactivity, poor 
diet, hyperlipidaemia, atrial fibrillation, inflammatory 
markers, and anxiety [95–97]. Weaker evidence has been 
suggested for other frequently studied factors, such as 
renal dysfunction [95], coronary heart disease [95], tooth 
loss [96], and postoperative delirium [98]. The latest evi-
dence indicates from observational studies indicates 
very weak or no significant association between cancer, 
general anaesthesia or non-steroidal anti-inflammatory 
drugs and dementia risk [98]. Among the above factors, 
education and plasma glucose levels are those with the 
strongest evidence supported by Mendelian randomisa-
tion causal analyses [98]. Finally, research focusing only 
on environmental exposures indicates there is some evi-
dence for an association of air pollution, pesticides, alu-
minium, silicon, and electric and magnetic fields with 
increased dementia risk [99–101].

Current evidence highlights the multitude of risk fac-
tors and pathologies contributing to dementia risk. 
Machine learning and AI methods can be used to 
improve our understanding of commonality and causality 
of risk factors to develop and test effective preventative 
interventions.

A major challenge in this field is the issue of reverse 
causation. Many traditional statistical approaches fail to 
distinguish causal risk factors from prodromal dementia 
symptoms. Methods such as Mendelian randomization 
are providing new insights into causal pathways for risk 
factors [102], but can be inadequately powered and suffer 
from weak instrument and survival bias. Machine learn-
ing methods, such as deep learning approaches, could 
improve the way risk variants are identified and func-
tionally assessed within genome-wide association stud-
ies [103–105], creating stronger genetic instruments to 
improve causal analysis. Contemporary causal machine 
learning approaches have the potential to enhance our 
understanding of the underlying mechanisms which 
connect multiple risk factors, pathologies and the clini-
cal syndrome of dementia itself. An exhaustive search 
for causal structures using machine learning with high-
dimensional health data is computationally unfeasible, 
although heuristic approaches to identify causal struc-
tures have been developed, such as fast causal inference 
[106].

Most dementia risk factors are moderately correlated 
[107, 108]. Despite this, many studies fail to consider the 
interactions between modifiable and non-modifiable risk 
factors (e.g., age and genetics) or non-linear effects. This 
leads to overly simplistic methods that do not reflect true 
biological relationships. For example, mid-life hyperten-
sion increases risk for dementia, but becomes apparently 
‘protective’ during prodromal dementia [109–112], sug-
gesting the onset of dementia itself can reduce blood 
pressure. Machine learning approaches can measure 
these interactions and nonlinear effects, which could 
uncover pathways that underpin the influence that mul-
timorbidity has on dementia risk. Approaches, such as 
path signature-based methods [113], would allow us to 
model these complex relationships and identify the opti-
mal duration and timing of lifestyle or drug interventions 
to reduce dementia risk.

Existing dementia risk prediction tools, such as the 
Cardiovascular Risk Factors, Aging, and Incidence of 
Dementia risk score, incorporate risk factors, such as age, 
education, physical activity, vascular and cardiometa-
bolic risk factors, to predict dementia ~ 20  years later 
[114, 115]. However, these are based on linear models, 
leaving substantial scope for more advanced modelling, 
including extreme gradient boosting trees or deep neural 
networks.

Deep learning [116] and network-based approaches 
[117, 118], are being used to identify and validate existing 
drugs as potential preventative interventions to reduce 
risk and delay dementia onset [119]. Machine learning 
approaches can help clarify how and why certain drugs 
reduce risk, improving our understanding of dementia 
aetiology and promoting identification of new drug tar-
gets [120, 121]. The development of preventative inter-
ventions could in turn enable the use of personalised 
medicine by applying network meta-analytics [122] and 
other machine learning methods to recommend inter-
ventions and predict treatment response to improve 
patient outcomes [123].

Underpinning all these advances is the need for more 
high-quality, longitudinal and multimodal data, which 
currently remains unavailable from a single source. Bet-
ter harmonisation of existing cohorts and multimodal 
data sets using AI methods will also help to inform guid-
ance set out by policymakers and professional bodies for 
public health management.

7 � Multidisciplinary global collaborations for AI 
applied to dementia research and healthcare

The Deep Dementia Phenotyping (DEMON) Network is 
the first and largest global collaborative initiative which 
aims to transform dementia research and healthcare 
through the application of data science and AI (see www.​

http://www.demondementia.com
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demon​demen​tia.​com). Launched in November 2019, the 
DEMON Network brings together over 1,500 members 
across six continents including dementia researchers, 
computer scientists, clinicians, AI specialists, third sec-
tor and industry representatives. Collaborative research, 
publications and knowledge transfer activities are con-
ducted through practical Working Groups and Special 
Interest Groups covering all areas of dementia research. 
By coordinating and combining expertise and resources, 
the DEMON Network is leading a change in the way 
dementia research is conducted. The DEMON Network 
is largely resourced by academics volunteering their time. 
As the majority of research applying AI to dementia have 
so far addressed predictive and diagnostic challenges, 
this network is currently focused on dementia prevention 
and diagnosis, rather than dementia care.

In June 2022, a related Precision Dementia Medicine 
Interest Group was launched within the Alan Turing 
Institute, the UK national institute for data science and 
AI (https://​www.​turing.​ac.​uk/​resea​rch/​inter​est-​groups/​
preci​sion-​demen​tia-​medic​ine). In August 2022 a new 

Professional Interest Area in AI for Precision Dementia 
Medicine was launched within the Alzheimer’s Asso-
ciation International Society to Advance Alzheimer’s 
Research and Treatment (ISTAART), which convenes 
the global Alzheimer’s and dementia science community 
(https://​action.​alz.​org/​Perso​nifyE​busin​ess/​Defau​lt.​aspx?​
TabID=​1753). Together, these initiatives aim to support 
the broad dementia research community to collaborate 
internationally, and share the common goal of enhancing 
dementia research using data science and AI.

8 � Conclusions
The quality of available data, power of analytic tech-
niques, and infrastructure for collaboration are all 
improving rapidly. Table  1 summarises the current 
applications, challenges and prospects in each area of 
dementia research. The potential of the relatively new 
field of AI for dementia research remains largely unful-
filled, although some progress has been made and there 
is genuine cause for optimism (Box 1). Progress toward 
combating dementia and promoting brain health will be 

Table 1  Overview of current applications, challenges and prospects for machine learning and AI applications in five key areas of 
dementia research

Current areas of machine learning 
and AI applications

Challenges and knowledge gaps Prospects and future directions

Genetics Full genomic signal analysis [3, 4]
Statistical fine mapping [6, 7]
Single cell genomics [9, 10]
Identification of causal variants [6]

Effect of specific genetic variants [5]
Relation of genetic variation to cellular 
changes [5]
Mixed evidence for interaction of 
genetics with modifiable risk [21−24]

Utilisation of integrative data sets [124]
Combining omics data to identify func-
tional implications [125]
Application of genetic risk to individuals 
[15]

Experimental Medicine Data-driven multimodal analysis [35, 36]
Gene regulation [26, 27]
Digital twin brain models link [33]struc-
ture, function and pathology

Translational gap from models to 
human disease biology [126]
Lack of power in small, single modality 
studies [126]
Poor reproducibility [127]

Efficient drug target discovery [128]
Simulated ageing signatures [129]
Digital brains for precision dementia 
research34

Drug discovery and 
Trials Optimisation

Intelligent drug target identification [16]
Incorporation of multiple biomarker 
data [59]
Natural language processing and text 
mining of electronic health records [68]

Heterogeneity of disease risk, severity 
and subtype [60, 61]
Cost of longitudinal analysis [60]
Restricted access to clinical trial data 
[64]

Enhanced identification of risk for trial 
recruitment [63]
Utilising publicly available data and linked 
health records [16, 66]
Multi institutional collaborative initiatives 
to share data [67]

Neuroimaging Automated feature extraction for diag-
nosis and prediction [85]
Combining imaging modalities and 
biomarker data [86]
Investigation of disease progression and 
biological mechanisms [61, 87]

Lack of clinical implementation [85]
Poor interpretability is challenging for 
regulation [91]
Sensitivity to bias in the training data 
[91]

Validation of existing models for clinical 
settings [90]
Availability of large data sets and reposi-
tories [85]
Strategic recruitment to improve real-
world applicability [91]

Prevention Analysis of complex interactions in 
observational studies [113]
Increased accuracy of polygenic risk and 
predictive models [15, 130]
Validation of drug repurposing for 
dementia prevention [117, 118]

Inconsistent evidence for many poten-
tial risk factors [93, 95–97]
Causal relationships poorly understood 
[98]
Lack of statistical power [17]

Personalised dementia prevention inter-
ventions [122, 123]
Deep learning for improved Mendelian 
randomisation [103, 105]
Lifespan modelling to identify the optimal 
timing of a prevention intervention

http://www.demondementia.com
https://www.turing.ac.uk/research/interest-groups/precision-dementia-medicine
https://www.turing.ac.uk/research/interest-groups/precision-dementia-medicine
https://action.alz.org/PersonifyEbusiness/Default.aspx?TabID=1753
https://action.alz.org/PersonifyEbusiness/Default.aspx?TabID=1753
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made more rapidly by bringing together the right data, 
the right analyses, and the right people. As a result, 
we anticipate that the development of AI and machine 
learning techniques will play a vital role in accelerating 
the pace of our discoveries.

9 � Box 1. Take‑home points

1) AI and machine learning techniques make it possible to analyse 
high-dimensional and multimodal data in a way that was not previ-
ously possible.
2) Current applications are most advanced in neuroimaging, where 
features can be efficiently and automatically extracted for incorporation 
into powerful diagnostic and predictive models.
3) New approaches in genetic discovery and dementia prevention 
include identification of interactions and causal variants, and develop-
ment of more accurate polygenic risk scores.
4) Recent innovations in ‘intelligent’ experimental medicine are 
expected to facilitate more efficient drug target discovery, with power-
ful simulation studies and multimodal data approaches helping bridge 
the translational gap for new insights into human biology.
5) We now have an opportunity to improve clinical trials with more 
efficient targeting and recruitment strategies, with much optimism for 
a precision medicine approach to both primary and secondary preven-
tion.
6) A coordinated multidisciplinary global approach is needed to bring 
the dementia research community together to achieve impact across 
these areas of promise.
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