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Abstract: Migraine and neuropathic pain (NP) are both painful, disabling, chronic conditions which
exhibit some symptom similarities and are thus considered to share a common etiology. The calcitonin
gene-related peptide (CGRP) has gained credit as a target for migraine management; nevertheless,
the efficacy and the applicability of CGRP modifiers warrant the search for more effective therapeutic
targets for pain management. This scoping review focuses on human studies of common pathogenic
factors in migraine and NP, with reference to available preclinical evidence to explore potential
novel therapeutic targets. CGRP inhibitors and monoclonal antibodies alleviate inflammation in the
meninges; targeting transient receptor potential (TRP) ion channels may help prevent the release
of nociceptive substances, and modifying the endocannabinoid system may open a path toward
discovery of novel analgesics. There may exist a potential target in the tryptophan-kynurenine
(KYN) metabolic system, which is closely linked to glutamate-induced hyperexcitability; alleviating
neuroinflammation may complement a pain-relieving armamentarium, and modifying microglial
excitation, which is observed in both conditions, may be a possible approach. Those are several
potential analgesic targets which deserve to be explored in search of novel analgesics; however, much
evidence remains missing. This review highlights the need for more studies on CGRP modifiers for
subtypes, the discovery of TRP and endocannabinoid modulators, knowledge of the status of KYN
metabolites, the consensus on cytokines and sampling, and biomarkers for microglial function, in
search of innovative pain management methods for migraine and NP.

Keywords: migraine; neuropathic pain; calcitonin gene-related peptide (CGRP); transient receptor
potential (TRP) ion channels; endocannabinoids; glutamate; kynurenine; cytokines; neuroinflammation;
microglia

1. Introduction

Migraine and neuropathic pain (NP) are chronic pain syndromes with extensively
studied pathogeneses. While their clinical manifestations strongly differ, their pathophys-
iologies have common roots. Cause-based treatment of these two devastating, painful
neurological diseases is still unsatisfactory. Migraines are one of the frequent primary
headache disorders with the typical clinical features of unilateral throbbing or pulsating
and moderate to severe headaches with concomitant symptoms such as nausea, vomiting,
photophobia, phonophobia, osmophobia, and allodynia. Its main subtypes are migraine
without aura (M0) and with aura (MA). Episodic (EM) or chronic (CM) forms can be differ-
entiated based on the number of migraine days per month [1]. NP is a chronic secondary
pain condition caused by a lesion or disease in the central or peripheral somatosensory sys-
tem [2–4]. It is characterized by burning and lancinating pain with an abnormal sensation,
such as paresthesia, dysesthesia, or allodynia.
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We underline the difference between these two painful conditions as follows: the
quality of the pain (throbbing in migraine and burning in NP), the associated symptoms of
migraine (nausea/vomiting, photophobia, and phonophobia) which are absent in NP, the ac-
tion of triptans (very effective in migraine, ineffective in NP), and the effect of nonsteroidal
anti-inflammatory drugs (effective in migraine, ineffective in pure NP). These two different
clinical entities meet via their common pathomechanisms, such as hyperexcitability and
sensitization, which involve neuropeptides (mainly the calcitonin gene-related peptide,
CGRP), transient receptor potential (TRP) ion channel alterations, the endocannabinoid
system, the glutamatergic system, pro- and anti-inflammatory cytokines, and microglia
activation [5–16].

CGRP is a vasodilator neuropeptide that plays a crucial role in the pathomecha-
nism of migraine. CGRP is well-documented in pain transmission in the somatosensory
nervous system. The latest therapeutic innovation is based on human and fully human-
ized monoclonal antibodies (mAbs) targeting CGRP and CGRP receptors. Clinical trials
in EM and CM patients revealed the high efficacy and safety of these pharmacons [17].
Clinical data has shown that anti-CGRP mAbs provide strongly efficacious preventive
treatment for both EM and CM. For NP with co-existing CM, only one study showed a
decrease in Neuropathic Pain Scale scores [18]. TRP channels are involved in pain mecha-
nisms. Several clinical observations have indicated that different agents (e.g., herbs, food,
environments) have the ability to influence migraine headaches via the modulation of
subclasses of TRP superfamilies (TRP-ankyrin 1—TRPA-1; TRP-vanilloid 1—TRPV-1; TRP-
melastatin 8—TRPM-8) [13,19]. Research targeting TRP has led to the innovation of the
high-concentration (8%) capsaicin dermal patch for different types of NP, such as painful
diabetic neuropathy (PDN), postherpetic neuralgia (PHN), and human immunodeficiency
virus (HIV)-associated neuropathy [20].

Elements of the endocannabinoid system exert antinociceptive effects through the
activation of cannabinoid receptors (CBR). Favorable preclinical results, which showed a
decreased trafficking of pain transmission, were clinically confirmed in migraine patients.
In the field of NP, only a few clinical studies are available [21]. The glutamate system is
involved in the pain processes of hyperexcitability and sensitization. Kynurenines (KYNs)
play pivotal roles in this process, since kynurenic acid (KYNA) is one of the rare endogenous
antagonists of excitatory glutamatergic N-methyl-D-aspartate (NMDA) and α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The function of the KYN
pathway in migraine and NP, based on the available human data and clinical trials, are
summarized in this review [7,22].

The key pro-inflammatory cytokines are interleukin (IL)-1, IL-2, IL-6, IL-17, IL-18
(previously interferon gamma), and tumor necrosis factor alpha (TNF)-alpha, while the
anti-inflammatory ones are IL-4, IL-10, and IL-37. There are controversial results with
cytokines in the field of migraine, while in NP, both pro- and anti-inflammatory cytokines
are of significant importance [15,23]. Microglia interact with the neuron. In migraineurs,
altered levels of S100B, a sensitive marker of glial cell injury, have been demonstrated,
which point to the role of microglia in hyperactivation of the trigeminovascular system.
Microglia play a fundamental role in NP transmission and in the sensitization process in
the nervous system [9,10,24]. There is evidence that cytokines have pathophysiological
roles in pain genesis and transmission.

Preclinical research reveals valuable information on human diseases by employing
in vitro and in vivo models [25–28]. Data collected in-laboratory has made significant
contribution to understanding the pathomechanism of human diseases from molecular
to organismal levels in search of therapeutic targets [29–40]. Here, we highlight clinical
studies of common pathogenic factors in migraine and NP with reference to preclinical
data to explore potential therapeutic targets and clarify the current missing data for it to be
complemented in the near future, in search of innovative pain management in migraine
and NP.
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2. Calcitonin Gene-Related Peptide Function in Migraine and Neuropathic Pain

The first clinical data on the importance of the trigeminovascular system in the path-
omechanism of migraine revealed that CGRP plasma concentration was elevated in the
external jugular vein during a migraine attack (Table 1) [41]. Later, increased CGRP plasma
levels were also observed in the cubital vein during the ictal period as compared with
those during the interictal period [42]. Experimental work on human trigeminal ganglia
demonstrated the distribution of CGRP and CGRP receptors [43,44].

Table 1. Selected human clinical data related to CGRP in migraine and neuropathic pain.

Migraine

Ref.
EM

CMM0 MA

Ictally Interictally Ictally Interictally

↑plasma from external jugular vein - - - - [41]

↑plasma from cubital vein - - - - [42]

Neuropathic pain
ref.

Peripheral NP Central NP

↑nerve fibers (painful neuroma) - [45]

↑serum (CRPS) - [46]

↑keratinocyta (PHN) - [47]

↑: increased concentration; ↓: decreased concentration. CGRP: calcitonin gene-related peptide, CM: chronic mi-
graine, CRPS: complex regional pain syndrome, EM: episodic migraine, M0: migraine without aura, MA: migraine
with aura, NP: neuropathic pain (no data available), PHN: postherpetic neuralgia.

The trigeminovascular system forms a bridge between the cerebral dura mater and
the vasculature of the meninges, cortex, and of second-order nociceptive neurons of the
trigeminocervical complex (TCC) [48–50]. One putative mechanism for the activation of
the trigeminovascular system suggests that the peripheral branch of the pseudounipolar
neurons of the trigeminal ganglion is triggered by cortical spreading depression, affect-
ing different brain areas such as the frontal regions. [51–53]. Thus, CGRP released in the
peripheral and central branches of trigeminal neurons lead to the vasodilation and neu-
rogenic inflammation of the meninges and to the activation of the second-order sensory
neurons of the TCC. The second-order neurons then activate the third-order neurons in the
thalamus [54].

2.1. Migraine

The clinical sign of trigeminovascular activation and hyperexcitability is allodynia,
which is pain due to an innoxious stimulus. Allodynia can have a cephalic or extracephalic
localization [55]. A double-blind crossover clinical trial revealed that the intravenous
infusion of alpha-CGRP versus placebo caused delayed migraine-like headaches in mi-
graineurs [56]. This was the first clinical observation that clearly demonstrated that CGRP
can induce migraine attacks, leading to the development of small molecule CGRP recep-
tor antagonists, gepants. The second generation gepants—ubrogepant, rimegepant, and
atogepant, which are orally administered—and the third generation version—vazogepant
(not approved in the United States), which is intranasally applied —are available for the
acute and/or prophylactic treatment of migraine [57–59].

A novel pharmacological innovation produced human and fully humanized mAbs
against CGRP and CGRP receptors to prevent EM and CM. Eptinezumab, fremanezumab,
and galcanezumab selectively bind to the CGRP itself as a ligand, while erenumab com-
petitively and reversibly targets CGRP receptor components. All of the above-mentioned
mAbs are highly effective and safe in the prophylaxis of both EM and CM [5,17,60–63].
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2.2. Neuropathic Pain

Human studies have found that nerve fibers in the spinal cord laminas I, III, and V
had CGRP-like immunoreactivity, and that their receptors are widely distributed in the
pain pathways of the nervous system [64,65]. Experimental data has shown that CGRP can
sensitize nociceptors and also can induce central sensitization [65]. Allodynia is a clinical
feature of central sensitization and is one of the most common sensory abnormalities
indicating NP. In spite of these preclinical findings, the available clinical data in this area
are very sparse.

In skin biopsy samples of PHN patients, increased CGRP levels were found in ker-
atinocytes [47] (Table 1). Complex regional pain syndrome (CRPS) occurs in two types,
both occurring after trauma, and peripheral nerve injury exists only in CRPS type 2. The
latest classification by the International Association for the Study of Pain (IASP) suggests
that CRPS type 2 may be associated with neuropathic mechanisms [66]. Clinical studies
have demonstrated increased CGRP serum levels in patients suffering from CRPS [46,67].
In patients with painful neuroma, higher densities of CGRP-immunoreactive nerve fibers
were observed in comparison to controls [45,68]. A retrospective clinical study validated
the effectiveness of CGRP-targeting mAbs in CM patients who also suffered from NP.
Interestingly, in these patients, the anti-CGRP treatment significantly improved the Neuro-
pathic Pain Scale scores. Limitations of this study include the fact that it was an open-label
trial and not placebo-controlled trial, and that the number of patients was very low [18].
Allodynia is the common clinical feature of both migraine and NP. Peripheral and central
sensitization, allodynia, and responsiveness to anti-CGRP mAbs point to the potential
common role of CGRP in both migraine and NP.

3. Transient Receptor Potential Ion Channel Function in Migraine and
Neuropathic Pain

TRP ion channels are non-selective cation channels and can be divided into six sub-
families: TRPV (vanilloid), TRPA (ankyrin), TRPM (melastatin), TRPC (canonical), TRPP
(polycystin), and TRPML (mucolipin) [69,70]. Preclinical studies have concluded the puta-
tive role of TRPs in migraine. The activation of TRPs (TRPA-1, TRPV-1) in the TCC results
in CGRP and substance P release and depletion from the central branch of the trigeminal
nerve endings. The consequences are overexcited, second-order, pain-processing neurons
in the TCC, which lead to central sensitization. The peripheral parts of the trigeminal nerve
terminals, projecting into the cerebral dura mater and the vasculature of the meninges, con-
tain TRPs. The activation of the TRPs leads to CGRP release, which can act on its receptors
on the smooth muscle cells of blood vessels, resulting in strong vasodilation [70,71].

3.1. Migraine

Capsaicin, as a potent and highly selective TRPV-1 receptor agonist, is a chemical
compound isolated from chili pepper. A randomized controlled trial (RCT) using intranasal
civamide (a synthetic stereoisomer of capsaicin) for M0 and MA patients during headache
attacks revealed decreased pain severity at 2 h post-dose in 55.6% of patients, and 22.2%
of patients were pain-free [72]. A double-blind study of CM patients demonstrated that
repeated intranasal capsaicin application had favorable effects [73]. A single-blind, placebo-
controlled, crossover study of a small number of M0 patients, who were treated with topical
capsaicin (0.1%) jelly, led to the relief of arterial pain by at least 50% [74].

TRPM-8, a non-selective cation channel, can be activated by cold temperatures and
menthol. A triple-blind RCT revealed that a 10% menthol solution applied to the forehead
and the temporal skin areas was significantly superior to the placebo at providing 2 h long
pain freedom [75].

Extensive preclinical studies focusing on TRP ion channels have concluded that TRPA-1
and TRPV-1 could play crucial roles in the activation of several substances (as migraine
triggers) that evoke migraine pain. Odors (cigarette smoke, formalin, Umbellularia califor-
nica—‘headache tree’) are can trigger and worsen migraine attacks via TRPA-1 receptor
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agonism. Other agents, such as Tanacetum parthenium (feverfew) and Angelica sinensis (dong
quai, female ginseng) as desensitizing TRPA-1 receptor agonists, are migraine-preemptive
factors. A well-known migraine trigger, glyceryl trinitrate (nitroglycerine-NTG) as a nitric
oxide donor, is also a TRPA-1 receptor agonist [19]. The long-recognized migraine triggers
are alcohol-containing drinks (ethanol), which are TRPV-1 receptor agonists. Capsaicin,
as a pungent ingredient of paprika (Capsicum), is a desensitizing agonist of the TRPV-1
receptor [19].

An unusual clinical study examining the scalp arteries (superficial temporal and
occipital arteries) of CM patients demonstrated significantly increased TRPV-1-like im-
munoreactive nerve fiber density in the wall of the arteries of CM patients versus in those
of the control group(Table 2) [76].

Table 2. Selected human clinical data related to TRP ion channels in migraine and neuropathic pain.

Migraine

Ref.
EM

CMM0 MA

Ictally Interictally Ictally Interictally

- - - - ↑TRPV-1-like immunoreactive nerve
fibers density (the wall of scalp arteries) [76]

Neuropathic pain
ref.

Peripheral NP Central NP

↓pain intensity after 8% capsaicin patch treatment
(in post-herpetic neuralgia, chronic postsurgical NP, post-traumatic NP, PDN, HIV-associated
NP, painful radiculopathy, trigeminal neuralgia, chemotherapy-induced NP)

-

[20]
[77]
[78]
[79]

↑: increased concentration; ↓: decreased concentration; =: no change. CM: chronic migraine, EM: episodic
migraine, HIV: human immunodeficiency virus, IL: interleukin, M0: migraine without aura, MA: migraine with
aura, NP: neuropathic pain, nd: no data available, PDN: painful diabetic neuropathy, TRP-1: transient receptor
potential 1.

A recent pilot study searching for predictors of migraine chronification investigated
1911A/G single nucleotide polymorphism (SNP) in the TRPV-1 gene in patients with
EM and CM compared to healthy subjects. The results showed that genotype frequency
distribution in EM was comparable with that in the controls, while it differed significantly
in CM patients [80]. Another genetic study on Spanish migraine patients demonstrated an
association between migraine and SNPs of the TRPV-1 and TRPV-3 receptor genes [13,81].
The above-discussed clinical data has led to the design of early-phase clinical trials targeting
thermo TRP channels for migraine treatment, such as an oral TRPV-1 receptor antagonist
(NCT00269022), a TRPM-8 receptor agonist (topical menthol 6%) (NCT01687101), and a
TRPM-8 receptor antagonist (oral AMG 333) (NCT01953341) [82]. The final results are not
yet available.

3.2. Neuropathic Pain

Nociceptors are special afferent sensory neurons which convey thermal, mechanical,
and chemical stimuli. The members of the TRP family are densely expressed on nocicep-
tors. Therefore, they have fundamental roles in nociception and NP transmission [83–86].
A high-concentration (8%) capsaicin patch reversibly de-functionalizes the nociceptive
nerve terminals [14,87]. Based on the latest Cochrane Database, the 8% capsaicin patch
is effective, well-tolerated, and safe for the treatment of PHN, HIV-neuropathy, and
PDN (Table 2) [20]. Clinical trials revealed that the 8% capsaicin patch significantly
reduced the average pain intensity in chronic postsurgical NP [77]. A retrospective
observational study collecting different types of peripheral NP patients (PHN, chronic
postsurgical NP, post-traumatic NP, PDN, HIV-associated NP, painful radiculopathy,
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and trigeminal neuralgia) demonstrated a reduction in pain intensity and in the pain
area after the application of the 8% capsaicin patch [78]. The 8% capsaicin patch can
provide pain relief for up to 3 months or longer after a single 30–60 min application in
chemotherapy-induced NP [79].

Early phase clinical studies targeting thermo TRP channels for NP treatment, including
an intranasal TRPV-1 receptor agonist in PHN (NCT01886313), a subcutaneous TRPV-1
receptor inhibitor (parentide) in non-specified NPs (EP002846-21), an oral TRPV-3 receptor
antagonist for non-specified NPs (NCT01463397), and a TRPM-8 receptor agonist (topical
menthol 7%) for chemotherapy-induced peripheral neuropathy (NCT0185567) are under
way [82]. Published data are not yet available.

Capsaicin, as a potent TRPV-1 receptor agonist, can decrease the intensity of pain
either in migraine or NP via the modulation of the release of pain-related neuropeptides
from nociceptors. In migraine, several agents targeting TRPA-1 and TRPV-1 receptors
can trigger or preempt headache attacks. The high-concentration (8%) capsaicin patch
is strongly recommended for the treatment of peripheral NPs such as PDN, PHN,
and HIV-neuropathy [88,89]. Early-phase clinical trials are ongoing both for migraine
and NPs.

4. Endocannabinoid Function in Migraine and Neuropathic Pain

Endocannabinoids are endogenous cannabis-like substances. Chemically, they are
characterized as small molecules, and they are derived from arachidonic acid. As neuro-
transmitters, endocannabinoids are part of the biological endocannabinoid system and act
on CBRs: CBR type 1 (CBR-1) and CBR type 2 (CBR-2). Their main endogenous ligands are
anandamide (N-Arachidonoylethanolamine) and 2-arachidonoylglycerol (2-AG). Moreover,
the system involves enzymes that regulate the synthesis and degradation of the ligands.
CBR-1 is located in the nervous system, mainly in the brain, while CBR-2 is found in the
immune system [20,90].

In the endocannabinoid system, one of the main catabolic enzymes is fatty acid
amide hydrolase (FAAH), which catabolizes fatty acid ethanolamides such as anan-
damide. Other enzymes of this system include monoacylglycerol lipase (MAGL), dia-
cylglycerol lipase alpha, diacylglycerol lipase beta, and alpha/beta hydrolase domain 6.
Fatty acid ethanolamides and 2-AG are the main endocannabinoid signaling lipids
interacting with CBR-1 and CBR-2 [20,91]. The endocannabinoid system seems to be
dysfunctional and dysregulated in migraine. It interacts with migraine-related pathways
such as the serotonin system (5-HT1A, 5-HT2A receptors), the modulator of somatic
pain transmission (periaqueductal grey matter), meningeal vessel dilatation, and the
activation of the TCC [92,93].

4.1. Migraine

In a clinical trial, the activity of FAAH and the specific anandamide membrane trans-
porter (AMT) were measured in platelets taken from the peripheral blood of M0 patients
and healthy controls. The results showed significant sex differences in the activity of FAAH
and AMT in both study groups. Namely, an increase in the activity of FAAH and AMT
was found only in female but not male M0 patients (Table 3) [94]. A study focused on the
examination of anandamide, palmitoylethanolamide (PEA), and 2-AG concentrations in the
cerebrospinal fluid (CSF) of patients with CM compared to those in the CSF of control sub-
jects. The results showed that CSF concentrations of anandamide were significantly lower,
while those of PEA were significantly higher in CM patients versus in the non-migraineur
control group. 2-AG concentrations were below detection level in both patient and control
groups [95].
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Table 3. Selected human clinical data related to endocannabinoids in migraine and neuropathic pain.

Migraine

Ref.
EM

CMM0 MA

Ictally Interictally Ictally Interictally

- ↑FAAH and AMT (platelet)
(only in female patients) - - - [94]

- - - -
↓anandamide (CSF)
↑PEA (CSF) [95]

- - - - ↓AMT, FAAH (platelet) [96]

- - - - ↓anandamide, 2-AG [97]

- =anandamide (plasma) - =anandamide (plasma) - [98]

Neuropathic pain
ref.

Peripheral NP Central NP

- =mean pain intensity after ultramicronized sublingually PEA treatment (NP associated with spinal
cord injury) [99]

↑: increased concentration; ↓: decreased concentration; =: no change. 2-AG: 2-arachidonoylglycerol, AMT:
anandamide membrane transporter, CM: chronic migraine, CSF: cerebrospinal fluid, EM: episodic migraine,
FAAH: fatty acid amide hydrolase, M0: migraine without aura, MA: migraine with aura, NP: neuropathic pain,
-: no data available, PDN: painful diabetic neuropathy, PEA: palmitoylethanolamide.

A comparative clinical trial demonstrated that levels of AMT and FAAH were sig-
nificantly reduced in the platelets of CM patients compared to those in the platelets of
EM patients and the control group, and this was observed for both sexes [96]. A clinical
study investigating the levels of anandamide, 2-AG, and serotonin in the platelets of CM
patients and healthy controls found that anandamide and 2-AG platelet levels were signifi-
cantly lower in CM patients versus controls. Furthermore, serotonin levels in the platelets
were also strongly reduced in the CM group and were correlated with 2-AG levels [97].
An observational, cross-sectional study comparing the binding of CBR-1, as detected by
positron emission tomography (PET), among female migraine patients and healthy controls
demonstrated a global increase, which was most pronounced in the anterior cingulate,
mesial temporal, prefrontal, and superior frontal cortices of the brains of migraineurs [100].

A clinical trial was designed for migraineurs with medication overuse headaches
before and after withdrawal treatment. The results demonstrated a marked facilitation of
spinal cord pain processing (an increased temporal summation threshold of the nociceptive
withdrawal reflex and a reduction in the related pain sensation) in migraineurs before
withdrawal treatment when compared with controls. The significant acute reduction of
FAAH activity in platelets was coupled with a reduction in the facilitation of pain processing
after versus before withdrawal treatment [101]. A clinical study concluded that the plasma
levels of anandamide and related N-acylethanolamines and linoleic acid-derived oxylipins
did not show any differences between M0 versus MA patients and migraine versus healthy
controls [98].

Results from a genetic study demonstrated a significant haplotypic effect of CNR1 (the
gene of CBR-1) on headaches with migraine symptoms (e.g., nausea, photophobia, disabil-
ity) only when using extreme trait combinations (0 symptoms versus 3 symptoms) [102].
Later, the same research group reported that variants in the CNR1 gene were predisposed to
headaches with nausea in the presence of life stress. None of the SNPs showed the primary
genetic effects on possible migraine [103]. A RCT testing the effects of a 12-week aerobic
exercise plan on plasma anandamide concentration and its relationship with clinical and
cardiorespiratory outcomes in EM patients revealed plasma anandamide level reduction
both in migraine and control exercise groups. Significant correlations were found between
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the reduction in abortive medication used and in cardiorespiratory fitness and reduced
anandamide plasma levels [104].

A recent pilot study of EM and CM with medication overuse headache patients
demonstrated higher CBR-1 and CBR-2 gene and protein expression in peripheral blood
mononuclear cells compared to controls. FAAH gene expression was lower in the migraine
groups compared to that in the controls. The gene expression of MAGL was significantly
higher in the migraineurs [105]. In a clinical trial of EM patients and healthy controls,
plasma anandamide and PEA levels, the latter being an anandamide activity enhancer,
and spinal sensitization were evaluated in a validated human model of migraine based on
systemic NTG administration. After NTG administration, anandamide plasma levels were
increased in both groups, while increased PEA plasma levels were detected only in the EM
group [106].

4.2. Neuropathic Pain

Endocannabinoids exert effects on a wide range of biological cell functions, such as
exocytosis, proliferation, differentiation, and the control of pain transmission via inhibiting
the ascending stimulatory pain pathways and activating the descending inhibitory pain
pathways [107,108]. An early clinical study of patients suffering painful carpal tunnel
syndrome demonstrated that treatment with PEA (600 mg or 1200 mg administered daily
for 30 days) significantly reduced the median nerve latency time during nerve conduction
tests [109]. In a later RCT, ultramicronized PEA treatment (administered sublingually)
was investigated in patients with spinal-cord-injury-associated NP. The results showed no
difference in mean pain intensity between ultramicronized PEA and the placebo treatment
(Table 3) [100]. Based on promising preclinical data on FAAH and MAGL, clinical trials on
MAGL inhibitors are ongoing. A randomized, placebo-controlled, optimized titration study
with a MAGL inhibitor (ABX-1431) in PDN patients (NCT03447756) and a double-blind,
placebo-controlled, crossover trial in central (multiple sclerosis-associated) NP patients
(NCT03138421) are being conducted. In both clinical trials, favorable safety profiles were
observed. Detailed results related to efficacy are not yet available [20]. The importance of
the endocannabinoid system in pain modulation has been known since the early 1990s.
Based on clinical data on the ligands and enzymes in this system, a correlation has been
shown between the endocannabinoid system and migraine. Only limited clinical data on
how the compounds of this system affect NP are available. In the future, CBR antagonists
and FAAH and MAGL enzyme inhibitors might be promising therapeutic targets in the
treatment of both migraine and NP.

5. Kynurenine Function in Migraine and Neuropathic Pain

The KYN pathway is the metabolic pathway of tryptophan (Trp) catabolism. The
determinative Trp degradation product is L-kynurenine (L-KYN), which serves as a precur-
sor for KYNA. KYNA is one of the rare endogenous antagonists of excitatory amino acid
receptors. By affecting glutamate receptors, it has a role in pain processing and neurogenic
inflammation [6–8,110,111], as well as in cognitive dysfunctions [112–116]. The sites of
central sensitization are the second-order neurons of the TCC. This sensitization is induced
by the release of glutamate from C-fibers of the central branch of pseudounipolar trigeminal
neurons. Calcium ion influx and opened calcium storage in the cells result in increased
intracellular calcium ion levels, which activate protein kinase C and lead to the phosphory-
lation of NMDA receptors. This process results in increased glutamate sensitivity, which is
the basis for the hyperexcitability of the neurons [6,117].

5.1. Migraine

Related to the above-mentioned process, clinical studies were performed using differ-
ent body fluids including plasma, serum, CSF, and saliva. Higher plasma glutamic acid
levels were observed both during attacks and pain-free periods in M0 and MA patients
(Table 4) [118]. High levels of glutamic acid in platelets were detected in patients with
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MA compared to M0 patients and healthy controls. Furthermore, glutamic acid platelet
concentrations were higher ictally in MA patients [119].

Table 4. Selected human clinical data related to the glutamate and the kynurenine system in migraine
and neuropathic pain.

Migraine

Ref.
EM

CMM0 MA

Ictally Interictally Ictally Interictally

↑glutamic acid
(plasma)

↑glutamic acid
(plasma)

↑glutamic acid
(plasma)

↑glutamic acid
(plasma) - [118]

- - ↑glutamic acid
(platelet)

↑glutamic acid
(platelet) - [119]

↓glutamic acid
(plasma) - ↓glutamic (plasma) - - [120]

↑glutamic acid (CSF) - ↑glutamic acid (CSF) - - [120]

- ↑glutamic acid
(saliva) - - - [121]

- - - - ↑glutamic acid (CSF) [122]

- - - - ↓KYNA (serum) [123]

-

↓L-KYN, KYNA,
anthranilic acid,
picolinic acid,
5-hydroxy-
indoleaceticacid
(plasma)

- - - [124]

Neuropathic pain
ref.

Peripheral NP Central NP

↑L-glutamate (plasma) in CRPS
↓L-Trp (plasma) in CRPS
↑the KYN/TRP ratio

- [125]

negative correlation: TRP serum level and pain intensity positive correlation: (the KYN/Trp
ratio and pain intensity(temporomandibular disorders myalgia) - [126]

↑: increased concentration; ↓: decreased concentration. CM: chronic migraine, CRPS: complex regional pain
syndrome, CSF: cerebrospinal fluid, EM: episodic migraine, KYNA: kynurenic acid, L-KYN: L-kynurenine,
M0: migraine without aura, MA: migraine with aura, NP: neuropathic pain, -: no data available, Trp: tryptophan.

In EM M0 and MA patients, plasma levels of glutamic acid were lower during attacks,
while CSF concentrations of glutamic acid were higher in the migraineurs than in the con-
trols [120]. Interictally, in the saliva of M0 patients, elevated glutamic acid concentrations
were reported [121]. High glutamate concentrations in the CSF of CM patients compared
to controls were also demonstrated [122].

Imaging studies in migraine patients have attempted to find a link between the gluta-
matergic system and specific brain regions. Altered excitatory neurotransmitter distribution
in the anterior cingulate cortex and insula of migraineurs was observed by magnetic res-
onance imaging spectroscopy (MRI) [127]. A meta-analysis of MRI spectroscopy data
during pain-free periods in patients suffering from M0, MA, or CM revealed increased
glutamate concentrations in particular brain regions [128,129]. In M0 patients, during a
resting state functional MRI, altered periaqueductal gray matter functional connectivity
(as a brainstem migraine generator and a pain modulator) was detected and found to be
correlated with plasma Trp concentrations, both of which were higher in migraineurs than
controls [130–132].
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A rare subtype of MA, familial hemiplegic migraine (FHM), can be divided into three
subclasses: FHM1, FHM2, and FHM3. The following genetic mutations led to the alteration
of the glutamate system: In the patients suffering from FHM1, CACNA1A (encoding
the α1 subunit of the neuronal Ca,2.1. voltage-gated calcium channel) gene disruption
results in glutamate release from presynaptic nerve terminals. In FHM2 patients, the
ATP1A2 gene (encoding the α2 subunit of Na+/K+ adenosine triphosphate (ATP)-ase
pumps) is damaged and indirectly reduces the uptake of glutamate from the synaptic cleft
in astrocytes. In FHM3, the SCNA1 (encoding the pore-forming α1 subunit of neuronal
NaV1.1 Na+ channels) gene lesion can reduce the firing of inhibitory interneurons and can
increase glutamate levels in the synaptic cleft [133–136]. By studying these rare subtypes of
MA, the role of glutamate has become better characterized.

CM is a distinct subclass of migraine that develops if the patient suffers from more
than 15 headache days per month, which is accompanied by at least eight days of M0 or MA
for three consecutive months [1]. In CM, which is a devastating form of migraine headache
that greatly affects quality of life, altered KYN pathway metabolites and a reduction in the
serum levels of KYNA have been observed [137].

In a well-designed clinical trial examining female M0 patients during headache-free
periods, plasma concentrations of Trp metabolites (L-KYN, KYNA, anthranilic acid, pi-
colinic acid, and 5-hydroxy-indoleacetic acid) were significantly decreased. Diminished
peripheral Trp catabolism during the interictal period might act as a trigger of migraine
attacks [123]. The first in-human, phase 1, open-label, single ascending dose study of
L-KYN administered via intravenous infusion in healthy volunteers revealed that L-KYN
was safe and well-tolerated [124]. Thus, monitoring the status of KYN metabolism is under
extensive research [138,139].

5.2. Neuropathic Pain

A clinical sign of central sensitization is the phenomenon of allodynia, which mirrors
the activation of the glutamatergic system in NP [6,22,140]. Overactive glutamatergic
transmission via NMDA receptors is the basis of central sensitization in NP. Blocking the
allosteric glycine B co-agonist site on NMDA receptors leads to the antagonism of the
glutamate system. L-4-chlorokynurenine, a novel oral prodrug, is a potent and selective
glycine B site inhibitor.

A crossover RCT revealed that NGX426, an oral AMPA-kainate receptor antagonist,
reduced capsaicin-induced pain and hyperalgesia in healthy volunteers [141]. A phase 2
outpatient RCT examining LY545694 tosylate, a potent and selective ionotropic glutamate
receptor antagonist, in PDN patients did not demonstrate a difference when compared to
the placebo [142]. A dose-escalation RCT demonstrated a consistent reduction of allodynia
and mechanical and heat hyperalgesia in an intradermally capsaicin-induced pain model
in healthy volunteers [143].

In CRPS patients, the plasma levels of L-glutamate significantly increased, whereas
those of L-trp significantly decreased when compared to the controls. The L-KYN to
L-trp (KYN/Trp) ratio exhibited a significant increase in patients. A significant correlation
between overall pain, plasma levels of L-glutamate, and the KYN/Trp ratio was detected.
A correlation between the decrease in plasma L-Trp concentration and the disease duration
was also observed in CRPS patients (Table 4) [125].

An exploratory pilot study involving female patients with NP-like syndromes, such
as temporomandibular disorders myalgia and fibromyalgia, showed associations between
the KYN/Trp ratio and pain intensity. In the temporomandibular disorder myalgia, a
significant negative correlation between plasma Trp concentration and the worst pain
intensity was observed, and a positive correlation between the KYN/Trp ratio and both
the worst and average pain intensities were observed. Women suffering from fibromyalgia
exhibited significantly lower plasma Trp levels than the controls did [126].

In addition to neuropeptides, the pathomechanism of hyperexcitability and sensitiza-
tion is an overactivated glutamate system both in migraine and NP. Alteration of the KYN
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system has been reported in these two painful clinical conditions. Metabolites of the KYN
pathway might have future therapeutic potential for migraine and NP.

6. Cytokine Function in Migraine and Neuropathic Pain

In the late eighties and early nineties, clinical studies demonstrated that intravenously
administered TNF produced headaches in patients with tumors [144–147]. There is growing
evidence that cytokines play a role in the genesis of migraine pain. They are released by
neurons, microglia, astrocytes, macrophages, mast cells, and T-cells. Human studies reflect
that the pro-inflammatory cytokines are TNF-alpha, IL-1beta, IL-6, and IL-18 [15,148].
Given that a balance of pro- and anti-inflammatory cytokines is important for neural
functions [149–152], alterations in pro- and anti-inflammatory cytokines could be involved
in synaptic and behavioral changes [153–157].

6.1. Migraine

The pro-inflammatory cytokines may have a role in inducing nausea and headaches
during a migraine attack by increasing arachnoid acid production [15]. Several trials inves-
tigated the pro- and anti-inflammatory cytokines in plasma, saliva, and CSF of migraineurs.
In an early clinical study, there were no differences in plasma IL-1 and TNF during migraine
attacks compared to headache-free periods in M0 and MA patients (Table 5) [158].

Table 5. Selected human clinical data related to cytokines in migraine and neuropathic pain.

Migraine

Ref.
EM

CMM0 MA

Ictally Interictally Ictally Interictally

↑IL-6 (urine)
=IL-1beta (urine)
↓TNF-alpha (urine)

↑IL-6 (urine)
=IL-1beta (urine)
↓TNF-alpha (urine)

- - - [158]

=IL-1, TNF (plasma) =IL-1, TNF (plasma) =IL-1, TNF
(plasma) =IL-1, TNF (plasma) - [159]

- =TNF-alpha, IL-6
(serum) - =TNF-alpha, IL-6 (serum) - [160]

- ↑TNF-alpha, IL-1beta,
IL-10 (plasma) - - - [160]

↑TNF-alpha (serum) - - - - [161]

↑IL-10, IL-6 (serum) - - - - [162]

↑IL-1 receptor
antagonist (CSF) - ↑IL-1 receptor

antagonist (CSF) - - [161]

=TN-Falpha (serum) - - - - [163]

↑IL-1beta, IL-6 (serum)
↑Il-10 (serum) - - - - [164]

↑IL-6 (serum) - ↑IL-6 (serum) - - [165]

↑TN-Falpha, IL-1beta,
IL-6 (serum) - - - - [166]

- ↓IL-6 (mRNA and
serum) - - - [167]

- - - - ↑TNF-alpha,
IL-6 (serum) [168]

- ↑IL-1beta (saliva) - - - [169]
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Table 5. Cont.

Migraine

Ref.
EM

CMM0 MA

Ictally Interictally Ictally Interictally

↑IL-18 (serum) ↑IL-18 (serum) ↑IL-18 (serum) ↑IL-18 (serum) - [170]

- - - ↑IL-6 (mRNA) - [171]

-

↑IL-4, IL-18, TGF-beta,
TNF-alpha (mRNA)
=IL-1beta, IL-17, IL-2
(mRNA)

-

↑IL-4, IL-18, TGF-beta,
TNF-alpha (mRNA)
=IL-1beta, IL-17, IL-2
(mRNA)

- [172]

Neuropathic pain
ref.

Peripheral NP Central NP

↑TNF-alpha expression (Schwann cells) - [173]

↑IL-2, TNF-alpha (mRNA, plasma)
↓IL-4, IL-10 (mRNA, plasma) - [174]

↑TNF-alpha (serum) in PDN - [175]

↑TNF-alpha (plasma) in PDN - [176]

↑IL-6 (serum) in painful DSPN - [177]

↑TNF-alpha, IL-1beta (mRNA)
↓IL-10 (mRNA)
=IL-4 (mRNA) (in NP after peripheral nerve lesion)

- [16]

↑: increased concentration; ↓: decreased concentration; =: no change. CM: chronic migraine, CSF: cerebrospinal
fluid, DSPN: distal sensori-motor polyneuropathy, EM: episodic migraine, IL: interleukin, M0: migraine without
aura, MA: migraine with aura, mRNA: messenger ribonucleic acid, NP: neuropathic pain, -: no data available,
PDN: painful diabetic neuropathy, TGF: tumor growth factor, TNF: tumor necrosis factor.

A clinical trial analyzed IL-1beta, IL-6, and TNF-alpha in 24 h urine samples of female
migraineurs during menstrual and non-menstrual migraine attacks and headache-free
periods and compared them with those of non-headache controls. The mean IL-6 levels
in the urine were higher in all three samples for migraineurs versus controls, while the
IL-1beta levels showed no difference. The TNF-alpha values were very low in the menstrual
migraineurs compared to those in the controls [158].

Another clinical trial failed to demonstrate differences in the serum concentrations of
TNF-alpha and IL-6 between patients with M0, patients with MA, and healthy controls;
however, the soluble receptor TNF-RI tended to be lower [160]. A clinical study of migraine
patients revealed that the plasma levels of TNF-alpha, IL-1beta, and IL-10 were significantly
higher ictally versus interictally [178]. The TNF-alpha levels in the internal jugular blood
of M0 patients were elevated during ictal periods [161]. A clinical trial demonstrated that
IL-10 serum levels were higher during migraine attacks versus during the interictal period
and in healthy controls. Furthermore, the IL-6 serum concentrations were increased in the
migraineurs compared to those in the controls [162]. A pilot study of EM patients demon-
strated no significant difference in the serum levels of TNF-alpha during the attacks or
headache-free periods [163]. A case-control study investigating newly diagnosed migraine
patients revealed significantly higher serum IL-1beta and IL-6 concentrations, while the
IL-10 serum levels were lower compared to those of healthy controls [164]. A clinical study
investigating M0 and MA patients in both attack and pain-free periods revealed that serum
levels of IL-6 were significantly higher in migraine patients during attacks compared to
those in controls [165].

A prospective, case-control RCT of migraineurs concluded that the serum concentra-
tions of TNF-alpha, IL-1beta, and IL-6 were significantly higher during migraine attacks
compared to those in controls [166]. In the MOXY study, which studied female migraineurs
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responsive to adjunctive cervical non-invasive vagus nerve stimulation (VNS), the inter-
ictal saliva ELISA assays of IL-1beta showed significantly elevated values both pre- and
post-VNS procedure when compared to healthy controls [167]. The evaluation of the inflam-
matory state in migraineurs versus healthy controls in a case-control study demonstrated
that the serum levels of TNF-alpha and IL-6 were significantly increased in CM patients as
opposed to EM patients and controls [168]. The SalHead longitudinal prospective cohort
study, analyzing salivatory IL-6 and IL-1beta levels, observed non-significant differences at
various time-points (headache-free period versus during a headache versus one day after
the headache) between migraine patients and tension-type headache patients. Salivatory
levels of IL-1beta had the highest discriminatory value between headache patients and
healthy controls [169]. An investigation of serum IL-18 (previously interferon-gamma)
levels in M0 and MA patients, ictally and interictally, revealed that they were higher in
migraineurs than in the control group. IL-18 serum concentrations were similar in the ictal
and interictal periods [170].

An interesting study analyzing pro- and anti-inflammatory cytokine levels in the
CSF revealed that IL-1 receptor antagonist levels were elevated in M0 and MA patients
during attacks compared to those in controls. There were significant differences in the CSF
levels of certain cytokines (IL-1 receptor antagonist, monocyte chemoattractant protein-1,
and transforming growth factor-beta1) between the migraine and episodic tension-type
headache patients and the pain-free controls. The intrathecal pro-inflammatory monocyte
chemoattractant protein-1 level was correlated with the IL-10 anti-inflammatory cytokine
in MA patients [171].

The analysis of genetic variations of cytokines has provided useful data regarding the
neuroinflammation process of migraine. A genetic study showed significant differences in
the TNF-alpha −308G/A and IL-1beta +3953C/T gene polymorphisms in migraineurs ver-
sus control subjects [172]. A meta-analysis from 2011 focusing on TNF-alpha 308G/A and
TNF-beta 252A/G gene polymorphisms among migraine patients concluded that there was
no overall association between the above-mentioned gene variants and migraine [173]. An-
other meta-analyis, published in 2014, revealed that TNF-beta 252A/G gene polymorphism
was not associated with overall migraine risk [174]. A clinical study analyzing omega-3
fatty acids and nano-curcumin supplementation targeting TNF-alpha gene expression and
serum concentrations in migraine patients demonstrated that the TNF-alpha messenger
ribonucleic acid (mRNA) was significantly downregulated and that the serum level of
TNF-alpha was decreased [175].

A RCT of EM patients revealed downregulated IL-6 mRNA and decreased IL-6 serum
concentrations [176]. An investigation of the IL-6 coding gene in the peripheral blood of M0
and MA patients demonstrated no significant differences in the expression of IL-6 between
total migraine patients and healthy controls. However, the expression of IL-6 was signifi-
cantly higher in the MA patients versus the controls [177]. A clinical study investigating
cytokine-coding gene expression in blood among M0 and MA patients revealed that the
expression of IL-4, tumor growth factor-beta (TGF-beta), and TNF-alpha was increased in
patients compared to that in controls, but there was no difference in the expression levels of
IL-1beta, IL-17, and IL-2. The expression of IL-18 was also higher in the migraineurs (lower
in women than in men) compared to that in the healthy controls [178]. A genetic study
focusing on the TNF-alpha gene polymorphisms (rs1800629 and rs1799724) among Jorda-
nian migraineurs showed its significant associations with migraine occurrence [179]. For
future therapeutic innovations in migraine, IL-37, as an anti-inflammatory cytokine, may
be a crucial player. IL-37, as a natural inhibitor of immune response and inflammation, can
diminish pro-inflammatory IL-1 activation and upregulate the anti-inflammatory IL-10 [15].
A recent meta-analysis of peripheral inflammatory cytokines in migraine concluded that
IL-1beta, IL-6, and TNF-alpha serum levels were higher in migraineurs when compared
to healthy controls, while IL-2 and IL-10 (an anti-inflammatory cytokine) did not show
significant differences [180].



Int. J. Mol. Sci. 2023, 24, 4114 14 of 29

6.2. Neuropathic Pain

There is increasing evidence that cytokine expression is a contributor to NP [181].
In the development of NP, TNF-alpha, IL-1, and IL-6 may have fundamental roles in
inflammation [129]. Cytokine action sites involve peripheral nerve endings, dorsal root
ganglia, the synaptic junction in the dorsal horn of the spinal cord, and distinct regions of
the brain (like the hippocampus, locus coeruleus, and red nucleus) [182–185].

A clinical investigation of nerve biopsies in neuropathic patients with and without
pain revealed upregulated TNF-alpha expression in human Schwann cells in the group with
pain (Table 4) [186]. A clinical study focusing on mRNA expression and the plasma protein
levels of cytokines in patients who had painful versus painless neuropathies demonstrated
that both of the measured parameters of pro-inflammatory cytokines (IL-2 and TNF-alpha)
were increased in the patient group with pain, while the levels of IL-4 and IL-10, as anti-
inflammatory cytokines, were lower in this group compared to that in the patients without
pain [187]. A clinical investigation of PDN and diabetic neuropathic patients without
pain indicated increased TNF-alpha serum levels in the neuropathic group compared to
non-neuropathic and healthy groups [188].

A prospective genetic study analyzing local (skin) and systemic (plasma) cytokine
gene expression in patients suffering from small fiber sensory neuropathy revealed that the
local gene expressions of IL-6 and IL-8 (chemokine) were significantly increased (5-fold),
while an only mildly elevated gene expression of IL-2 and IL-10 was detected in the plasma
(2-fold) [181].

A cross-sectional study revealed that plasma TNF-alpha levels and immunoreactivity
for TNF-alpha were higher in patients with severe pain, based on VAS in PDN patients,
compared with controls [189]. A prospective RCT of patients suffering low back and
leg pain, caused by lumbar disc herniation and lumbar spinal canal stenosis, who were
treated with epidurally administered etanercept (an anti-TNF mAb) versus dexamethasone,
demonstrated that etanercept significantly decreased both leg and low back pain [190].
The same clinician group published the results of a clinical trial using epidurally applied
tocilizumab onto the spinal nerve as an anti-IL-6 receptor antibody for patients with low
back and radicular leg pain caused by lumbar spinal stenosis. They concluded that the
infiltration of tocilizumab was more effective than that of dexamethasone in these patient
groups [191]. A double-blind, placebo-controlled trial evaluating the analgesic effect
of losmapimod (a p38 alpha/beta inhibitor) in patients with NP after peripheral nerve
injury revealed that losmapimod statistically did not differ in analgesic response to the
placebo [192].

A prospective study of patients with painful or painless peripheral neuropathy demon-
strated that painful neuropathies are associated with increased pro-inflammatory IL-6 and
anti-inflammatory IL-10 gene expression in the sural nerve [193].

A clinical trial including patients with painful distal sensorimotor polyneuropathy
(DSPN) from the German KORA F4 survey found positive associations between serum
concentrations of IL-6 and painful DSPN, whereas no associations were observed with IL-18,
TNF-alpha, and IL-1 receptor antagonists [194]. A parallel-group RCT of patients suffering
central NP associated with spinal cord injury revealed that, in the anti-inflammatory
diet treatment group, the serum levels of pro-inflammatory cytokines, such as interferon-
gamma (later named IL-18), IL-1beta, and IL-6, were decreased [195]. A cross-sectional
study assessing different serum biomarkers including cytokines (oncostatin, TNFSF10,
TNFSG12, and TNFSF14) in patients with diabetic polyneuropathy did not find differences
in biomarker levels between DSPN patients with and without pain [196].

A genetic trial focused on patients with and without NP after peripheral nerve lesion-
ing revealed that, in white blood cells, the gene expression of TNF-alpha was higher in
patients with pain compared to those without pain. IL-1beta gene expression was higher in
the patients with pain compared to the controls. IL-10 showed lower gene expression in
the group with pain than in the control group, and IL-4 gene expression was not different
between the control and painless patients [16].



Int. J. Mol. Sci. 2023, 24, 4114 15 of 29

A pilot RCT of patients with peripheral NP due to PHN examined the mRNA
expression of IL-6 in two study groups. In Group 1, patients with PHN-related NP
received pregabalin monotherapy alone, while Group 2 patients were treated with a
combination of pregabalin and cognitive behavioral therapy. The results showed that the
patients in Group 2 had a significantly downregulated IL-6 mRNA expression compared
to Group 1 [197].

A recent meta-analysis focused on the association between pro-inflammatory (TNF-
alpha, IL-2, IL-6, IL-18) and anti-inflammatory (IL-10) cytokines as systemic inflammatory
biomarkers in painful and painless diabetic neuropathy. It concluded that the serum levels
of pro-inflammatory markers were increased, while those of the anti-inflammatory ones
were lower in painful compared to painless diabetic polyneuropathy [23].

In migraine, whether in ictal or interictal phases, the data regarding cytokines are
inconsistent, but pro-inflammatory cytokines tend to be elevated in human clinical trials.
InNP patients, the levels of pro-inflammatory cytokines have also been shown to be elevated
compared to those of controls in the majority of clinical studies.

7. Glial Function in Migraine and Neuropathic Pain

The trigeminovascular system is the backbone of the most accepted hypothesis for
migraine pathogenesis. The center of this system is the trigeminal ganglion, which involves
pseudounipolar neurons and satellite glial cells. There are strong data that glial cells have a
role in peripheral sensitization and neuroinflammation, which lead to migraine chronification
and the development of autonomic symptoms during migraine attacks [150,198].

7.1. Migraine

S100B is a calcium-binding protein in the cytoplasm of glial cells in the nervous system,
and it is a sensitive marker for glial cell injury. Clinical studies have used it as a biomarker
for the detection of glial involvement in the pathomechanism of EM and CM patients,
ictally and interictally. Unfortunately, the results are inconsistent. In a clinical study which
was performed during and after migraine attacks (2–4 days), the serum concentration of
S100B was elevated (Table 6) [199]. A trial of M0 patients revealed increased serum S100B
levels in both ictal and interictal phases [24]. A cross-sectional prospective study of M0
and MA patients revealed that serum S100B levels were significantly lower than those
of controls, and the two study groups did not differ [200]. A pilot RCT of CM patients
revealed that a glial cell modulator, ibudilast (phosphodiesterase inhibitor), did not reduce
the frequency of headaches but was well tolerated [201]. In a case-control trial, serum levels
of S100B were analyzed in EM and CM patients, and the results showed no interictal S100B
elevation [202]. In the EM and CM patients, the serum level of S100B was significantly
higher compared to that of the controls, and there was no difference between the two
patient groups [203].

Table 6. Selected human clinical data related to glial function in migraine and neuropathic pain.

Migraine

Ref.
EM

CMM0 MA

Ictally Interictally Ictally Interictally

↑S100B (serum) ↑S100B (serum) - - - [199]

↑S100B (serum) ↑S100B (serum) - - - [24]

- ↓S100B (serum) - ↓S100B (serum) - [200]

- ↑S100B (serum) - - ↑S100B (serum) [202]

- ↑S100B (serum) - - ↑S100B (serum) [203]
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Table 6. Cont.

Migraine

Ref.
EM

CMM0 MA

Ictally Interictally Ictally Interictally

Neuropathic pain
ref.

Peripheral NP Central NP

activated glial cells (PET):thalamus, anterior and
posterior central gyrus, paracentral lobule - [9,204]

↑: increased concentration; ↓: decreased concentration. CM: chronic migraine, EM: episodic migraine, M0: mi-
graine without aura, MA: migraine with aura, NP: neuropathic pain, -: no data available, PET: positron emission
tomography.

7.2. Neuropathic Pain

In the case of peripheral nerve lesions (the peripheral arm of neurons of the dorsal
root ganglia), one of the main consequences is ATP release from the central terminals in the
dorsal horn of the spinal cord. ATP acts on the microglia via purinergic P2 × 4 receptors
and results in the release of brain-derived neurotrophic factor from the activated glial cells.
This trophic factor stimulates second-order neurons via the activation of tyrosine kinase B
receptors. The result of this process is the central sensitization of the second-order neurons,
leading to the development of allodynia as a main clinical sensory sign of NP. It also leads
to the overactivation of the third-order neurons in the thalamus [6,205–210]. Based on these
findings, NP can be considered a gliopathy [211,212].

An early PET study, using a sensitive in vivo marker of glial cell activation, demon-
strated activated glial cells in the contralateral thalamus after limb amputation, which
pointed to a long-term transsynaptic glial response in the central nervous system (CNS)
following peripheral nerve injury (Table 6) [204]. A functional imaging technology using
newly synthesized glia-PET tracers has emphasized the importance of neuron-microglia
interactions in the mechanism of NP [9].

Preclinical studies have confirmed that opioids could activate the microglia via the toll-
like receptor 4 and the myeloid differentiation factor 2 receptor complex. The consequence
was an activated mitogen-activated protein kinase (MAPK) system, which resulted in
interleukin gene activation, leading to neuroinflammation [213,214].

Motor cortex stimulation is a potential therapeutic method for the relief of NP. In a
clinical study, epidural strips were implanted over the motor cortex in central post-stroke
NP patients and one trigeminal nerve injury NP patient. A comparison of postopera-
tive PET with preoperative scans demonstrated significant decreases in a tracer, [(11)C]
diprenorphine, binding to opioid receptors in different brain areas. Binding changes in
the anterior middle cingulate cortex and periaqueductal gray matter were significantly
correlated with pain relief [215]. A brain imaging study (integrated PET/MRI) with the
new generation ligand 11C-PBR28 of the translocator protein (TSPO), as a marker of glial
activation, demonstrated increased binding to the pain matrix in chronic low back pain
patients [216]. The peripheral benzodiazepine receptor, 18 kDa TSPO, is upregulated in
activated microglia. PET imaging studies using a specific tracer related to TSPO showed
higher activation of the thalamus, anterior and posterior central gyri and paracentral lobule
in pain patients versus controls [9].

The inhibition of the activated microglia in NP might be a novel therapeutic target.
A CNS glial modulator, propentofylline, administered orally, failed to decrease pain in
PHN patients in a proof-of-concept clinical trial (Protocol SLC022/201, EudraCT number
2008-002108-24). Activated p38 MAPK in spinal microglia was detected in peripheral- nerve-
injury-associated NP [217]. A RCT of patients suffering from peripheral NP following nerve
injury treated with a p38 MAPK inhibitor (dilmapimod) revealed significantly decreased
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daily average pain scores [217]. An in vitro study revealed that human and rodent microglia
responded differently to propentofylline (SLC022) [218]. Another p38 MAPK inhibitor,
losmapimod, which was investigated in a RCT of patients with NP from lumbosacral
radiculopathy, failed to decrease pain intensity [219].

In a prospective, open-label, pilot RCT of PDN patients, minocycline, a tetracy-
cline antibiotic used as a microglial inhibitor, significantly improved Visual Analog Scale
scores [220]. In another clinical trial involving NP patients, minocycline failed to decrease
pain intensity [221]. The neuron-microglia interaction is a rate-limiting step in sensitiza-
tion, both in migraine and NP. The overactivated glial cells have potential effects on the
trigeminal ganglia during the pain process in migraine, while they show activation in the
dorsal horn of the spinal cord and in the thalamus in NP. However, the results regarding
glial biomarkers, like the S100B protein, are controversial in migraine. Modern functional
imaging techniques are available for the detection of the presence of hyperactivated glia in
the CNS in NP patients. Unfortunately, thus far, microglia inhibitors have failed to reduce
pain intensity in these conditions.

8. Discussion

In this scoping review, we have highlighted the available clinical data with reference
to preclinical studies, starting from CGRP, which has recently gained credit as a target,
focusing on the potential pathogenic players both in migraine and NP, and inspiring
arguments and the direction of future research.

Hyperexcitability with peripheral and central sensitization leading to allodynia is a
common pathological feature in migraine and NP. One of the fundamental players in the
pathogenesis of migraine and NP is CGRP. The clinical trials showed that CGRP mAbs
reduce pain intensity in both conditions. Several CGRP antagonists and mAbs have been
approved for the treatment of migraine, while more clinical studies are expected for CGRP
intervention in NP. Regarding the clinical studies of CGRP, many data remain unavailable,
including data on interictal M0, MA, CM, and central NP. Hopefully, more clinical studies
will reveal the consequences of CGRP modulator administration to clarify its efficacy in
those subtypes of pain disorders [222–226]. Different TRP ion channels play distinct roles
in both migraine and NP [227]. Early phase clinical trials have begun studying the effect of
TRPV-1 receptor antagonists, TRPM-8 receptor agonists, and TRPM-8 receptor antagonists
in migraine and studying the effect of TRPV-1 receptor agonists and inhibitors, TRPV-3
receptor antagonists, and TRPM-8 receptor agonists in NP. The clinical data on TRP ion
channels are missing for EM and central NP. More clinical research on targeting TRP ion
channels is awaited to be know the potential use of TRP receptor modulators for those
subtypes. In addition, ATP-sensitive potassium channels are of particular interest for their
roles and potential targets in migraine treatment [228].

Migraine and NP share a common pathogenic mechanism with endocannabinoids
through the trigeminovascular and pain transmission systems. Potential analgesic lead
compounds may be distributed among the cannabinoid system’s receptors and enzymes,
such as CBR antagonists and FAAH and MAGL modulators. Clinical studies of peripheral
NP on the endocannabinoid remain to be released, and more studies in other subtypes
may help ascertain the potential of the system as a target [20,91–93]. Another endogenous
metabolic system attracting increasing attention for the discovery of analgesic targets is the
Trp-KYN metabolic system, which is responsible for the overexcitation of the glutamate
nervous system. Monitoring the levels and the ratios of KYN metabolites may be of
beneficial use for diagnostic biomarkers and thus, the KYN metabolic system may serve as
a potential therapeutic target [229–237]. Several clinical studies have reported the status of
glutamic acid in different tissue samples taken from migraineurs, but the results remain
inconclusive. More studies on KYN metabolites are expected. Clinical studies of central
NP remain missing.

Inflammation plays a certain role in both conditions. Preclinical data support the
significant involvement of both pro- and anti-inflammatory cytokines [238]. Generally, the
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levels of proinflammatory cytokines are elevated in migraine and NP, but the participation
of anti-inflammatory cytokines and the status of chronic low-grade inflammation in the
pathogenesis remain unclear. Relatively more clinical studies were conducted in ictal M0;
thus, a systematic review and/or meta-analysis may be able to synthesize the data. More
clinical studies on CM and central NP are expected. Clinical data has shown the overac-
tivation of glial function in the pain-relaying neural structures, showing increased S100B
and gliosis [150,198]. Thus, the microglia may serve as a potential target by suppressing
their activities. Relatively more clinical data on S100B in migraine are available; however,
its status remains inconclusive. Clinical studies of glial function are unavailable. More
markers for assessing glial function await to be explored.

Overviewing the common potential pathogenic factors in the pathogenesis of migraine
and NP in search of novel targets for pain management, the following issues have emerged
and may play a role in validating whether the targets we have proposed could remain as
main topics of research: the efficacy of CGRP remains uncharted in many subtypes; a better
understanding of TRPs in the pathogenesis and research on more TRP modulators remain
prerequisites; identifying the key players in the endocannabinoids system and the discovery
of more modulators may help research in this field to proceed a step forward; more studies
on the status of KYN metabolites in reference to glutamate levels may reveal their potential;
a consensus is expected regarding cytokines and sampling to monitor inflammatory status
and to zero in on a target; the discovery of more biomarkers and imaging techniques to
monitor the status of glial function remains a target (Table 7).

Table 7. Potential targets for novel pain management and current progress.

Potential Targets Comments

Calcitonin gene-related peptide (CGRP) More studies on CGRP modulators in the subtypes are required.

Transient receptor potential (TRP) ion channels Better understanding of TRPs in the pathogenesis and discovery of more
TRP modulators is expected.

Endocannabinoid system
Characterizing the endocannabinoids system network, and the discovery
of more enzyme modulators and of the potential use of the metabolites
may help advance this field of research.

Tryptophan-kynurenine (KYN) metabolic system More studies on the status of various KYN metabolites in reference to
glutamate levels are expected.

Neuroinflammation
A consensus regarding the type of cytokines and sampling tissues that
should be used to monitor an inflammatory status contributing to the
pathogenesis should be attained.

Microglia The discovery of more biomarkers and imaging techniques to monitor
the status of glial functions are expected.

The authors acknowledge the limitations of this review, which include the fact that it
has not covered other potential targets and that it has not referred to emerging analgesics
that are under extensive research. Matrix metalloproteinases (MMPs) are extracellular ma-
trix metalloproteinases that are implicated in various diseases including migraine and NP.
MMPs may play a role in the disintegration of the blood-brain barrier, leading to increased
neuronal excitability and thus migraine attacks. Preclinical studies have reported that in-
creased levels of MMPs induce pain-like symptoms, suggesting that MMPs may participate
in the pathogenesis of NP and thus could be a potential target for NP. Drug repurposing
has helped to identify a cosmetic product as an antimigraine agent. Onabotulinum toxin
A (Botox) is a potent neurotoxin that is widely applied in cosmetic procedures. Botox is
approved by the FDA for the prophylactic treatment of CM and has been extensively inves-
tigated for the potential treatment of NP. The exact mechanisms by which Botox relieves
CM and NP remains unknown [239,240]. Furthermore, engineering chimeric compounds
targeting more moieties responsible for pain sensation are under extensive study [241–245].
In addition, the contribution of sex and stress hormones such as estrogen and cortisol to
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pain thresholds and pain sensitivity must be taken into consideration, and may not only
help personalized pain management but also elucidate unidentified targets [246].

9. Conclusions

This scoping review has recapitulated human data on the pathological components
that play a role in the pathogenesis of both migraine and NP with reference to preclinical
findings. The data successfully support the hypothesis that migraine and NP have shared
pathomechanisms involved in CGRP, TRP ion channels, endocannabinoids, Trp-KYN
metabolism, neuroinflammation, and microglial malfunction, clarifying the unchartered
areas which are to be explored, reinforcing the need for a better understanding of the mech-
anisms of those participating components, and inspiring the discovery of more modulators
that may provide more options for future research. This line of research, buttressed by
preclinical studies, paves an exploratory path forward to help identify new biomarker
profiles, develop novel therapeutic agents, and thus build a personalized treatment plan
for migraine as well as NP.
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2-AG 2-arachidonoylglycerol
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
AMT anandamide membrane transporter
ATP adenosine triphosphate
CBR cannabinoid receptor
CGRP calcitonin gene-related peptide
CM chronic migraine
CNS central nervous system
CRPS complex regional pain syndrome
CSF cerebrospinal fluid
DSPN distal sensorimotor polyneuropathy
EM episodic migraine
FAAH fatty acid amide hydrolase
FHM familial hemiplegic migraine
HIV human immunodeficiency virus
IASP International Association for the Study of Pain
IL interleukin
KYN kynurenine
KYNA kynurenic acid
L-KYN L-kynurenine
M0 migraine without aura
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MA migraine with aura
mAbs monoclonal antibodies
MAGL monoacylglycerol lipase
MAPK mitogen-activated protein kinase
MRI magnetic resonance imaging spectroscopy
mRNA messenger ribonucleic acid
nd no data available
NMDA glutamatergic N-methyl-D-aspartate
NP neuropathic pain
NTG nitroglycerine
PDN painful diabetic neuropathy
PEA palmitoylethanolamide
PET positron emission tomography
PHN postherpetic neuralgia
RCT randomized controlled trial
SNP single nucleotide polymorphism
TCC trigemino-cevical complex
TNF tumor necrosis factor
Trp tryptophan
TRP transient receptor potential
TRPA transient receptor potential ankyrin
TRPC transient receptor potential canonical
TRPM transient receptor potential melastatin
TRPML transient receptor potential mucolipin
TRPP transient receptor potential polycystin
TRPV transient receptor potential vanilloid
TSPO translocator protein
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