Skip to main content
. 2023 Feb 11;9(3):e13624. doi: 10.1016/j.heliyon.2023.e13624

Table 3.

Summary table of goodness-of-fit indices.

Category Indicator Acceptance level Purpose
CMIN (Chi-square, χ2) The smaller, the better Chi-square is used to measure the difference between the hypothetical model and the actual data
P 0.05 ≤ p ≤ 1.00
CMIN/DF (χ2/df) <2-5
Absolute fit indices Root mean square error of approximation (RMSEA) 0.05 < RMSEA ≤0.08 (good fit), 0.08 < RMSEA ≤1 (marginal fit),
SRMR≤0.10
Estimates how well the model fits
Standardized Root Mean square Residua (SRMR)
Goodness-of-fit index (GFI) ≥0.90
GFI/AGFI ≥0.90 (good fit), 0.80 ≤ GFI/AGFI ≤0.90 (marginal fit)
GFI indicates the proportion of variance in the sample variance matrix
Adjusted goodness-of-fit index (AGFI) The AGFI can be used to compensate for the GFI index, where the value of the index is adjusted according to the number of parameters
Incremental fit indices Incremental-Fit Index (IFI) ≥0.90
IFI/NFI/CFI/TLI ≥0.90 (good fit), 0.80 ≤ IFI/NFI/CFI/TLI ≤0.90 (marginal fit)
The IFI points out the problems of parsimony and sample size
Normed Fit Index (NFI) NFI compares the overall fit of the researchers' model with the improvement of a model
Comparative Fix Index (CFI) CFI is a modified version of NFI that takes into account the sample size
Tucker-Lewis Index (TLI) TLI indicates the correlation of model complexity