Skip to main content
. 2023 Feb 15;15(4):958. doi: 10.3390/polym15040958
Gt linear relaxation modulus, Equation (1), Pa
Gti relaxation modulus obtained in stress relaxation test, i=1,,N , Pa
Gti noise corrupted measurement of the modulus Gti, i=1,,N, Pa
GKt relaxation modulus model corresponding to HKMv, Equation (8), Pa
GN N dimensional vector of the measurements Gti, Equation (11)
GN N dimensional vector of noise-free measurements Gti
gk parameters of the model HKMv, k=0,1,K1, Equation (7), Pa·s1/2
gK vector of parameters gk of the models HKMv (7) and GKt (8)
gKλ solution of regularized task (14) given for regularization parameter λ by (15) or (19)
g~Kλ solution of regularized task (14) for ideal measurements, Equation (25)
gKλGCV vector of optimal model parameters determined by GCV method
gKN , g~KN normal solutions of least-squares problem (13) for noise and noise-free measurements of the relaxation modulus
Hv continuous spectrum of relaxation frequencies v, Equation (3), Pa
HMv modified relaxation spectrum, Equation (4), Pa·s
HKMv model of the modified relaxation spectrum HMv , Equation (7), Pa·s
HKMv model of modified spectrum HMv for regularized parameter gKλ, Equation (22), Pa·s
HKv model of spectrum Hv for regularized parameter gKλ, Equation (23), Pa
H~KMv model of HMv obtained for ideal measurements, Equation (24), Pa·s
HKNv , H~KNv models of HMv obtained for the normal solutions gKN, g~KN described by Equations (26) and (27), Pa
hkv basis functions of the model HKMv, k=0,1,K1, Equation (7), Pa·s
IK,K K dimensional identity matrix
K number of model HKMv summands, Equation (7), –
N number of measurements in the stress relaxation test, –
QNgK square identification index defined by (10), Pa2
r number of non-zero singular values of ΦN,K, –
ti sampling instants used in the stress relaxation test, i=1,,N , s
T time interval from which the sampling instants ti were generated
V , U orthogonal matrices of singular value decomposition of ΦN,K, Equation (18)
VGCVλ the GCV functional defined by (16) and expressed by (21)
Y N dimensional vector Y=UTGN
zti additive noise of relaxation modulus measurement, i=1,,N , Pa
zN N dimensional vector of measurement noises zti, i=1,,N, Pa
α time-scaling factor of the basis functions hkv, s
λ regularization parameter introduced in the optimization task (14), –
λGCV optimal regularization parameter determined by GCV method, Equation (17)
Λλ K×N diagonal matrix defined by (20)
σi the non-zero singular values of ΦN,K, i=1,2,,r, Equation (18)
Σ N×K diagonal matrix of singular values σ1,,σr of ΦN,K, Equation (18)
ΦN,K N×K matrix defined by (11) basis for least-squares task (13)
ΦN,K the MoorePenrose pseudoinverse of matrix ΦN,K
ϕkt basis functions defined by (9) of the model GKt , Equation (8), s1/2
ERR integral square error of HMv approximation, Equation (60), Pa·s1/2