Skip to main content
. 2023 Feb 13;23(4):2112. doi: 10.3390/s23042112

Table 5.

Federated machine learning implementations in diabetes prediction.

Ref Model Data Used Performance
 [116] FL deep neural network SFU prototype swept-source OCTA RTVue XR Avanti (OptoVue, Inc.) Angioplex (Carl Zeiss Meditec) PLEX Elite 9000 (Carl Zeiss Meditec) Performance is comparable to conventional DL models
 [117] Not identified Health Facts EMR Data dataset from Cerner Performance is similar to the gold standard of centralized learning
 [118] FL convolutional neural network (CNN) FL multilayer perceptron (MLP) Generated by simulator FL-CNN recall: 99.24% FL-MLP recall: 98.69% performed better than traditional DL
 [119] Not identified Fine-Grained Annotated Diabetic Retinopathy (FGADR) dataset [120] Accuracy: 72%
 [121] Not identified Private data collected from different healthcare facilities -
 [122] Standard FL FedAVG FedProx EyePACS [123] Messidor [124] IDRID [125] APTOS [126] University of Auckland (UoA) [127] Standard FL Accuracy: 92.19% FedAVG Accuracy: 90.07% FedProx Accuracy: 85.81%