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Abstract: In this paper, a novel H-shaped radial phononic crystal (H-RPC) structure is proposed
to suppress the anchor loss of a Lamb wave resonator (LWR), which has an ultra-high frequency
(UHF) and ultra-wideband gap characteristics. Compared to previous studies on phononic crystal
(PC) structures aimed at suppressing anchor loss, the radial phononic crystal (RPC) structure is more
suitable for suppressing the anchor loss of the LWR. By using the finite element method, through the
research and analysis of the complex energy band and frequency response, it is found that the elastic
wave can generate an ultra-wideband gap with a relative bandwidth of up to 80.2% in the UHF range
when propagating in the H-RPC structure. Furthermore, the influence of geometric parameters on
the ultra-wideband gap is analyzed. Then, the H-RPC structure is introduced into the LWR. Through
the analysis of the resonant frequency, it is found that the LWR formed by the H-RPC structure can
effectively reduce the vibration energy radiated by the anchor point. The anchor quality factor was
increased by 505,560.4% compared with the conventional LWR. In addition, the analysis of the LWR
under load shows that the LWR with the H-RPC structure can increase the load quality factor by
249.9% and reduce the insertion loss by 93.1%, while the electromechanical coupling coefficient is
less affected.

Keywords: radial phononic crystal; complex band curve; MEMS resonator; quality factor; anchor loss

1. Introduction

In recent years, with the rapid development of the fifth-generation mobile commu-
nication network (5G), microelectromechanical system (MEMS) technology has shown
good application prospects in wireless communication systems and sensor networks [1,2].
The Lamb wave resonator (LWR) is considered by most researchers to be the preferred
choice for miniaturized, high-performance, and low-power integrated resonators due to
its high operating frequency, high electromechanical coupling coefficient, and low power
consumption [3,4]. LWRs are considered to be highly desirable in the 300–800 MHz range
commonly used in the field of wireless communications [2,5,6]. Studies have shown
that LWRs with a high quality factor (Q) can achieve lower insertion loss filters and
high-resolution sensors [7,8].

It has been reported that the Q of LWRs can be effectively improved by reducing an-
chor loss [9–15]. Acoustic energy radiates to the fixed area through the support tether [16].
Harrington et al. improved the quality factor to 12,042 by applying acoustic reflectors on the
substrate [9]. Zou et al. demonstrated a butterfly resonator to reduce the vibration around
the anchor [17]. Pandey et al. designed a mesa around the resonator to reflect the elastic
energy back to the resonator [18]. Using the band gap characteristics of phononic crystals
(PCs) to suppress the anchor loss has attracted the attention of researchers [3,11,15,19–26].
For example, Zhu et al. used a two-dimensional stomatal PCs unit cell to increase the Q
to twice the original [11]. Ardito et al. used a one-dimensional PCs structure to increase
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the Q by several times [24]. Other shapes, such as rings [27], cross-like holes [13], frac-
tals [14], Spider Web-Likes [15], cross-section connections [25], double “I” holes [26], and
snowflakes [28] have also been reported. At present, Yinjie Tong has increased the Q of
Pillar-Based PCs by 54% in the UHF range [3]. Although the Pillar-Based PCs improve the
Q, they have a narrow band gap, a relatively low bandwidth, and a limited application
frequency band.

The radial phononic crystal (RPC) structure is an annular structure arranged periodi-
cally along the cylindrical coordinate system with complete band gap characteristics [29–33].
Torrent et al. proposed a new shape of a RPC structure for the first time and verified the
existence of its acoustic band gap [29]. A new shape of a double-layer RPC was designed
by Ma et al., and the cause of the band gap was explained by its propagation charac-
teristics [32]. Shi et al. designed different two-dimensional radial periodic structures
to achieve low-frequency band gaps [34]. The usual design for one-dimensional PCs is
to arrange them on the LWR support tether or in a two-dimensional arrangement on
the anchor [15,16,19,22,25–27,35–39]. In the case of one-dimensional PCs, they are often
arranged periodically along the x-axis on the support tether [16,22,35–39]. Therefore, one-
dimensional PCs can effectively block the propagation of sound waves only by satisfying
the directional band gap on the Г-X, but they also require a longer support tether to arrange
PCs. Two-dimensional PCs are often arranged periodically on the anchor along the x-axis
and y-axis [15,19,22,25–27,35,38]. Due to the arrangement of two-dimensional PCs, to
effectively block the propagation of acoustic waves it is necessary to have directional band
gaps along the Г-X, X-M, and M-Г directions of the irreducible Brillouin zone to achieve
omnidirectional band gaps. When an RPC with a Γ-R band gap is applied to the resonator
anchor it can completely block the propagation of sound waves.

In this paper, an H-shaped radial phononic crystal (H-RPC) structure applied to an
LWR is proposed. The H-RPC structure is composed of an H-shaped plane rotation. In the
second part, we show the H-RPC structure model and how to calculate the complex band
curve of the RPC structure by a theoretical method. In the third part, the complex band
curve and frequency response curve of the structure is calculated by using the finite element
method (FEM). The influence of different periods on the attenuation effect is studied in
depth, and the influence of different geometric parameters on the ultra-wideband band
gap is analyzed. In the fourth part, an H-RPC is applied to an LWR, and the influence of
different spacing between the H-RPC and the support tether on the Q, electromechanical
coupling coefficient, and insertion loss is analyzed. Finally, a brief conclusion is arranged.
The main contribution of this paper is to introduce the RPC structure into the LWR, which
produces an ultra-wideband gap and is suitable for a short support tether LWR.

2. Materials and Methods
2.1. Radial Phonon Crystal Model

In this study, the proposed H-RPC structure is composed of centrosymmetric grooves,
as shown in Figure 1. Figure 1a shows the H-RPC unit cell section diagram, Figure 1b shows
the unit cell rotating around the z-axis diagram, and Figure 1c shows the three-dimensional
H-RPC structure. The lattice constant a = 8 µm, the total height h = 5 µm , the left and
right-side wall width a 1 = 3.2 µm, and the middle support beam height h1 = 0.8 µm. Since
the structure is obtained by rotating around the Z-direction, the irreducible Brillouin zone
of the three-dimensional H-RPC is the Г-R region. The H-RPC is composed of commonly
used anisotropic monocrystalline silicon. Among them, the density (ρ) is 2330 kg/m3, and
the elastic modulus E of anisotropic single-crystal silicon, shear modulus G, and Poisson’s
ratio σ are shown in Table 1.
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Figure 1. (a) The cross section of H-RPC unit cell; (b) The formation of RPC; (c) The three-dimen-

sional model formed by the rotation of 4-cycle H-RPC structure 180°. 

Table 1. Parameters of Si Materials. 

Elastic Modulus Shear Modulus Poisson’s Ratio 

𝐸𝑥 = 169 𝐺𝑃𝑎 𝐺𝑥𝑦 = 50.9 GPa 𝜎𝑥𝑦 = 0.064 

𝐸𝑦 = 169 GPa 𝐺𝑦𝑧 = 79.6 GPa 𝜎𝑦𝑧 = 0.36 

𝐸𝑧 = 130 GPa 𝐺𝑧𝑥 = 79.6 GPa 𝜎𝑧𝑥 = 0.28 

2.2. Theoretical Method 

The H-RPC studied adopts a two-dimensional axisymmetric finite element method 

based on a cylindrical coordinate system. Therefore, the traditional Cartesian coordinate 

system is transformed into an elastic wave Equation (1) in a cylindrical coordinate system, 

and the energy band curve of the RPC in an infinite period is further studied. 
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because the RPC structure is arranged so that the lattice unit is infinite along the ra-

dial direction. According to the Bloch theorem, only one lattice unit is needed. The lattice 
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Figure 1. (a) The cross section of H-RPC unit cell; (b) The formation of RPC; (c) The three-dimensional
model formed by the rotation of 4-cycle H-RPC structure 180◦.

Table 1. Parameters of Si Materials.

Elastic Modulus Shear Modulus Poisson’s Ratio

Ex = 169 GPa Gxy = 50.9 GPa σxy = 0.064
Ey = 169 GPa Gyz = 79.6 GPa σyz = 0.36
Ez = 130 GPa Gzx = 79.6 GPa σzx = 0.28

2.2. Theoretical Method

The H-RPC studied adopts a two-dimensional axisymmetric finite element method
based on a cylindrical coordinate system. Therefore, the traditional Cartesian coordinate
system is transformed into an elastic wave Equation (1) in a cylindrical coordinate system,
and the energy band curve of the RPC in an infinite period is further studied.
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In Equation (1), u, v, and w are the displacement components of the Cartesian coordi-
nate system, ρ is the density, t is time, the elastic wave constants of λ and µ are the materials,
and r, θ, and z are the coordinate displacement components of the cylindrical coordinate
system. The volumetric strain θt and the rotating component (w

′
r,w
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θ , w
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z) are defined as:
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because the RPC structure is arranged so that the lattice unit is infinite along the radial
direction. According to the Bloch theorem, only one lattice unit is needed. The lattice
boundary condition equation is:

u(r + ra, z) = u(r, z)eikrra (3)

where r is the radial position, a is the lattice constant, and kr is the radial component of the
Bloch wave vector Kr.

Figure 1a is established under the 2D axisymmetric component of COMSOL Multi-
physics, and the periodic boundary conditions of Formula (3) are applied in the R-direction.
By scanning the Bloch wave vector Kr (the real part and the imaginary part of the wave
vector) of the first irreducible Brillouin zone boundary in the R-direction as shown in
Figure 1a, the complex band curve of the RPC structure can be obtained.
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3. Ultra-Wideband Gap Characteristics of H-RPC
3.1. Ultra-Wideband Gap Structure

The complex band curve of the H-RPC structure is shown in Figure 2. In Figure 2,
the real wave vector energy band curve in (Г-R) direction is represented by solid lines of
different colors on the right side, and the imaginary wave vector energy band curve in
(Г-R) direction is represented by red dotted lines on the left side. If there is a frequency
range where no band curve is present in the real wave vector energy band curve, then this
is a complete band gap. When the frequency is in the band gap range, the absolute value
of the imaginary wave vector can be used to represent the attenuation characteristics in
the band gap. The larger the absolute value of the imaginary wave vector, the stronger the
attenuation. It can be seen from the figure that six real wave energy vector band curves are
found in 0–700 MHz, and three complete band gaps are generated (as shown in the shadow
on the right side of Figure 2). The first complete band gap is obtained at 44.3–58.7 MHz,
which is generated between the first energy band curve and the second energy band curve.
A second complete band gap is obtained at 209.4–489.7 MHz, which is generated between
the third energy band curve and the fourth energy band curve. The third complete band
gap is obtained at 508.3–615.8 MHz, which is generated between the fourth energy band
curve and the sixth energy band curve. From the energy band curve of the imaginary wave
vector, it can be observed that when the frequency is in the second band gap, the absolute
value of the imaginary wave vector shows a continuous and stable change, which is mainly
caused by the Bragg mechanism.
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Figure 2. Complex energy band curve of the H-RPC structure. The real wave vector energy band
curve in (Г-R) direction is represented by solid lines of different colors on the right side, and the
imaginary wave vector energy band curve in (Г-R) direction is represented by red dotted lines on the
left side.

Using the relative bandwidth BG to measure the utilization and availability of RPCs,
the relative bandwidth can be calculated by the following formula:

BG% = (f2−f1)(
f2+f1

2

)% (4)

where f1 is the starting frequency of the band gap and f2 is the cutoff frequency of the
band gap. From the complex band curve of Figure 2, it can be seen that the first band
gap corresponds to BG1 = 28.0%, the second band gap corresponds to BG2 = 80.2%, and
the third band gap corresponds to BG3 = 19.1%. In particular, the ultra-wideband gap
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in the UHF range is achieved in BG2. Compared with the 24.1% relative bandwidth of
the cylindrical PCs proposed in the UHF range, the relative bandwidth of the band gap
generated by the H-RPC structure proposed in this paper is as high as 80.2% [3]. Table 2
compares the band gaps of similar lattice constant structures in the relevant literature.

Table 2. Band gap comparison of similar lattice constants.

Reference Lattice Constant
(µm)

Band Gap
Range (MHz)

Center Frequency
(MHz)

Bandwith
(MHz) BG

[3] 4 472–601 536 129 24.0%
[13] 10 180–340 260 160 61.5%
[16] 8 562–624 593 62 10.5%

This work 8 209.4–489.7 349 280 80.2%

3.2. Frequency Response

In order to verify the stopband effect of the radial structure a comparative analysis
of different periodic models is established, and the frequency response curve (the transfer
function is defined to be equal to 20log

(
αoutput/αinput

)
, and αoutput and αinput are respec-

tively expressed as the acceleration of output and input) is used to measure the degree
of the stopband. Specifically, the frequency response model is established as shown in
Figure 3, while Figure 3a shows the traditional contrast propagation model and Figure 3b
shows the H-RPC model with four cycles. As shown in Figure 3, an R-direction displace-
ment excitation is applied to the input probe and the output probe is used to pick up the
displacement results. In order to reduce the reflection of elastic waves and interfere with
the propagation process, a perfect matching layer (PML) is set at both ends of the model.
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Figure 3. Frequency response model. (a) is a traditional model; (b) is a 4-period H-RPC model. Figure 3. Frequency response model. (a) is a traditional model; (b) is a 4-period H-RPC model.

The frequency response curve is shown in Figure 4. In the first band gap (44.3–58.7 MHz),
the frequency transmission response of the PnC model is lower than that of the com-
parison model. In the second band gap (209.4–489.7 MHz) and the third band gap
(508.3–615.8 MHz), the model composed of PCs is significantly lower than the correspond-
ing model. When the frequency is about 400 MHz, the maximum attenuation is 55 dB.
When the frequency is in the first band gap range, the attenuation does not decrease sig-
nificantly. This is because the wavelength of the elastic wave is much larger than the unit
cell of the PnC when in the first band gap range. At this time, although the band gap
appears in the band structure, it does not play a strong role in the simulation application.
It is particularly noteworthy that with the increase of the period N, the attenuation in the
second band gap and the third band gap will gradually increase. This is because with the
increase of the period the elastic wave will be attenuated when passing through the PnC of
each period.
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3.3. The Influence of Geometric Parameters on Ultra-Wideband Band Gap

For the formation of an ultra-wide band gap, the geometric parameters of the unit cell
play a fundamental role. Therefore, in this section, the influence of the geometric parameters
a1 and h1 of the structure on the ultra-wideband gap is discussed. Under the condition of
keeping the lattice constant a and height h unchanged, the influence of changing the value
of h1/h and a1/a on the ultra-wideband gap is shown in Figure 5. In Figure 5, Figure 5a
shows the variation of the bandwidth of the ultra-wideband gap with h1/h and a1/a, and
Figure 5b shows the variation of the center frequency of the ultra-wideband gap with
h1/h and a1/a. As h1/h increases, the band gap width gradually decreases to zero, and
the center frequency of the band gap gradually shifts to high frequency. This is because
as h1 gradually increases, the propagation obstacle of the elastic wave at the connection
boundary of the support beam decreases. With the increase of a1/a, the band gap width
increases first and then decreases, and the band gap center frequency changes little. In
particular, the change of h1/h will not only change the width of the band gap but also will
change the stiffness of the supporting beam of the structure. The results show that when
0.1 < h1/h < 0.2 and 0.35 < a1/a < 0.40, the center frequency is in the UHF range and the
bandwidth reaches more than 250 MHz.
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4. LWR Design and Analysis Results
4.1. LWR Design

The resonators designed in this paper are all LWRs, and the simplified model is shown
in Figure 6. Figure 6a shows the simplified 1/4 model of a conventional LWR, and Figure 6b
shows the simplified LWR 1/4 model after adding three cycles of H-RPC.
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The width extended (WE) vibration mode expression of the LWR is [40]:

fr =
nv

2Wr
(5)

In Equation (5), v represents the sound velocity in the resonator, Wr is the width of
the rectangular resonator, and n represents that the resonator has an n-order harmonic
mode. In this paper, we study the rectangular resonator n with order seven. The resonant
frequency fr = 349.08 MHz. The specific size parameters of the resonators are shown in
Table 3. Through the input power of the yellow electrode region (Al) of the resonator in
Figure 6, the red piezoelectric layer region (AlN) performs positive and inverse piezoelectric
effects to drive the cadet blue substrate (Si) to vibrate, and then the middle electrode of the
resonator is used for output power. The material used in the substrate Si is consistent with
the material used in H-RPC. In addition, the material parameters of Al and AlN are shown
in Table 4.
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Table 3. The size parameters of the resonator.

Symbol Dimension Values

λ Wave length 24.3 µm
Wr Resonator width 85 µm
Lr Resonator length 113.4 µm
Wt Tethers Width 5 µm
Lt Tethers Length 8 µm
Eg Electrode gap 2 µm
Es Electrode spacing 10.2 µm

TAl Thickness of Al 0.5 µm
TAlN Thickness of AlN 0.5 µm
TSi Thickness of substrate Si 5 µm

Table 4. Parameters of Al and AlN Materials.

Materials Parameters Values

Aluminum Nitride (AIN)

Density (ρ) 3300 kg/m3

Relative permittivity (ε) 9
Poisson’s ratio (ν) 0.24

Young’s Modulus (E) 320 Gpa

Aluminum (Al)

Density (ρ) 2700 kg/m3

Young’s Modulus (E) 70 Gpa
Poisson’s ratio (ν) 0.35

Electrical conductivity (σ) 35.5 × 106 S/m
Coefficient of thermal expansion (α) 23.1 × 10−6/K

Heat capacity (Cp) 904 J/Kg K
Thermal conductivity (κ) 237 W/mK

In addition, in order to further verify the effect of applying H-RPC resonators to
reduce anchor loss, PCs periodic structures with different R (0 µm, 5 µm, 10 µm, and 15 µm)
spacings are applied on the anchor of the resonator as shown in Figure 6. In this study, the
simulation model of the resonator absorbs the dissipated elastic wave according to PML
(LPML = 3× λ). This study ignores other factors and only considers the main anchor loss
factors [38]. The anchor quality factor (Qanc) of the resonator can be obtained from [41]:

Qanc =
Re(ω)

2lm(ω)
(6)

In Equation (6), Re(ω) represents the real part of the resonant angular frequency of
the resonator, and lm(ω) represents the imaginary part of the resonant angular frequency
of the resonator.

Figure 7 shows the modal diagram of the finite element simulation results. Figure 7a
is the resonant mode of the conventional LWR. The resonant frequency is fr = 349.08 MHz
and Qanc = 1.59× 104. Figure 7b is the LWR mode diagram when R = 0µm after adding
H-RPC. The resonant frequency is fr = 349.10 MHz and Qanc = 8.04× 107. In addition,
when R = 5 µm, the resonant frequency fr is 349.10 MHz and Qanc = 3.82× 106; when
R = 10 µm, the resonant frequency fr is 349.11 MHz and Qanc = 1.08× 107; when R = 15
µm, the resonant frequency fr is 349.04 MHz and Qanc = 6.07× 106. The results show that
the Qanc is significantly improved after adding H-RPC. When R = 0 µm, Qanc is increased
to 8.04× 107, which is 505560.4% higher than that of the conventional LWR.
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4.2. Analysis Results

Figure 8 shows the result diagram of the resonator at the resonant frequency. Figure 8a
represents the modal diagram of the resonator at the resonant frequency, and Figure 8b rep-
resents the displacement diagram of the resonator‘s section A-A‘ at the resonant frequency.
From the Z-direction vibration mode diagram of the conventional LWR in Figure 8a, it can
be seen that the elastic wave after the support tether radiates outward with ripples, and the
elastic wave can be added after the H-RPC structure is added. It can be seen from Figure 8b
that when R = 0 µm, the elastic wave has the greatest suppression effect before reaching
the first wave peak; when R = 5 µm, the elastic wave has an effective suppression effect
before reaching the first wave trough; when R = 10 µm, the elastic wave has an effective
suppression effect after experiencing a periodic waveform, and it can be clearly observed
that the waveform displacement of the first cycle is higher than without H-RPC the periodic
waveform. It is worth noting that when R = 15 µm, the waveform displacement of the
elastic wave is oppositely excited, and the reflected acoustic energy has a certain influence
on the main resonant mode of the resonator. The results show that when H-RPC is closer to
the support tether it is more conducive to suppressing the anchor loss of the resonator.
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In addition, under the load of 50-Ω, the admittance Y11 curve and the insertion
loss curve of the resonator are calculated by finite element frequency domain simulation.
The Q and electromechanical coupling coefficient of the resonator under load are further
calculated. The Q and electromechanical coupling coefficient (k2

e f f ) are obtained according
to the following formula [42,43]:

Q = fs
∆ f−3dB

, k2
e f f =

f 2
p− f 2

s

f 2
p

(7)

Among them, ∆ f−3dB is the 3 dB bandwidth of the series resonator, fs is the series
resonance frequency of the resonator, and fp is the parallel resonance frequency of the
resonance.

The results are shown in Figure 9, where Figure 9a shows the admittance curve Y11 and
Figure 9b shows the insertion loss curve. Figure 9 contains the data results of conventional
LWR results and different R values after adding the H-RPC. When using a conventional
LWR, Q = 2773, k2

e f f = 0.18%, and insertion loss is 10.43 dB. After adding the H-RPC when

R = 0 µm, Q = 8734, k2
e f f = 0.18%, and insertion loss is 0.74 dB; when R = 5 µm, Q = 7939,

k2
e f f = 0.18%, and insertion loss is 0.80 dB; when R = 10 µm, Q = 9441, k2

e f f = 0.18%, and

insertion loss is 0.72 dB; when R = 15 µm, Q = 9704, k2
e f f = 0.17%, and insertion loss is

0.81 dB. When R = 5 µm, the Q exhibits maximum improvement, increasing from 2773 to
9704, which is 249.9% higher than that of the conventional LWR. The electromechanical
coupling coefficient of the LWR is between 0.17% and 0.18%, and the addition of the H-RPC
has little effect on the electromechanical coupling coefficient. When R = 10 µm, the insertion
loss decreases from 10.43 dB to 0.72 dB, which is 93.10% lower than that of the conventional
LWR. The results show that the LWR with the H-RPC can increase the Q by up to 249.9%,
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and the insertion loss can be reduced by up to 93.10%. At the same time, the addition of
the H-RPC has little effect on the electromechanical coupling coefficient of the LWR.
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In order to measure the performance of the LWR more intuitively, the Figure of Merit
(FOM) between resonators can be compared. A standard definition of FOM for resonators
is [44]:

FOM =
k2

e f f · Q

1−k2
e f f

(8)

The FOM results are shown in Table 5. It can be seen from Table 5 that the FOM
can be increased from the original 5.0 to 15.7, 14.3, 17.0, and 16.5 by adding the H-RPC.
When R = (0 µm–10 µm), the Q is significantly improved, and the coupling coefficient
does not change. When R continues to increase to R = 15 µm, although the Q shows the
largest increase, due to the decrease of the coupling coefficient, the FOM is reduced by
0.5 compared to 17.0 at R = 10 µm. Therefore, when R = 10 µm, the performance of the
resonator is optimal, and the FOM can reach 2.4 times the original.

Table 5. FOM comparison after adding H-RPC.

Parameters k2
eff Q FOM

without 0.18% 2773 5.0

H-RPC

R=0 µm 0.18% 8734 15.7
R=5 µm 0.18% 7939 14.3
R=10 µm 0.18% 9441 17.0
R=15 µm 0.17% 9704 16.5

5. Conclusions

This paper studies an H-RPC structure based on cylindrical coordinates, which has an
ultra-wideband gap. Using the finite element method, through the analysis of the complex
band curve and frequency response, the width of the ultra-wideband gap is as high as
238 MHz, and the relative bandwidth is as high as 80.2%. The attenuation of the H-RPC
structure in a finite period is studied. When the H-RPC structure has four periods and
the frequency is 400 MHz, the attenuation can reach 55 dB. The influence of geometric
parameters on the ultra-wideband gap is further studied. The results show that the change
of h1/h has a great influence on the center frequency and bandwidth of the band gap, while
the change of a1/a only has a great influence on the bandwidth. When 0.1 < h1/h < 0.2 and
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0.35 < a1/a < 0.40, the center frequency is in the UHF range and the bandwidth reaches
more than 250 MHz.

In addition, the H-RPC structure can significantly improve the anchor loss of an LWR
in the UHF range. When the H-RPC structure spacing R = 0 µm, the Qanc is increased to
8.04 × 107, which is 505560.4% higher than that of the conventional LWR. In addition, the
quality factor, electromechanical coupling coefficient, and insertion loss under load are
studied. When the H-RPC is added, the Q and insertion loss of the LWR are significantly
improved. The Q is increased by 249.9% at most and the insertion loss is reduced by 93.10%
at most, while after adding the H-RPC the LWR does not have a great influence on the
electromechanical coupling coefficient. When R = 10 µm, the performance of the resonator
is optimal, and the FOM can reach 2.4 times the original. This study provides a new idea for
improving the performance of LWR, and further future experimental work will be required
to fully validate the modelled results.
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