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Abstract: Neutrophil extracellular traps (NETs) are net-like structures released from neutrophils.
NETs predominantly contain cell-free deoxyribonucleic acid (DNA) decorated with histones and
neutrophil granule proteins. Numerous extrinsic and intrinsic stimuli can induce the formation of
NETs such as pathogens, cytokines, immune complexes, microcrystals, antibodies, and other physio-
logical stimuli. The mechanism of NETosis induction can either be ROS-dependent or independent
based on the catalase producing activity of the pathogen. NADPH is the source of ROS production,
which in turn depends on the upregulation of Ca2+ production in the cytoplasm. ROS-independent
induction of NETosis is regulated through toll-like receptors (TLRs). Besides capturing and elimi-
nating pathogens, NETs also aggravate the inflammatory response and thus act as a double-edged
sword. Currently, there are growing reports of NETosis induction during bacterial and fungal ocular
infections leading to different pathologies, but there is no direct report suggesting its role during
herpes simplex virus (HSV) infection. There are innumerable independent reports showing that the
major effectors of NETosis are also directly affected by HSV infection, and thus, there is a strong
possibility that HSV interacts with these facilitators that can either result in virally mediated mod-
ulation of NETosis or NETosis-mediated suppression of ocular HSV infection. This review focuses
on the mechanism of NETs formation during different ocular pathologies, with its prime focus on
highlighting their potential implications during HSV ocular infections and acting as prospective
targets for the treatment of ocular diseases.

Keywords: NETosis; herpes ocular infection; survival NETosis; lytic NETosis

1. Introduction

Herpesviruses represent a large family of DNA viruses. They are characterized into
α-, β-, or γ-subfamilies based on their biological and genetic similarities. All members
are known to cause lytic infections and latency in definite cells. Among the identified
herpesviruses, eight are known to infect humans. Ocular herpes infection is majorly
caused by herpes simplex virus type 1 (HSV-1) and occasionally by herpes simplex virus
type 2 (HSV-2). Both HSV-1 and HSV-2 are α-herpesviruses for which more than 65%
of the population is found to be seropositive in the USA. HSV causes different corneal
complications such as epithelial keratitis or stromal keratitis, which can lead to diverse
ocular manifestations such as blepharitis, canalicular obstruction, conjunctivitis, iritis, and
retinitis [1].

Upon infection, HSV-1 first replicates in corneal epithelium and then spreads to the
trigeminal ganglion (TG) for establishment of latency. The initial infection causes an
induction of immune reaction. The host mounts both innate and adaptive immunological
control of herpesvirus, with B- and T cells having role in the adaptive immune response.
Post-infection innate immune response is the first line of defense, with type I interferons
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(IFNs) and natural killer (NK) cells having crucial roles in repression of the infection [2].
The innate immune system is triggered, ensuing the detection of infection by the pattern
recognition receptors (PRRs), mainly toll-like receptors (TLRs). There are different TLRs in
the host cell based on their location in the plasma membrane or endosomal compartments.
The recognition of pathogen-associated molecular patterns (PAMPs) by PRRs leads to
induction of intracellular signaling events stimulating the production of pro-inflammatory
cells, chemokines, and cytokines including type I interferons that progressively infiltrate
into the stroma. The inflammatory cells composed of neutrophils, dendritic cells (DCs),
natural killer (NK) cells, and macrophages help clear the virus during early corneal infection.
Multiple downstream effects of PRRs activation lead to induction of cytokines as well as
multiple programmed cell death pathways [3]. For instance, herpes can be detected by
intracellular DNA-sensing proteins such as IFNγ-inducible protein 16 (IFI16) that can
further activate IRF3 and NF-κB pathways along with caspase 2 and caspase 3 stimulation
(apoptotic markers) [4]. Such actions posed by the host challenge HSV-1 productive
infection, as the virus needs to evade host immune response and also keep the cell alive
and functioning.

As a successful host-adapted virus, HSV-1 has evolved with the host cell to impose
diverse immune-evasion strategies. However, HSV-1 can be recognized by the innate
immune system effectively. Neutrophils are the most abundant innate immune cells in the
blood and are at the forefront during an ocular infection [5]. Recruitment of neutrophils at
the ocular site of infection triggers a cascade of effector functions that are well reported in
combating the recurrent bacterial, fungal, and viral infections. This effect is also reported
by clinicians as the change in neutrophil numbers during an early infection [6–8]. However,
the focus of this review article is on neutrophil extracellular traps (NETs) that are generated
in response to infection. Brinkmann et al. [9] were the original group to demonstrate the
release of NETs upon activation that leads to entrapment of Gram-positive and -negative
bacteria. These traps that are composed of granule proteins and chromatin degrade vir-
ulence factors and kill bacteria. Further, the fabrication and release of these extracellular
traps was described as NETosis, which was used as a suicidal tool by neutrophils to kill
bacteria. After this discovery, multiple researchers observed the phenomenon of NETosis
under multiple pathologies such as cancer, viral, bacterial, protozoal, and fungal infections.
Additionally, there is growing evidence of ETosis, which is a general term depicting ex-
tracellular traps formed by multiple immune cells such as neutrophils, monocytes, and
macrophages that act as physical barriers for bacteria, viruses, and fungi [10,11]. The
different ETs have numerous features in common irrespective of the type of cells from
which they are released, including a DNA backbone with embedded antimicrobial peptides,
proteases, and histones. However, they also demonstrate preeminent individual differences
such as the type of sub-cellular compartments from where the DNA backbone originates
(e.g., nucleus or mitochondria), the distribution of responding cells within the pool, and/or
the molecular mechanism/s underlying the ETs formation [12]. However, despite the fact
that neutrophils are the first line of defense, there is still no report of NETosis in herpes
infection. Here, we analyze the current knowledge of the NETosis in ocular infections by
various pathogens and raise the strong possibility of the phenomenon happening during
an ocular HSV-1 infection.

2. Mechanism of NETosis

The word “osis” in the term NETosis depicts death that implies the loss of the pathogen
entrapped in the NET, but it remains debatable whether the NET release is an active and
explicit biological outcome of the host response or simply a result of cellular burst due to ac-
cumulation of membrane permeable toxins or stress molecules due to an infection. Further
highlighting the complex nature of this phenomenon, experts of cell death pathways are
unsure about how the active NET release is related to other known programmed cell death
pathways such as apoptosis, necroptosis, and pyroptosis. NETosis was initially defined
as a suicidal gizmo to trap and kill bacteria extracellularly, but new reports show that
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NET release can be triggered by numerous other pathogenic (fungi, viruses, and parasites)
and non-pathogenic (PMA, Ionomycin, LPS) stimulants [13]. Reportedly, NETosis is also
involved in the progression of immune-facilitated disorders. Thus, understanding different
mechanisms of NETosis is indispensable to comprehend neutrophil-driven infection and/or
inflammatory diseases.

2.1. Suicidal/Lytic NETosis

The formation of NETs is a lesser explored type of cell death that necessitates nuclear
envelope disintegration and chromatin decondensation. Upon induction of NETosis, the
cell membrane ruptures, and decondensed chromatin releases its granular matter into the
extracellular space, leading to the dissolution of plasmatic membrane, ultimately causing
neutrophil death. Subsequently, these NETs can entangle different pathogens such as
bacteria, fungi, protozoa, and viruses. Using imaging experimentation as a major tool,
Fuchs et al. assigned NET formation as the final step of active neutrophil death in response
to phorbol ester and Staphylococcus aureus [14]. Essentially, this form of cell death allows the
complete release of chromatin into the extracellular space without any DNA fragmentation.
The detailed cellular mechanism is still under research, but the key elements of lytic NETosis
are well defined and constitute neutrophil elastase (NE) and myeloperoxidase (MPO), both
of which form the part of primary neutrophilic granules. The reported mechanism of lytic
NETosis associates reactive oxygen species (ROS) formation to NET release through an NE-
mediated process. ROS generated by NADPH oxidase stimulates NE translocation from
cytoplasmic granules to the nucleus, where it cuts histones and promotes the chromatin
unfolding and degradation of the nuclear membrane. MPO also synergizes with the NE in
DNA decondensation and triggers NET independent of its enzymatic activity, suggesting
the complex nature of NETosis [15].

Ligation of different pathogens or immune crystals triggers the induction of ROS via
MEK–extracellular-signal-regulated kinase (ERK) signaling pathway that further stimulates
an MPO-NE pathway. Additionally, Wang laboratory described the role of peptidylarginine
deiminase 4 (PAD4) in histone citrullination, heterochromatin decondensation, and NET
formation and thus its crucial role in innate immunity [16–18]. Upon stimulation of divalent
calcium ion (Ca2+), PAD4 can reduce the positively charged histones, which transform
histone arginines to citrullines. After this stimulation, nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase advances to ROS generation, causing the catalyzation of su-
peroxide dismutase (SOD) to produce hydrogen peroxide (H2O2). The H2O2 then interacts
with MPO to produce hypochlorous acid (HOCl) that leads to chlorination of histones and
loosens the histone–DNA interactions, similar to histone citrullination [19]. Furthermore, re-
ports suggest that Raf-1 proto-oncogene serine/threonine kinase (c-Raf), mitogen-activated
protein kinase (MEK), protein kinase B (Akt), extracellular signal-regulated kinase (ERK),
and PKC pathways are upstream to NADPH oxidase production and involved in lytic
NETosis [20,21]. Interestingly, the whole c-Raf-MEK-ERK pathway completes in 2–4 h.
Additionally, PMA, ionomycin, concanavalin A, bacteria, fungi, and cytokines such as IL-6
and Il-8 are strong inducers of NADPH oxidase-mediated NETosis [7,22,23].

2.1.1. HSV and Suicidal NETosis

HSV evades host immune responses to establish a successful lytic infection. It protects
its clearance from the immune system by a number of mechanisms such as inhibition of
interferon response; evasion of complement-mediated destruction by expressing glyco-
protein C, which binds to the C3b complement component; inhibition of autophagy by
neurovirulence protein ICP34.5; and suppression of the cGAS–STING signaling pathway by
HSV–1 protein UL41 and VP22 [24]. In addition, to ensure a lifelong infection, HSV employs
diverse molecular approaches to escape host cell death responses. For instance, the viral
UL39-encoded viral protein ICP6 suppresses both caspase-8 and RHIM-dependent RIPK3
activities in host cells [25]. Similarly, HSV-1 ICP27 inhibits GSDME-mediated pyroptosis
for enhancing viral replication in host cells [26]. Ironically, no reports claim any correlation
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between HSV infection and NETosis or herpes-mediated modulation of NETosis. It is
noteworthy that HSV is known to modulate or affect the pathways that find involvement
in suicidal NETosis. Thus, herpes-mediated modulation of such pathways puts forward
the possibility of the virally mediated modulation of NEtosis shown in Figure 1.
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Figure 1. Schematic showing HSV-1 ocular infection, its recognition by the TLRs on corneal epithelial
cells, and mechanisms associated with suicidal and vital NETosis. Implication of NETosis during an
ocular HSV-1 infection: (A) sagittal view of an eye infected with HSV-1; (B) zoomed out description
of host innate immune response against ocular HSV-1 infection; (C) suicidal NETosis showing ROS-
dependent lytic NETosis; (D) lytic NETosis showing TLR-dependent non-lytic NETosis. Created
in bioRender.

2.1.2. Reactive Oxygen Species: In Milieu with NETosis and HSV Infection

ROS are considered essential for NETs formation. ROS generation is a consequence of
the activation of the NADPH oxidase (NOX) family of enzymes. NOX-dependent NETosis
agonists such as PMA and LPS induce the generation of massive amounts of ROS in
neutrophils. High concentrations of ROS and antimicrobial peptides render antimicrobial
activity to neutrophil-generated phagosomes. The pharmacological inhibition of NADPH
oxidase enzyme by diphenylene iodonium abrogates the NET formation, ROS production,
and ultimately leads to cell death in neutrophils that were pretreated with inducers of
NETosis. Furthermore, patients with chronic granulomatosis, who have a genetically
defective NADPH oxidase enzyme, do not produce NETs [27]. Thus, the levels of ROS in
neutrophils critically governs the cell death, i.e., NETosis [14].

Coincidentally, HSV also induces NADPH oxidase-dependent ROS generation in
infected cells. In cultured cells, the increase in ROS levels is detected as early as 1 h post
infection [28]. The maintenance of an ROS-mediated mild oxidative stress is thought



Pathogens 2023, 12, 209 5 of 17

to facilitate replication and pathogenicity of herpes viruses. The supplementation of
antioxidants leads to a reduction in the viral load, indicating that replication is favored by
a state of oxidative stress or ROS production [29]. Treatment with low concentrations of
oxidative stress inducers, for instance, 4-HNE, aids in viral replication, whereas increase in
concentration beyond a specific level inhibits the viral replication [28]. Under a productive
HSV replication, the levels of ROS generated by HSV infection are known to impair the
interferon response by oxidizing Cysteine 147 on murine STING, which is analogous to
Cysteine 148 of human STING [30]. However, ROS are known to trigger the phenomenon
of cell death only at higher levels where the cell’s antioxidant mechanisms fail [31]. This
might be the possible reason for inhibition of HSV replication upon treatment with higher
concentrations of ROS inducers such as 4-HNE. At lower levels, ROS are involved in
different signaling pathways [32]. Thereby, they are known to aid HSV replication in a
productive infection by suppressing host immune responses. Therefore, it seems that the
levels of ROS generated in the HSV-infected cells are insufficient for triggering NETosis.
While the induction of different forms of cell deaths curb HSV infection, HSV infection-
triggered induction of ROS promotes viral replication, possibly via the suppression of
different cell death pathways. However, at the peak of infection, the ROS levels required
for NETosis may be achieved, a possibility that requires additional scrutiny.

2.2. Live Cell/Vital NETosis

Initially, NETs formation was reported as an oxidant-dependent event that leads to
lysis of neutrophils. Recently, Pilsczek et al. described a non-lytic mechanism of NETs
formation, where neutrophils responded uniquely to Staphylococcus aureus infection. In this
form of NETosis, the nucleus of neutrophil condenses and becomes round [33]. Then, there
is partition of the inner and outer nuclear membranes and budding of vesicles that are filled
with nuclear DNA. This marks the expulsion of vesicles from the cell, where they burst and
release chromatin. Thus, the whole process occurs swiftly and in an oxidant-independent
manner in 5–60 min. Unlike lytic NETosis, vital NETosis contains a very little amount of
mitochondrial DNA. Lytic NETosis has a limited amount of proteolytic activity but enough
to trap and kill S. aureus.

The lytic form of NETosis is established on the phenomenon of neutrophil death;
however, it leaves certain questions unaddressed and creates a confusion regarding how
the obligatory events of NETosis such as chemotaxis and phagocytosis are carried out by a
dead neutrophil. One possibility is that a PMN could initially perform its live cell functions
and degrade intracellular pathogens prior to its death and then trap extracellular pathogens
after its lytic NETosis. This constitutes a progressive model of live cell functions advanced
by suicidal cell functions. Another possibility exists that demarcates the population of
neutrophils into two subsets. One set of neutrophils may lead to live cell functions, whereas
another set could lead to lytic form of NETosis. This would suggest that traditional known
functions of NETosis and lytic NETosis are mutually exclusive events. To date, inadequate
evidence is present to encourage this hypothesis. An additional hypothesis persists in
the field that particular subsets of neutrophils endure the NETosis process and persist to
execute the tasks necessary to identify, seize, and kill pathogens. This is the most accepted
idea given that at most 20% to 25% of PMNs release NETs. This view was also supported
by Clark et al., as they demonstrated the NET release from an intact neutrophil [34]. In
addition, Yousefi et al. demonstrated the similar phenomenon in eosinophils as well as
neutrophils [35].

The fundamental difference between lytic and vital NETosis other than time of NET
release is the nature of stimulation. For example, suicidal NETosis has mostly been exhibited
by chemical stimulants. In contrast, vital NETosis has been shown after PRRs recognition by
the host. For instance, LPS, a Gram-negative bacterial stimulus, promotes quick, non-lytic
NET release. This rapid NETosis was TLR4-mediated on platelets that accelerated PMN
activation. Stimulation by a Gram-positive bacteria in vivo also leads to vital NETosis via
both TLR2 and the complement system [36]. Thus, activation of the vital NETosis pathway
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has been reported against multiple groups of microbial pathogens. For instance, a recent
report found that Candida albicans promoted NETosis within 30 min in a fibronectin- and
complement-dependent manner [37].

Toll-Like Receptors: In Milieu with NETosis and HSV Infection

The invading pathogens are often detected by PRRs for instigating immune responses.
Toll-like receptors are known to play vital role in recognition of pathogens and induction
of NETosis [38]. Human neutrophils are known to possess all TLRs except TLR3, where
different TLR is employed to recognize a different pathogen. For instance, TLR2 signaling
pathway is employed to induce NET release against Mycoplasma agalactiae [39], whereas
TLR2 and TLR4 are vital for ROS-dependent NETosis initiation during Fonsecaea pedrosoi
infection [40]. Similarly, TLR7 and TLR8 recognize human immunodeficiency virus 1 (HIV)
nucleic acid and trigger the induction of NETosis [22], whereas chikungunya virus (CHIKV)
is captured by TLR7-elicited, ROS-dependent NETosis [41]. In addition, mitochondrial
DNA (mtDNA) is also known to activate neutrophils via the cyclic GMP-AMP synthase
(cGAS) and TLR9 pathways to stimulate NETosis.

Different TLRs are also involved in recognition of HSV by the host immune system.
HSV is recognized by TLR2 on the cell membrane, probably in conjunction with TLR1.
Different reports have claimed that TLR2, TLR3, TLR4, and TLR9 are capable of detecting
definite proteins of HSV such as glycoprotein B (gB), glycoprotein H (gH), glycoprotein K
(gK), glycoprotein L (gL), and US2 protein in the activation and reactivation of HSV [42].
The dual TLR2/9 recognition has been reported as vital to fight against mucosal HSV
infection. The dual ablation of TLR2/9 has been reported in high mortality rates as
compared with TLR2 or TLR9 deficiency alone, overlapping with aggravated viral load in
central nervous system tissues [39]. Similarly, TLR3 is required to control HSV in the central
nervous system [43]. Although there are no published data on TLRs-mediated NETosis for
killing HSV-1, it is obvious that TLRs play a crucial role in combatting HSV; thereby, here
arises a possibility that TLRs-mediated antiviral response may be partially warranted by
TLRs-trigged NETosis, as shown in Figure 1.

3. HSV-1, Neutrophils, and Eye

The herpes-mediated ocular infection is caused by both HSV type 1 and type 2 viruses.
These neurotropic viruses affect the whole eye [44–46]. HSV keratitis is the most common
corneal blindness in developing nations, affecting 60–95% of adults around the globe. USA
accounts for 400,000 cases of HSV keratitis, with 58,000/year of recurrent infections and
24,000 new cases every year [47].

Neutrophils are commonly deemed to engage in a positive role in host defense. They
are strikingly heightened in the tissues during any infection, and any dropdown in their
numbers is known to worsen the pathology. For instance, neutrophil reduction ensued
in aggravated viral loads and mortality in murine models of neurotropic mouse hepatitis
virus infection. However, improper and sustained neutrophil stimulation can also result
in damaging effects to the host, including acute illness such as pneumonia and acute
respiratory distress syndrome [48]. However, the status of the cornea as the immune-
privileged organ provides an additional benefit by precluding the possibility of cytokine
storm and neutrophil-associated inflammation and cell damage.

Neutrophils attracted to the lungs of diseased animals produce proinflammatory
mediators and toxic elements (e.g., cytokines, defensins, peroxidases, hydrolytic enzymes,
and ROS) that can stimulate pathological characteristics. Moreover, using the lipid mediator
resolvin E1 and reducing the neutrophil inflow during an ocular HSV infection further
reduces the severity of stromal keratitis lesions in humans [49]. In contrast, intensified
neutrophil infiltration and no IL-10 production led to lethal murine cytomegalovirus
(MCMV) brain infection [50]. Improved mortality rate in virus-infected elderly patients
was associated with enhanced IL-17A production, which further intensified neutrophil
function and triggered liver damage. Consequently, it was lethal in mice infected with
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either HSV-2 or MCMV. It is therefore important to thoroughly scrutinize the characteristics
of the neutrophil role vital for a stable antiviral response to acquire novel treatments against
dreadful ocular HSV infections.

4. NETosis as Host Defense on Ocular Surface

The ocular surface is exposed constantly to the outer environment and thus acts as
a direct invading site for multiple pathogens. Further, the activity of immune cells is
also suppressed in the ocular microenvironment due to release of immunomodulators,
which is composed of cytokines, growth factors, neuropeptides, and soluble receptors.
Thus, the immune privilege of the ocular site mediates the activation of antigen-specific
regulatory immunity [51]. During ocular infection, neutrophils are recruited as the first
line of innate immune defense by the host. Subsequently, there is growing evidence that
NETs formation by neutrophils exhibits a broad range of antimicrobial activity against a
range of bacteria, fungi, parasites, and viruses that are responsible for ocular infections.
NETs formation by neutrophils kill the microbes by immobilizing the pathogens, but there
are some controversial results showing NETs clumps with microbes without any dead
bacteria [52]. The experts suggests that the skepticism is due to difference in the techniques
employed to assess the killed microbes quantitatively. However, there is ample evidence
supporting the destroying ability of NETs against a broad array of microbes, especially
during an ocular infection, which is discussed below.

4.1. NETS in Bacterial Eye Diseases

Neutrophils can kill the pathogenic bacteria by phagocytosis, degranulation, and/or
NETs formation as the front line of host defense [53,54]. Many reports suggest that NETs
formation by neutrophils protects against corneal infection by Pseudomonas and Aspergillus
on the ocular surface [55–57]. Pseudomonas aeruginosa forms biofilm, which is a prominent
source of bacterial keratitis with aggressive and swiftly developing attributes. Biofilm is
composed of a type-3 secretion system (T3SS) that produces numerous virulence factors
such as ExoS, ExoT, ExoY, and ExoU and inserts these into the host cells along with Psl
exopolysaccharide, which leads to formation of biofilms. The biofilm formation attracts
neutrophils extensively, specifically due to elevated accumulation of T3SS, followed by NET
release that finally confines the bacteria to a dead zone of DNA and degraded extracellular
matrix (ECM).

This aids to constrain bacteria to the outer ocular surface and impedes the spread-
ing of the bacteria to other major organs, especially the brain [55]. Recently, researchers
showed that inhibiting ROS could be an efficient treatment of bacterial keratitis caused by
P. aeruginosa. They employed a small peptide comprised of 43 amino acids with thymosin
b4 (Tb4) as an adjunct that precisely reduces the permeation of polymorphonuclear leuko-
cyte (PMNs), up-regulates the anti-inflammatory markers, obstructs ROS generation both
in vivo and in vitro, down-regulates NETs, and thus regulates neutrophils apoptosis [58].

Another ocular infection causing bacteria is S. aureus, which produces numerable
toxins and enzymes that can potentially lead to permanent vision loss. S. aureus have
been reported as the primary pathogen causing blepharitis, conjunctivitis, and keratitis in
47.6%, 26.6%, and 25% of patients [59]. Vision loss during a bacterial infection is attributed
to dysfunctional inflammation that leads to host-induced inflammatory damage. Many
studies have reported the upregulation of neutrophils as a predictor of acute bacterial
keratitis [60–62]. Multiple strains of S. aureus produce diverse types of toxins, namely
α-toxin and β-toxin. S. aureus 8325-4 is a α-toxin-positive parent strain that causes a
devastating epithelial infection by initially disrupting the epithelial cell barriers in the
cornea, ultimately causing the cell lysis that leads to exposed stroma for further evading
pathogenic bacteria. Specifically, the neutrophil count increases exponentially at the site
of stromal infection, and thus, α-toxin is identified as a prominent virulence factor during
S.-aureus-induced keratitis [63], whereas β-toxin is a type of sphingomyelinase and only
acts as a facilitator of edema and does not show extensive ocular damage. Additionally,
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many clinicians use the movement of permeating PMNs to evaluate ocular pathology
during bacterial keratitis [64].

There is enough evidence suggesting the NETosis inducing abilities of S. aureus, but more
intriguing reports illustrate the evolving mechanisms to elude its NET killing [9,14]. One
approach entails the production of pore-forming virulence factors that lead to neutrophil
neutralization and stimulate necrosis. Furthermore, catalase production by S. aureus blocks
the H2O2 production during lytic NETosis and shields itself from oxidation and blocks
NETosis completely. Consequently, the neutrophils may have advanced to their secondary
and swift, vital NETosis mechanism, which is independent of ROS, and this way, the host
is able to constrain catalase-positive bacterial strains [14].

4.2. NETs in Fungal Eye Diseaes

NETs produced by neutrophils play a vital role in restricting fungal infections. How-
ever, only a few fungal species are known to stimulate hosts for NETs production and
be effectively eradicated by them. C. albicans (yeast) is the most studied fungal pathogen
involved in inducing NET production, and interestingly, it is infamous for causing fungal
keratitis along with other filamentous fungi (Fusarium and Aspergillus). C. albicans is the
most common asymptomatic colonizer of oral, mucosal, and ocular surfaces and is found
in 30–50% of the population. Prominently, it is more devastating, as it is a prevalent oppor-
tunistic pathogen in immunocompromised patients, causing a 40% mortality rate [65]. Its
strong virulence is attributed to its dimorphic ability, where it disseminates at the budding
stage, and hyphae aid in its persistence and tissue invasion. Since hyphae are exceedingly
too huge to be phagocytosed, extracellular killing by release of NETs is an ultimate strategy
to suppress the hyphal form, and numerous studies have revealed that NETs are adequate
to kill C. albicans yeast and hyphae [66].

F. Fan et al. extensively studied the keratitis caused by Candida albicans (C. albicans)
in a mouse model and indicated that contrasted with the non-treated group, the dexam-
ethasone (DXM)-treated group exacerbated the intrusiveness of fungi by subduing the
NETs formation [67]. It is fascinating to present new visions of comprehension of the bio-
chemical processes of fungal keratitis and of exploiting the mechanism of NETosis during
fungal keratitis. Recently, some efforts to identify the effectors of NETs induction during
a fungal infection have unveiled calprotectin as a central antifungal agent in the reaction
against C. albicans [68]. Calprotectin is a protein that is found in cytoplasm and is released
during NETosis. It chelates Mn2+ and Zn2+, which are crucial for C. albicans growth, and
thus, immediate contact of the protein with the pathogen is not a prerequisite. Recently,
mouse studies have underscored the significance of calprotectin in antifungal defense
by showing the high sensitivity of calprotectin-deficient mice towards subcutaneous and
pulmonary candidiasis as well as aspergillosis. Furthermore, patients that received gene
therapy to reinstate NADPH oxidase function that aids to redeem the efficient NET release
were able to recuperate from Aspergillus infections much faster in a calprotectin-dependent
manner [27,69].

Many controversial reports are available in the literature about the upstream regulators
of NETosis inducers in response to fungi. Some reports suggest that conidia induce a little
less NETs than hyphae, whereas other reports indicate that A. nidulans conidia can be
killed more effectively via NETs than its hyphae [27,70]. Even though further studies
are necessary to completely appreciate the impact of NETs as the immune shield against
fungal infection, there is clear proof that NETs formation is an essential antifungal innate
immune strategy.

4.3. NETs in Viral Eye Diseasess

Neutrophils are the innate immune cells recruited to sites of viral infections in the
most abundance and exhibit both protective and pathologic functions [71–73]. In antibacte-
rial and antifungal immunity, the role of neutrophils is well characterized. However, in
antiviral immunity, far less is known. Traditional wisdom implies that neutrophils develop
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antiviral defenses, yet evidence for that is sparse [73]. Interaction with other immune cell
populations, virus internalization and killing, and the release of cytokines, chemokines,
and antimicrobial components are all mechanisms by which neutrophils can contribute to
pathogen clearance. Although conventionally regarded as a defense mechanism against
bacterial infections, recent findings have also implicated NET formation in limiting viral
infections [7,71–73]. These virus-induced NETs can both control the virus and damage
the host [7,74]. Recently, HIV- was shown to induce NETosis via the cell death pathway
although the requirement for ROS, MPO, and NE was not addressed. NETs are able to seize
and nullify the negatively charged HIV virions, substantially decreasing HIV infectivity.
Thus, neutrophils and NETs may play critical roles in combating HIV. Interestingly, HIV is
efficient in controlling neutrophil activation in order to restrain NET formation.

Saitoh et al. demonstrated that HIV engages DC-SIGN (CD209) on dendritic cells (DCs)
with its envelope glycoprotein gp120. Engagement of DC-SIGN leads to production of
IL-10 by DCs, which suppresses NET formation. Therefore, HIV not only takes advantage
of DC-SIGN on DCs for efficient infection of CD4+ T cells via the DC-T cell synapse but
also for evading NET killing [22]. This study remarkably demonstrates an amazing feature
of NETs as antiviral effectors and the ability of HIV to coevolve and adapt to the innate
immune response. IL-10 is an immunosuppressive cytokine that also impedes TLR-induced
ROS production [75]. It is fairly often produced in the milieu of viral infections, suggesting
that more viruses exploit IL-10 as a means of NET evasion [76,77]. In the genome of
several large DNA viruses, IL-10 homologs have been found, including ubiquitous human
pathogens such as human cytomegalovirus (HCMV) and Epstein–Barr virus (EBV) [78,79].
As these virus-encoded IL-10 molecules shape the function and cell death of immune cells,
they may also modulate NETosis, similar to cellular IL-10 [80,81].

Finally, the role of NETs in influenza infection has also been investigated. NETs are
induced secondarily by influenza-activated lung epithelium producing superoxide and
H2O2. Moreover, while influenza has been indicated to induce NETs in the mouse lung,
NET deficiency in PAD4-knockout mice was not linked with an increase in viral titers and
susceptibility to infection. Therefore, while few studies have addressed the role of NETs
in viral infection, given that many viruses elicit neutrophil recruitment, it is possible that
NETs may be implicated in antiviral defense [82]. Additionally, that these viral particles
are inactivated is a debatable point; as long as they are ensnared by NETs, they represent
no threat. However, an expanding number of studies indicate that a disproportionate
virus-induced NET release can contribute to damage locally as well as systemically. Thus,
it is important to explore the mechanisms that control NET formation in the context of viral
infection [71–73].

5. NET-Associated Host Damage

Numerous reports suggest the antimicrobial effect of NETosis and its protective role
in the host against a range of biological and non-biological disease-causing agents, but its
overproduction can be detrimental to the host as well [83]. Multiple reports suggest that
dysregulated production of NETs lead to pathogenesis of some metabolic, autoimmune,
and autoinflammatory diseases. NETs formation can also cause morbid septic condition.
NETs can be extremely cytotoxic to epithelial and endothelial cells due to their constituents
such as histones that are antimicrobial, but their unbalanced production can easily cause
tissue damage and many pathological abnormalities in eyes [83]. Specifically, during
sustained or unwarranted release of proinflammatory cytokines (TNF and IL-1) and the
release of toxic bodies such as hydrolytic enzymes, MPO, and ROS, neutrophils can lead
to extracellular matrix (ECM) obliteration, massive cell death, and tissue necrosis. The
emission of cathepsin G, NE, and proteinase 3 can encourage further vascular leakage,
inflammation, and pathologic effects [7]. Moreover, NETs are capable of obstructing
secretory ducts, thereby steering higher inflammation [83]. The obstruction of lacrimal duct
during an ocular infection can lead to blockage of the drainage system, causing tears to
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well up on the surface of the eye. Other components of NETs such as anti-high-mobility
group box 1 (HMGB1) may also perform a negative role in virus-associated disease [84].

The unbalanced NET formation and obstructive clearance leads to circulation of NETs
in the serum, which is easily detectable. This systemic NET burst has extreme direct
and indirect harmful effects. First, these NETs can damage the interior lining of blood
vessels. Second, the flood of the NETs can induce autoantibodies leading to autodestructive
processes. NET components such as dsDNA, histones, MPO, vimentin, and enolase have
been associated to systemic pathology linked with disease entities such as small vessel
vasculitis, systemic lupus erythematosus (SLE), disseminated intravascular coagulation,
preeclampsia, and rheumatoid arthritis [85,86].

These systemic consequences justify how NET formation is a part of an antiviral
defense strategy and acts as a double-edged sword. The host may gain from deposition of
NETs, specifically in the infected area by restraining and nullifying the virus and finally
killing the virus-infected cells. This advantage may turn into a fiasco if NET formation
is overly spread, establishing NET deposits in healthy tissues. As a result, too many
uninfected host cells in the neighborhood of the infected area may come under “friendly
fire”, leading to substantial collateral tissue damage. Thus, it is important to study the role
of NETosis in host defense as well as in disease severity (Table 1).

Table 1. NETosis in viral infections.

Pathogen Induction of NETosis Prognosis References

Influenza A virus (H1N1)
PR8 strain

Extensive NETs induction when
neutrophils were incubated in the
presence of H2O2, which may in

turn activate MPO and cause
NET formation.

Excessive NET formation after
H1N1 infection contributes to acute

lung injury and acute respiratory
distress syndrome (ARDS).

[87]

Influenza A virus

Infected patients showed higher
capacity to release MPO-DNA

complex in response to
interleukin-8 or

lipopolysaccharide stimulation.

NETs from infected patients
increased the permeability of
alveolar epithelial cells and
consequently caused acute

physiology and chronic health
evaluation (APACHE) II score

and MODS.

[88]

Human immunodeficiency
virus-1 (HIV-1)

Activation of endosomal TLR7- and
TLR8-mediated NET formation.

NETs captured HIV-1 and promoted
its elimination by inhibiting its

infection and spreading.
[22]

Human respiratory syncytial
virus (RSV)

Chemokines such as interleukin-8
(IL-8) are abundantly present in the

lungs during RSV–LRTD

NETs trap viral particles in vitro,
but their exaggerated formation

during severe RSV–LRTD
contributes to airway obstruction

in children.

[89]

Hantavirus (HTNV)

Heparin-sensitive β2 integrin
receptors are involved in

hantavirus-induced generation of
ROS and NETs.

NETs are detected in kidney
biopsies from hantavirus-infected

patients, suggesting that NETs
contribute to kidney damage.

[90]

SARS-CoV-2

The N-terminal (GSDMD-NT)
oligomerizes with plasma and
nuclear membranes, forming

membrane pores that mediate cell
death by NETosis.

Lung epithelial damage and
disseminated

intravascular coagulation.
[91]

6. Diagnosis and Therapeutics

NETs can be both beneficial and destructive for the host; thus, it is important to
evaluate possible compounds that specifically suppress NETs. Likewise, it is equally
important to positively detect the NETs (Table 2). The markers of NETosis can be prospective
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drug targets to treat infection. Given evidence of the association of NETosis with several
disease pathologies, there are two approaches to mitigate its effects. The first is to include
the use of drugs that suppresses NETosis, such as anti-cytokine therapy targeted to avoid
neutrophil buildup in the foci and their initiation, as well as employing inhibitors of the
elements engaged in NETosis system: NE, PAD4, and GSDMD. The second methodology
is centered on attenuating the negative effects of NETosis. It constitutes anti-cytokine
therapy aimed against IL-1β and is extensively applied in numerous inflammatory and
autoimmune diseases [92].

Table 2. Techniques and markers for NETosis detection.

Technique Reagents Markers Limitation References

Immunostaining for
neutrophil-derived

proteins

Acetone, ethanol, and
paraformaldehyde (PFA)

MPO and proteinase 3
(PR3)

Acetone and ethanol can
induce an artificial NET
formation. Qualitative
and lacks objectivity.

[93]

Immunostaining Acetone and ethanol
Citrullinated histones

produced due to
PAD4-mediated NETosis

The involvement of PAD4
in NET formation

depends on the nature of
the stimulation and
remains debatable.

[94–96]

Fluorospectrophotometry PicoGreen
Cell-free DNA or

neutrophil remnants in
sera or tissue fluids

Cell-free DNA does not
originate specifically from
netting neutrophils. They
can be derived from dead

cells other than
neutrophils that undergo

NETosis.

[97]

Enzyme-linked
immunosorbent
assay (ELISA)

Horseradish peroxidase
(HRP)-conjugated

anti-DNA antibody

MPO-DNA and NE-DNA
complexes in fluid

samples

Standardization in ELISA
remains elusive, but this

methodology is the
current most specific,

objective, and quantitative
assay to monitor NETosis.

[93]

Multispectral imaging
flow cytometry

2% PFA solution and
Hoechst for nuclear

labeling and stains MPO

Images the increase in the
nuclear area, which

coexists with the decrease
in side-scatter intensity of

the cells or with
overlapped distribution

of MPO.

Further studies
are needed. [98]

Flow cytometry SYTOX Green Cell-appendant DNA of
netting neutrophils.

More extensive studies are
needed to determine if

this method can
distinguish NETosis from
other types of cell death.

[99]

Our implication is that most of the NETosis targeted inhibitors will show their potential
effectiveness against ocular herpetic infection as well. For instance, the NADPH- and/or
ROS-inhibiting pharmacological compounds such as diphenyleneiodonium chloride (DPI)
and N-acetylcysteine (NAC) suppress NETosis, and many reports suggest reduction in ocu-
lar herpes infection when treated with antioxidants because it has been reported that HSV
infection may be exacerbated by a cellular state of oxidative stress, while augmented intake
of antioxidants might avert replication of the virus [100–104]. Furthermore, ROS inhibit
NF-kB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) translocation, which
is a known marker for aggravated ocular HSV-1 infection [105]. Anti-cytokine therapy
addressed against IL-1β is extensively utilized in several inflammatory and autoimmune
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diseases, including ocular herpetic disease. One of its aims may be unwarranted NETosis.
The recombinant anakinra protein, an IL-1β receptor antagonist, is at present under clinical
trials as a prospective formulation to cure COVID-19 (NCT04324021, NCT04330638, and
NCT02735707). This drug might as well find its implication in ocular herpes pathology [92].
Finally, a few GSDMD and PAD4 inhibitors are at the preclinical stage of testing as well.
Of great attention and interest is the application of present-day drugs for suppression
of NETosis. Hence, disulfiram, which is clinically utilized to treat alcoholism, inhibits
GSDMD activation and shields mice in the lethal LPS-induced sepsis model [106]. It is
worth noting that GSDMD is also a key element of pyroptosis, and many authors have ac-
knowledged the potential role of pyroptotic pathway during an HSV-1 infection [107–110].
Furthermore, there is also a cell-intrinsic program that modifies the neutrophil proteome
in the circulation and causes the progressive loss of granule content and reduction of
the NET-forming capacity [111]. This program is driven by the receptor CXCR2 and by
regulators of circadian cycles. Indeed, it is also known that HSV-2 infection is influenced
by circadian cycle [111]. The HSV-2 entry receptor Nectin1 (Pvrl1) in mouse and human
keratinocytes shows rhythmic expression and is directly regulated by CLOCK, and HSV-1
infection varies with the disruption of the transcription factor BMAL 1 (brain and muscle
ARNT-like 1) [112,113]. Several studies have demonstrated the importance of the circadian
parameter in clinical settings, which raises the possibility of using these temporal physio-
logical features for therapeutic benefit (i.e., chronotherapy). These findings highlight the
possibility of “personalizing” medicine at the temporal level [114].

7. Conclusions

Neutrophils are recruited as the first line of host defense during an ocular infection.
They respond to corneal-surface chemo-attractants and help perform effector functions such
as phagocytosis during an ocular HSV-1 infection. Two decades ago, the role of neutrophils
in the formation of NETs and NETosis were reported, and since then, it has been widely
studied in microbial infections. Still, very little is known about NETosis in viral infections
of the eye. Evidence exists showing that HSV-1 infection of the eye is influenced by NET
formation, which may help reduce the viral burden but may also cause an increase in the
tissue inflammation. Many doubts and open-ended questions surround the fundamentals
of NETosis itself. In particular, the targets for induction of NETosis leading to activation
of NADPH oxidase have not yet been clearly determined. It is evident that excessive
NETosis can lead to many inflammatory pathologies and in turn harm the host. Given
the significance of neutrophils in ocular HSV-1 infection, a new push to investigate the
pathophysiological role of NETosis will improve our understanding of the pathogenesis of
ocular HSV-1 infection. The development of new therapeutics inhibiting NETosis, majorly
targeting ROS, is likely to be a promising area of future pharmacological research in curbing
HSV-1 infection and associated ocular pathologies.
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