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Abstract: Recent studies have revealed the genetic aberrations involved in the initiation and progres-
sion of various cancers, including multiple myeloma (MM), via next-generation sequencing analysis.
Notably, DIS3 mutations have been identified in approximately 10% of patients with MM. Moreover,
deletions of the long arm of chromosome 13, that includes DIS3, are present in approximately 40% of
patients with MM. Regardless of the high incidence of DIS3 mutations and deletions, their contribu-
tion to the pathogenesis of MM has not yet been determined. Herein, we summarize the molecular
and physiological functions of DIS3, focusing on hematopoiesis, and discuss the characteristics and
potential roles of DIS3 mutations in MM. Recent findings highlight the essential roles of DIS3 in
RNA homeostasis and normal hematopoiesis and suggest that the reduced activity of DIS3 may be
involved in myelomagenesis by increasing genome instability.
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1. Introduction

Multiple myeloma (MM) is an incurable plasma cell malignancy that accounts for
approximately 10% of all hematologic cancers [1]. Development and progression of MM
are characterized by clonal evolution, which confers tumor plasticity and drug resistance
to tumor cells [1–3]. Therefore, it is important to understand the underlying genetic abnor-
malities and mechanisms of clonal evolution to identify potential therapeutic targets for
MM. Recent advances in genome sequencing technologies have revealed the genetic driver
events in MM. Gene mutations activating the mitogen-activated protein kinase pathway
(including those in KRAS, NRAS, and BRAF) and the nuclear factor-κB pathway (including
those in TRAF3, LTB, and CYLD) have been identified in approximately 40 and 20% of
patients with MM, respectively [1–4]. Genes related to the DNA repair pathway (including
TP53, ATM, and ATR), G1/S cell cycle transition (including CCND1 and RB1), and epi-
genetic regulation (including HIST1H1E, KMT2C, and KDM6A) have also been reported
to be recurrently mutated in MM cases, confirming their importance in the pathogenesis
of MM [1–4]. It should be noted that, in addition to these relatively common mutations
in cancers, MM-specific mutations involving DIS3 and FAM46C (also known as TENT5C)
have been identified in about 10% of patients with MM each [1–4]. Furthermore, deletion
of the chromosomal region containing DIS3 or FAM46C has also been observed in around
40 or 30% of patients with MM, respectively [2,3], suggesting the pathological importance
of these genes in MM. Although recent studies have revealed the molecular functions of
FAM46C and its tumor-suppressive roles in MM [5–10], the biological significance of DIS3
mutations in MM remains poorly understood. In this review, we describe the essential
roles of DIS3 in RNA homeostasis and hematopoiesis and outline the characteristics and
clinical impact of DIS3 mutations in MM. We further discuss the pathological potential of
DIS3 mutations in MM. A recent review has summarized the potential roles of FAM46C in
MM [11].
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2. DIS3: A Catalytic Subunit of the RNA Exosome
2.1. Structure and Functions of the RNA Exosome

RNA species play essential roles in mediating and regulating gene expression; there-
fore, their qualitative and quantitative control is vital for cellular homeostasis [12–15].
The RNA exosome is a multiprotein complex that possesses ribonuclease (RNase) activity
and is a key player in executing qualitative and quantitative control of RNAs via both
degradative and modification reactions [12–15]. The RNA exosome degrades RNAs when
they complete their roles (turnover) or when they turn out to be defective (surveillance). In
addition to RNA degradation, the RNA exosome is involved in the 3′-end processing of
precursor RNAs (maturation) [12–15].

The RNA exosome consists of a barrel-shaped nine-subunit core (EXO9) and two
catalytic subunits (Figure 1) [12–16]. EXO9 is composed of a hexameric ring (EXOSC4,
EXOSC5, EXOSC6, EXOSC7, EXOSC8, and EXOSC9) that surrounds the central channel of
the exosome and a trimeric cap (EXOSC1, EXOSC2, and EXOSC3) that resides on the top
of the hexameric ring and carries the S1 and KH types of RNA-binding domains [12–16].
EXO9 is required for RNA presentation to catalytic subunits and association with other
cofactors, such as the Trf4–Air2–Mtr4 polyadenylation (TRAMP) and nuclear exosome-
targeting (NEXT) complexes, which support the exosome functions [13–15,17,18]. The
catalytic subunit, DIS3, or its homologue, DIS3L, is anchored at the bottom of the hexameric
ring of EXO9 in a mutually exclusive manner [13–16,19,20]. The other catalytic subunit,
EXOSC10, interacts with the cap side of EXO9 [13–16]. Components of the exosome complex
differ between the cellular compartments. In human cells, EXO9 associates with both DIS3
and EXOSC10 in the nucleus and only with EXOSC10 in the nucleolus [19,20]. DIS3L is
present only in the cytoplasm; EXO9 interacts with DIS3 or DIS3L in addition to EXOSC10
in the cytoplasm [19,20]. Although their functional significance remains unknown, the
presence of different exosome isoforms suggests isoform-specific functions in distinct
cellular compartments [13,14]. For RNA degradation, substrates enter through a pore at
the center of the trimeric cap and are threaded through a central channel to access the
catalytic subunit, DIS3/DIS3L (Figure 1) [13,14,16,21]. Alternatively, RNAs reach the active
center of EXOSC10 via undetermined routes and are degraded by EXOSC10 [14,22,23].
In contrast, RNAs that undergo maturation are proposed to be directly targeted by DIS3
without being threaded through a central channel [24,25]. Although the mechanisms by
which the exosome differently targets RNAs remain unknown, recent studies suggest that
the properties of RNAs and the cofactors associated with the exosome determine the way
the exosome degrades or processes RNAs [14,15].

The RNA exosome targets a large variety of RNAs in both the nucleus and cytoplasm
(Table 1). In the nucleus, the exosome removes unstable pervasive transcripts, such as
promotor upstream transcripts (PROMPTs) and enhancer RNAs (eRNAs) to prevent their
accumulation at an inappropriate level [12–15]. It also eliminates all classes of defective sta-
ble RNAs, including ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), messenger RNAs
(mRNAs), small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs), which are
improperly processed and harmful [12–15]. Furthermore, the nuclear exosome participates
in 3′-end processing for the maturation of rRNAs, snRNAs, and snoRNAs [12–15]. In the
cytoplasm, the exosome is engaged in the turnover of normal mRNAs and degradation of
aberrant mRNAs via nonsense-mediated, nonstop, and no-go decay [12–15]. The cytoplas-
mic exosome also eliminates mRNAs harboring AU-rich sequence elements (AREs) that
encode proteins for which rapid turnover is crucial [12–15]. Thus, the RNA exosome plays
a central role in RNA homeostasis, thereby maintaining proper cellular functions.
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Figure 1. Structure of the RNA exosome. The RNA exosome comprises an enzymatically inactive,
barrel-shaped nine-subunit core (EXO9) and two catalytic subunits (DIS3/DIS3L and EXOSC10).
EXO9 includes a hexameric ring (EXOSC4, EXOSC5, EXOSC6, EXOSC7, EXOSC8, and EXOSC9)
and a trimeric cap (EXOSC1, EXOSC2, and EXOSC3). The catalytic subunit, DIS3, or its homologue,
DIS3L, interacts with EXO9 at the bottom of the hexameric ring in a mutually exclusive manner.
The other catalytic subunit, EXOSC10, binds to the cap side of EXO9. RNA substrates are threaded
through a central channel to the catalytic core of DIS3 or DIS3L for degradation.

Table 1. Functions of the RNA exosome.

Location Target RNAs Exosome Function

Nucleus Pervasive transcripts (PROMPTs and eRNAs) Degradation
Nucleus Defective RNAs (rRNAs, tRNAs, mRNAs, snRNAs, and snoRNAs) Degradation (surveillance)
Nucleus Precursor RNAs (rRNAs, snRNAs, and snoRNAs) Processing (maturation)

Cytoplasm Normal mRNAs Degradation (turnover)
Cytoplasm Defective mRNAs Degradation (surveillance)
Cytoplasm mRNAs harboring ARE Degradation (ARE-mediated decay)

Defects in the exosome subunits are implicated in several diseases. DIS3 mutations
have been observed not only in MM but also in acute myeloid leukemia [26]. Deletion
of the DIS3 locus has also been reported in chronic lymphocytic leukemia [27]. EXOSC3
and EXOSC8 mutations are associated with neurodegenerative disease, pontocerebellar
hypoplasia type 1b and type 1c, respectively [28]. EXOSC2 mutations have been identified
in cases with a novel syndrome, which represents various phenotypes, including retinitis
pigmentosa, premature aging, and mild intellectual disability [29].

2.2. Structure and Molecular Functions of DIS3

DIS3 is a member of the RNase II/R family and well conserved from yeast to humans.
It possesses conserved motif and domains related to its RNase function (Figure 2) [13,19,30].
The PilT N-terminal (PIN) and RNB domains contain catalytic cores and are responsible
for endo- and exonucleolytic activity, respectively [31–34]. Both endo- and exonuclease
activities of DIS3 are required for efficient RNA degradation and processing [32–35]. Two
tandem cold-shock domains (CSD1 and CSD2) and the S1 domain confer substrate-binding
capacity [36]. The Cysteine-Rich with three cysteines (CR3) motif is involved in the in-
teraction with EXO9, possibly by affecting the conformation of the residues that bind to
EXOSC4 [37]. The CR3 motif also supports the endonuclease activity of the PIN domain
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by physically interacting with its active site [37]. DIS3L possesses all conserved motif and
domains but lacks two catalytic residues within the PIN domain, resulting in defect in its
endonuclease activity [19]. In humans, there is another DIS3 homologue, DIS3L2. However,
DIS3L2 lacks the CR3 motif and PIN domain and functions independently of the RNA
exosome [19,38].
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Figure 2. Motif and domains of the DIS3 protein family. Functions of each motif and domain are
shown. PilT N-terminal (PIN) domain of DIS3L does not possess any endonuclease activity due to
the lack of catalytic residues. Each of * indicates the position of the mutational hotspots in multiple
myeloma, which are located in the RNB domain. CR3, Cysteine-Rich with three cysteines; CSD,
cold-shock domain.

Although the RNA exosome targets various types of RNAs, recent studies have under-
scored the importance of DIS3 in the removal of pervasive transcripts [35,39]. Pervasive
transcripts are unstable RNAs that are barely detectable under normal conditions due to
exosome-mediated rapid degradation [40,41]. In human cells, DIS3 depletion results in the
accumulation of pervasive transcripts, including PROMPTs, eRNAs, and products of pre-
mature cleavage and polyadenylation (PCPA), but EXOSC10 depletion does not affect the
levels of pervasive transcripts [35,39]. These findings suggest that DIS3, but not EXOSC10,
removes pervasive transcripts in a nonredundant manner. Notably, one study reported the
substantial accumulation of substrates within 60 min of DIS3 depletion, highlighting the
dynamic DIS3 function [39]. In another study, DIS3 deficiency resulted in altered expression
of approximately 50% of mRNAs; however, this alteration seems to be a secondary effect of
the accumulation of noncoding RNAs because very little correlation was observed between
the upregulated and DIS3-bound mRNAs [35]. DIS3 is also involved in the degradation
of the shorter form of NEAT1 (NEAT1.1) [35]. NEAT1 is a long noncoding (lnc)-RNA
that forms paraspeckles in the nucleus [42]. Indeed, DIS3 deficiency has been shown to
increase the number and volume of paraspeckles; however, the biological significance of
this phenomenon remains to be determined [35]. Finally, DIS3 is engaged in the processing
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of snoRNAs, whereas EXOSC10 is involved in the degradation of mature snoRNAs, further
suggesting the functional difference between the two exosome enzymes [35].

3. Physiological Functions of DIS3 in Hematopoiesis
3.1. DIS3 Functions in B Cell Development

Although DIS3 functions in hematopoiesis remain largely elusive, recent studies have
revealed its functions in B cell development [43,44]. To generate high-affinity antibod-
ies against various foreign antigens, differentiating B cells undergo immunoglobulin (Ig)
gene rearrangements, including V(D)J recombination, somatic hypermutation (SHM), and
class-switch recombination (CSR) [45]. V(D)J recombination occurs during the pro-B/pre-B
transition in the bone marrow, and SHM and CSR occur in activated B cells in the germinal
center (GC) after B cells move to secondary lymphoid organs (Figure 3) [45]. Importantly,
RNA exosome components, including Dis3, are highly expressed in pro-B/pre-B and GC B
cells, which is associated with the timing of Ig gene rearrangements (Figure 3) [44]. Indeed,
DIS3 is involved in these processes. Laffleur et al. generated early B cell-specific Dis3
conditional knockout mice using Mb1cre mice; DIS3-deficient pro-B cells exhibited defects
in V(D)J recombination and pre-B cell receptor signaling, resulting in the failure of the pro-B
to pre-B transition [44]. They suggested that an aberrant accumulation of pervasive noncod-
ing RNAs at the Ig genes due to DIS3 deficiency leads to a defect in V(D)J recombination,
presumably by impeding the access to V(D)J recombination-related components, including
RAG recombinases, as the expression of these components is not altered in DIS3-deficient
pro-B cells [44]. Laffleur et al. also generated an activated B cell-specific Dis3 knockout
mouse model and showed that DIS3 is required for proper SHM and CSR [43]. DIS3-
deficient activated B cells exhibit increased DNA:RNA hybrids in the V(D)J regions, which
are detected by a DNA:RNA hybrid immunoprecipitation-sequencing approach, resulting
in limited accessibility of activation-induced cytidine deaminase (AID) to antisense strand
DNA and distinct patterns of SHM [43]. DIS3-deficient activated B cells also exhibit the
accumulation of DNA:RNA hybrids in the Igh topologically associating domains (TADs),
leading to reduced CTCF/cohesin binding to these regions and decreased Igh TAD inter-
actions, subsequently impeding CSR [43]. These studies demonstrate that DIS3-sensitive
noncoding transcripts efficiently generate the DNA:RNA hybrid in DIS3-deficient B cells
and that DIS3 is essential for Ig gene rearrangements and B cell maturation via the removal
of pervasive noncoding transcripts (Figure 3). An open question is whether DIS3 function
that prevents the formation of DNA:RNA hybrids is B cell-specific or not. In yeast, DIS3
dysfunction does not increase DNA:RNA hybrids [46], suggesting tissue/species-specific
DIS3 function. Further studies are required to address this issue.

3.2. DIS3 Functions in Erythropoiesis

DIS3 has also been shown to be involved in erythroid homeostasis. During erythro-
poiesis, GATA1 and Foxo3 strongly repress the expression of RNA exosome components,
including DIS3 [47]. Thus, DIS3 is not required for erythroid maturation; however, shRNA-
mediated DIS3 depletion prior to GATA1-driven repression in hematopoietic progenitor
cells compromises the formation of burst-forming unit-erythroid (BFU-E) and colony-
forming unit-erythroid (CFU-E) in in vitro systems [48]. Mechanistic analysis suggests that
DIS3 protects erythroid precursor cells from DNA damage-induced apoptosis, in part, via
c-Kit signaling [48]. Thus, DIS3 contributes to the survival of erythroid precursor cells
before GATA1-mediated differentiation, thereby maintaining erythropoiesis [48]. DIS3 may
also play roles in other hematopoietic cells, and this should be explored in future studies.
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Figure 3. DIS3 is necessary for immunoglobulin gene rearrangements and B cell differentiation.
Induced DIS3 removes noncoding RNAs (ncRNAs) to prevent the formation of DNA:RNA hybrids
during immunoglobulin gene rearrangements, which increases the accessibility of RAG recombinases,
activation-induced cytidine deaminase (AID), CTCF, and cohesin complex, leading to successful
V(D)J recombination, somatic hypermutation (SHM), and class-switch recombination (CSR). HSC,
hematopoietic stem cell; GCB cell, germinal center B cell.

4. Characteristics and Clinical Impact of DIS3 Mutations in MM
4.1. Characteristics of DIS3 Mutations in MM

DIS3 is located on chromosome 13q, and this region is heterozygously deleted in
around 40% of MM cases [2]. In addition to the heterozygous deletion of this gene, Chap-
man et al. identified DIS3 mutations in MM using whole-genome and whole-exome
sequencing in 2011 [49]. Subsequent studies have confirmed that DIS3 mutations are recur-
rent and present in approximately 10% of patients with MM [4,50–54]. Germline mutations
in DIS3 have also been reported in familial MM, suggesting the pathological relevance
of DIS3 mutations in MM [55]. In the Multiple Myeloma Research Foundation (MMRF)
CoMMpass cohort, which included 930 patients with MM, the variant allele frequency
(VAF) ranged from 5.3 to 100% (mean: 48%; median: 43%), indicating the presence of DIS3
mutations in both major and minor subclones [54]. Most of the DIS3 mutations observed
in MM are missense mutations, and nonsense mutations are barely observed [4,49–54].
Notably, DIS3 mutations are primarily present in the catalytic domains of this protein;
about 70% of the mutations are located in the RNB domain, and about 10–20% are located in
the PIN domain, suggesting the functional relevance of these mutations [52–54]. Indeed, the
majority of DIS3 mutations are located in highly conserved residues across species [52–54].
Mutational hotspots include arginine at position 780 (R780), aspartic acid at position 488
(D488), and aspartic acid at position 479 (D479), all of which are within the RNB domain
(Figure 2) [4,52–54]. Based on the analysis of DIS3 in yeast, it has been shown that R780 is
engaged in RNA binding, while D488 and D479 are engaged in magnesium ion binding at
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the active site, which is required for the RNA degradation activity of this enzyme [31,56].
Although the mutational profile of DIS3 (high rate of missense mutations at the same
codons and low rate of transcription-terminating mutations) suggests that it functions as
an oncogene [4], it is proposed to function as a tumor suppressor gene due to the following
reasons: (1) MM-related DIS3 mutations, such as R780K, exhibit reduced enzymatic activity
in a biochemical assay [57], (2) DIS3 mutations are frequently accompanied by loss of
heterozygosity via 13q deletion [4,49–54], and (3) the transcriptional profiles in samples
from MM patients with DIS3 mutations are consistent with the malfunction of the RNA
exosome [53,54]. Recent mechanistic studies further support the notion that DIS3 is a tumor
suppressor, which we discuss later in this review.

4.2. Correlations of DIS3 Mutations with Cytogenetic Abnormalities and Other Mutations in MM

DIS3 mutations are more frequently observed in nonhyperdiploid MM patients than in
hyperdiploid MM patients [4,50–54]. In agreement with the fact that IGH translocations are
common genetic events in nonhyperdiploid MM [1–3], there is a strong association between
DIS3 mutations and IGH translocations, such as t(4;14), t(14;16), and t(11;14) [4,50–54].
There is also a significant co-occurrence of DIS3 mutations with 13q deletions, which results
in biallelic events in DIS3 [4,50–54]. In the MMRF CoMMpass cohort, 72% of patients with
DIS3 mutations exhibited 13q deletions [54]. Interestingly, only 31% of cases harboring
hotspot DIS3 mutations represented 13q deletions, whereas 93% of cases harboring non-
hotspot mutations carried 13q deletions in this cohort [54]. Furthermore, it has been shown
that hotspot mutations are never present at VAFs higher than 50% [53]. As described in
the previous section, mutational hotspot sites are closely related to the enzymatic function
of DIS3, and hotspot mutations cause severe impairment of enzymatic activity [31,56,57].
Thus, complete inactivation of this enzyme may be deleterious to cellular survival, whereas
partial reduction of enzymatic activity may have a beneficial effect on the pathogenesis
of MM. Indeed, the homozygous deletion of DIS3 has not been reported in patients with
MM. We and other groups also noted that after knocking out the DIS3 gene in cell lines,
homozygous-knockout clones could not be obtained, whereas heterozygous-knockout
clones could (Y. Ohguchi and H. Ohguchi, unpublished observation) [57]. Regarding other
cytogenetic alterations and mutations, a significant association between DIS3 mutations
and 1q21 gain or BRAF mutations has been reported [4,51,54]. In contrast, an inverse asso-
ciation with 1p22 loss has been observed [54]. Although a significant correlation between
DIS3 mutations and specific cytogenetic alterations has been determined, whether they
collaborate in the development of MM remains elusive.

4.3. Association of DIS3 Mutations with Prognosis in MM

Three different cohort studies explored the impact of DIS3 mutations on the prognosis
of patients with MM [52,54,58]. In the Deutsche Studiengruppe Multiples Myelom (DSMM)
XI study (n = 81), there was a trend toward a lower median overall survival (OS) in DIS3-
mutated patients than in DIS3-wild type patients, although no statistical significance was
observed (33 vs. 54 months, p = 0.138) [52]. In the MMRF CoMMpass study (n = 930), both
OS (3-year OS rates: 65 vs. 79%, p = 0.039) and progression-free survival (PFS; median
PFS: 800 vs. 1176 days, p = 0.021) were significantly shorter in DIS3-mutated patients
than in DIS3-wild type patients [54]. Multivariate analysis further confirmed monoallelic
and biallelic DIS3 lesions as independent prognostic factors of poor OS (p = 0.01) and
PFS (p = 0.014), respectively [54]. Therapeutic regimens did not affect the OS and PFS of
DIS3-mutated patients in this cohort [54]. Shorter event-free survival (EFS) was also noted
in DIS3-mutated patients than in DIS3-wild type patients (p = 0.008) in the total therapy
trial cohort (n = 223) [58]. Multivariate analysis validated the independent association of
DIS3 mutations with worse EFS in that study (p < 0.001) [58]. These studies indicate that
DIS3 mutations negatively affect the prognosis of patients with MM.
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4.4. Transcriptional Profiles of MM Patients with DIS3 Mutations

Transcriptome analysis of DIS3-mutated MM samples revealed a transcriptional sig-
nature associated with DIS3 mutations [53,54,59]. Overall, DIS3 mutations are associ-
ated with the upregulation of noncoding RNAs, especially lncRNAs, which presumably
reflects the impaired RNA-degradative function of DIS3 [53,54]. Consistent with this
observation, genes involved in RNA metabolism are downregulated in DIS3-mutated
cases [54]. In contrast, genes involved in interferon signaling are upregulated in DIS3-
mutated cases [53,54,59]. As discussed later, loss-of-function of DIS3 has been shown to
lead to genome instability [43,59]. Genome instability stimulates the cGAS–STING pathway,
thereby inducing an interferon response [60]. Thus, activation of the interferon signaling
may reflect genome instability induced by DIS3 mutations (Figure 4) [59]. Todoerti et al.
also showed that genes involved in KRAS signaling, cell adhesion, and JAK-STAT signaling
are upregulated in DIS3-mutated cases, suggesting involvement in myelomagenesis [54].
Regarding the clinical relevance of differentially expressed transcripts in DIS3-mutated
cases, five lncRNAs (AC015982.2, AL353807.2, AC013400.1, ASH1L-AS1, and AL445228.3)
are associated with a shorter OS, two of which (AC015982.2 and AL445228.3) are also
independent predictors of PFS, although future studies are required to determine the
pathological roles of these lncRNAs in MM [54].
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stability, which may activate the cGAS-STING pathway, upregulating interferon (IFN)-related genes.

5. Pathological Functions of DIS3 Hypomorphism in MM

Although there is no firm evidence whether genetic alterations involving DIS3 are
actionable in myelomagenesis, recent studies have suggested the pathological significance
of loss-of-function of DIS3. The let-7 microRNA family is a tumor suppressor family
that inhibits the translation of oncogenes, including RAS and MYC [61]. Segalla et al.
showed that depletion of DIS3 increases the expression of LIN28B, a negative regulator
of let-7-maturation, thereby increasing the protein levels of RAS and MYC in MM cells
(Figure 5) [62]. Thus, this study revealed a novel RAS and MYC activation mechanism
in MM cells. Loss of DIS3 activity has also been implicated in genome instability. In
DIS3-deficient B cells, aberrant DNA:RNA hybrids impair the architectural integrity of
TADs by reducing CTCF/cohesin binding, leading to increased inter-TAD recombination
(chromosomal translocations) (Figure 5) [43]. Thus, loss-of-function of DIS3 may be in-
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volved in MM-associated translocations. In fact, DIS3 mutations are preferentially observed
in MM patients with IGH-translocations [52–54]. DIS3 deficiency-induced DNA:RNA hy-
brids also interfere with the recruitment of the homologous recombination machinery to
double-strand breaks, thereby increasing DNA damage and mutational load in cancer cells,
including MM cells (Figure 5) [59]. In agreement with this observation, MM patients with
DIS3 mutations exhibit a higher mutational burden than those without DIS3 mutations [59].
Thus, DIS3 deficiency may promote myelomagenesis by endowing driver mutations in
MM cells. However, late B cell-specific Dis3 knockout mice with a C57BL/6 background
barely exhibited B cell malignancy over a two-year observation period (Y. Ohguchi and H.
Ohguchi, unpublished observations), suggesting the involvement of additional oncogenic
events in tumorigenesis. Snee et al. showed that, although loss of DIS3 activity impairs cell
division, reduced DIS3 activity in concert with RAS activation enhances cell proliferation in
Drosophila and murine B cell models, supporting this idea [63]. Further efforts are necessary
to develop in vivo MM models harboring DIS3 deletion/mutations to decipher the precise
function of DIS3 hypomorphism in the pathogenesis of MM.
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Figure 5. Potential hypomorphic functions of DIS3 in myelomagenesis. Reduced DIS3 activity
increases Lin28B levels, which inhibits let-7 maturation, leading to increased MYC and RAS protein
levels. Reduced DIS3 activity also induces the formation of DNA:RNA hybrids, thereby limiting the
accessibility of CTCF and cohesin complex, including RAD21. This impairs topologically associating
domain (TAD) structure, resulting in chromosomal translocations. Aberrant DNA:RNA hybrids also
limit the accessibility of homologous recombination (HR) components, including RAD51 and BRCA1,
thereby increasing genome instability and mutational burden.
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6. Conclusions and Future Perspectives

Recent progress in genomic sequencing have uncovered genomic complexity and
recurrent genetic events in cancers, including MM. These findings have led to a paradigm
shift in the understanding of cancers; however, the mechanisms by which these genetic
abnormalities contribute to the pathogenesis of cancers have not been fully understood.
DIS3 mutations in MM are such genetic abnormalities, the pathological functions of which
have not yet been defined. In this review, we have summarized the recent knowledge
of DIS3 functions in hematopoiesis and DIS3 mutations in MM. DIS3 is indispensable
for Ig gene rearrangements and B cell maturation, and loss-of-function of DIS3 results in
genome instability via the formation of an R-loop (DNA:RNA hybrids), which is involved
in increased chromosomal translocations and mutational burden [43,59]. Multiple lines
of evidence support the idea that DIS3 mutations are loss-of-function mutations in MM;
however, the biallelic loss of this gene is lethal [4,49–54,57]. Taken together, these findings
suggest that DIS3 mutations may be so-called mutator mutations [64], that is, reduced DIS3
activity caused by DIS3 mutations may lead to MM-related translocations and mutations,
but this hypothesis needs to be investigated further in future studies. Recent studies have
also identified a significant association between DIS3 mutations and other MM-related
genetic events. An outstanding question is this: what is the pathological significance of this
association? Co-occurrence of DIS3 mutations with such genetic events may overcome the
negative effect of DIS3 hypomorphism, thereby promoting MM. One study on Drosophila
models reported that reduced DIS3 activity in combination with RAS activation stimulates
cell growth, but reduced DIS3 activity alone impairs cell growth [63]. Further detailed
studies are required to elucidate the collaborative mechanisms of these genetic events.
These mechanistic insights will pave the way to novel therapeutic strategy to improve the
outcome of patients with MM.
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