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Abstract: The Catharanthus roseus receptor-like kinase 1-like (CrRLK1L), which is a vital member of
the plant receptor-like kinase family, plays versatile roles in plant growth, development, and stress
response. Although the primary screening of tomato CrRLK1Ls has been reported previously, our
knowledge of these proteins is still scarce. Using the latest genomic data annotations, a genome-wide
re-identification and analysis of the CrRLK1Ls in tomatoes were conducted. In this study, 24 CrRLK1L
members were identified in tomatoes and researched further. Subsequent gene structures, protein
domains, Western blot analyses, and subcellular localization analyses all confirmed the accuracy of the
newly identified SlCrRLK1L members. Phylogenetic analyses showed that the identified SlCrRLK1L
proteins had homologs in Arabidopsis. Evolutionary analysis indicated that two pairs of the SlCrRLK1L
genes had predicted segmental duplication events. Expression profiling analyses demonstrated that
the SlCrRLK1L genes were expressed in various tissues, and most of them were up- or down-regulated
by bacteria and PAMP treatments. Together, these results will lay the foundation for elaborating the
biological roles of SlCrRLK1Ls in tomato growth, development, and stress response.
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1. Introduction

As a crucial member of signal transduction, receptor-like kinases (RLKs) constitute the
largest receptor family in plants and play a significant role in plant growth, development,
stress, and pathogen response [1,2]. According to their diverse extracellular domains, plant
RLKs can be mainly divided into the following: the S-domain, the wall-associated kinase
domain, the legume lectin domain, the CRINKLY4 domain, the malectin-like (CrRLK1L)
domain, the malectin-like leucine-rich repeat domain, the leucine-rich repeat malectin
domain, the cysteine-rich repeat domain, the leucine-rich repeat (LRR) domain, the lysin
motif domain, the pro-rich/extension domain, and the calcium-dependent lectin domain
RLK family [3]. To the interest of many researchers, the plant-specific CrRLK1L protein
kinases were firstly identified in Madagascar periwinkle and have since been found to
exist in a variety of plant species [2,4,5]. Traditionally, CrRLK1Ls possess the following
three conserved domains: the malectin-like domain, the transmembrane helix domain, and
the kinase domain [5]. Some of the CrRLK1L members have been functionally identified,
including FERONIA (FER), ANXUR1/2 (ANX1/2), THESEUS1 (THE1), BUDDHA’S PAPER
SEAL1/2 (BUPS1/2), and HERCULES1 (HERK1).

The CrRLK1L family members are involved in a wide range of biological process
regulations, including male–female gametophyte recognition, cell expansion, hormone
signaling, energy production, stress tolerance, and host–pathogen interactions [2,6–11].
AtFER, which was originally identified from a pollen tube mutant, has become the most
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extensively investigated CrRLK1L protein in Arabidopsis [5,12,13]. AtFER takes part in
different hormone signals that contain auxin, ethylene, brassinosteroid (BR), abscisic acid
(ABA), and jasmonic acid (JA) [6,14–17]. Moreover, AtFER acts as a receptor for RALF1
(rapid alkalinization factor 1), RALF17, RALF23, RALF32, and RALF33 to regulate de-
velopment and biotic/abiotic stress responses [18–20]. As for other Arabidopsis CrRLK1L
members, AtTHE1 and AtHERK1 have been reported to regulate cell elongation [21,22],
AtANX1/2 and AtBUPS1/2 participate in pollen tube growth regulation [11,23], and ME-
DOS1 (MDS1), MDS2, MDS3, and MDS4 have been reported to be involved in metal ion
stress responses [24]. In addition, AtFER is involved in host–pathogen interactions, in-
cluding Golovinomyces (syn. Erysiphe) orontii and Pseudomonas syringae pv. tomato DC3000
responses [17,25]. Several CrRLK1L members have also been functionally identified in other
species. In rice, it has been reported that OsFLR1 (Oryza sativa FERONIA-like receptor1)
and OsFLR2 (also named DRUS1 and DRUS2) are essential for maintaining architecture,
reproduction, and seed yield [26,27]. Moreover, the ruptured pollen tube (RUPO) regulates
the growth and integrity of pollen tubes [28]. Apple MdFERL1 (Malus domestica FERONIA-
like1), MdFERL6, and tomato SlFERL (Solanum lycopersicum FERONIA-like) are involved
in fruit ripening [29,30]. In soybean, GmLMM1 (Glycine max lesion mimic mutant1) regu-
lates cell death and PTI (pattern-triggered immunity) processes, responding to bacterial
and oomycete pathogen infections [31]. In pears (Pyrus bretchneideri), PbrCrRLK1L3 and
PbrCrRLK1L26 take part in the pollen tube rupture process and growth [32]. Additionally,
Chenopodium quinoa CqFER, soybean GmCrRLK1L20, and tobacco NtCrRLK1L47 have been
reported to be involved in salt stress responses [33–35].

The tomato (Solanum lycopersicum), as an economically important fleshy fruit crop,
is widely accepted as a model species for studying the developmental and postharvest
biology of horticultural crops. The genome sequencing and annotations of tomatoes
were completed for the first time in 2012 [36]. Based on this, a previous genome-wide
receptor-like kinase (RLK) study found 23 CrRLK1L protein kinase subfamily members in
the tomato genome, but it did not analyze the gene structure, protein motifs, phylogeny,
subcellular localization, and gene expression of these proteins [37]. Over the past decade,
with the increasing ability of technology, the annotation of the tomato genome has become
more sophisticated and accurate. Therefore, it is necessary to re-identify and analyze the
CrRLK1L protein kinases in tomatoes. In this study, taking advantage of the state-of-the-
art and well-annotated tomato genome and protein database, genome-wide research of
the CrRLK1L protein families was performed. As a result, 24 CrRLK1L protein kinase
candidates were identified in the tomato genome. Further analysis showed the phylogenetic
relationship, physicochemical properties, gene structure, subcellular localization, conserved
protein domains, predicted motifs, and gene expression pattern of this family. It will give
us new insight into the tomato CrRLK1L family and help us reveal the function of these
proteins in the future.

2. Results
2.1. Identification of Tomato CrRLK1L Protein Kinases

All CrRLK1L protein kinases consist of a malectin-like domain and a kinase domain.
Arabidopsis CrRLK1L protein kinase sequences were submitted to the Pfam database, and
two conserved domains (Pfam: PF12819 and PF07714) were acquired. Based on these crite-
ria, the two conserved domains served as queries to screen the tomato protein databases in
the National Center for Biotechnology Information (NCBI) and the Sol Genomics Network
(SGN). As shown in Figure 1, 32 and 24 CrRLK1L protein kinase candidates were identified
in NCBI and SGN, respectively. As a result, 24 tomato CrRLK1Ls were matched to both
databases and named from SlCrRLK1L1 to SlCrRLK1L24 according to the location of the
chromosomes (Table 1). Meanwhile, there were differences in the annotation of ten proteins
in the NCBI and SGN databases (Figure S1; Table 1; Table S1). One of them was chosen to
verify the accuracy. We analyzed the gene structure and protein domain of SlCrRLK1L20
from the SGN annotation versions (from ITAG2 to ITAG4.1) and the NCBI RefSeq assembly
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accession versions (from GCF_000188115.2 to GCF_000188155.5) and found that the NCBI
RefSeq had complete UTR, CDS, intron, signal peptide, transmembrane helix, malectin-like,
and protein kinase descriptions (Figure 2a). Moreover, the SlCrRLK1L20 gene sequences
from SGN were all included in NCBI. Then, a unique polypeptide was used as an anti-
gen to produce a SlCrRLK1L20 antibody, which could detect SlCrRLK1L20NCBI (NCBI
GCF_000188115.5, the newest annotation protein) and SlCrRLK1L20SGN (SGN ITAG4.1,
the newest annotation protein) simultaneously (Figure 2b). The SlCrRLK1L20NCBI and
SlCrRLK1L20SGN CDSs were amplified by PCR (Figure 2c) and used to construct a plant
expression vector. A Western blot assay showed that SlCrRLK1L20NCBI was detected by
the anti-SlCrRLK1L20 antibody in the tomato but SlCrRLK1L20SGN was not (Figure 2d). At
the same time, the subcellular localization of SlCrRLK1L20NCBI and SlCrRLK1L20SGN was
conducted by confocal analysis. Solanum lycopersicum REMORIN1 (SlREM1) was identified
as a plasma membrane-labeled protein in previous research [38]. As shown in Figure 2e,
SlCrRLK1L20NCBI-GFP was co-localized with SlREM1 at the plasma membrane, while
SlCrRLK1L20SGN was not. The above results revealed that the annotation of SlCrRLK1L20
from NCBI was more accurate than SGN. Therefore, the subsequent related research was
mainly based on the NCBI database.
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Figure 1. Identification of tomato CrRLK1Ls in the NCBI and SGN databases. The predicted numbers
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PK-Tyr-Ser-Thr.

Table 1. List of the predicted CrRLK1L proteins in tomatoes.

Protein Name Protein ID
in NCBI

Protein
Length (aa)

Molecular
Weight (Da)

Theoretical
pI GRAVY Matched

SGN Locus

Annotation
Difference

in NCBI and SGN

SlCrRLK1L1 XP_025886195.1 854 95,039.67 6.86 −0.268 Solyc01g059910 Y
SlCrRLK1L2 XP_004230878.1 876 96,273.18 5.82 −0.212 Solyc01g109950 N
SlCrRLK1L3 XP_019067666.1 1152 129,597.94 6.93 −0.174 Solyc02g014030 N
SlCrRLK1L4 XP_004233885.1 868 96,438.64 5.49 −0.28 Solyc02g069970 Y
SlCrRLK1L5 XP_004233025.1 1002 112,230.67 6.36 −0.312 Solyc02g071860 Y
SlCrRLK1L6 XP_010316862.1 995 111,071.97 5.79 −0.108 Solyc02g071880 N
SlCrRLK1L7 XP_004232151.1 869 97,152.91 6.14 −0.234 Solyc02g089090 Y
SlCrRLK1L8 NP_001234869.1 903 101,461.32 8.92 −0.197 Solyc02g091590 N
SlCrRLK1L9 XP_004234657.2 817 91,323.59 5.9 −0.168 Solyc03g044160 Y

SlCrRLK1L10 XP_010318169.1 865 97,835 5.41 −0.201 Solyc03g093380 N
SlCrRLK1L11 XP_025886103.1 1340 150,300.63 6.39 −0.226 Solyc03g115710 Y
SlCrRLK1L12 XP_010318523.1 894 99,669.44 5.49 −0.16 Solyc03g121230 N
SlCrRLK1L13 XP_004239170.1 926 103,366.23 5.88 −0.267 Solyc05g014240 N
SlCrRLK1L14 XP_004240198.2 840 92,846.45 6.26 0.021 Solyc05g054680 N
SlCrRLK1L15 XP_004239762.1 811 90,461.22 5.66 −0.079 Solyc05g054860 N
SlCrRLK1L16 XP_004240568.1 887 97,458.64 5.73 −0.264 Solyc06g009540 N
SlCrRLK1L17 XP_004240569.1 880 97,075.96 6.33 −0.246 Solyc06g009550 Y
SlCrRLK1L18 XP_004243035.1 854 94,945.25 6.36 −0.259 Solyc07g008400 N
SlCrRLK1L19 XP_004246699.1 928 102,646.36 5.82 −0.212 Solyc09g007280 N
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Table 1. Cont.

Protein Name Protein ID
in NCBI

Protein
Length (aa)

Molecular
Weight (Da)

Theoretical
pI GRAVY Matched

SGN Locus

Annotation
Difference

in NCBI and SGN

SlCrRLK1L20 XP_004246282.1 889 97,348.77 5.78 −0.22 Solyc09g015830 Y
SlCrRLK1L21 XP_004247083.1 904 101,257.01 5.48 −0.107 Solyc09g060110 N
SlCrRLK1L22 XP_010327142.1 840 91,947.64 5.26 0.032 Solyc10g006870 N
SlCrRLK1L23 XP_004248695.3 868 96,419.44 6.09 −0.221 Solyc10g054050 Y
SlCrRLK1L24 XP_004251295.1 836 91,944.54 5.84 −0.1 Solyc11g072910 Y

The putative tomato CrRLK1Ls are listed in Table 1. The protein length, molecular weight (MW), theoretical
isoelectric point (pI), and grand average of hydropathicity (GRAVY) were analyzed. As shown in Table 1, the
protein length ranged from 811 to 1340 aa, the MW ranged from 90,461.22 to 150,300.63 Da, the theoretical pI
ranged from 5.26 to 8.92, and the GRAVY ranged from −0.312 to 0.032.
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Figure 2. The accuracy of the tomato CrRLK1L annotations in NCBI was higher than that in
SGN. (a) The different versions of the gene structure and protein domain of SlCrRLK1L20 in
the NCBI and SGN databases. The data were extracted from NCBI and SGN and then analyzed
for visualization; detailed information can be found in Table S2. (b) Polypeptide antigen loca-
tion in SlCrRLK1L20NCBI and SlCrRLK1L20SGN. (c) Amplification of the SlCrRLK1L20NCBI and
SlCrRLK1L20SGN CDSs. (d) Western blot analysis of SlCrRLK1L20NCBI and SlCrRLK1L20SGN. 1: N.
benthamiana leaves transiently expressing CaMV35S::SlCrRLK1L20NCBI-HA; 2: N. benthamiana leaves
transiently expressing CaMV35S::SlCrRLK1L20SGN-HA; 3: S. lycopersicum fruit. The uncropped
Western blot gel image can be found in Figure S2. (e) Confocal analysis of SlCrRLK1L20NCBI and
SlCrRLK1L20SGN subcellular localization. Bars = 50 µm.

2.2. Phylogenetic Analysis of the Tomato CrRLK1L Protein Kinases

In order to explore the relationship between Arabidopsis, rice, Madagascar periwinkle,
and tomato CrRLK1L protein kinases, a phylogenetic analysis using the whole CrRLK1L
amino acid from the above species was conducted (Figure 3a). The results revealed that
most of the tomato SlCrRLK1Ls had several homologous Arabidopsis members but only one
homologous member in rice, indicating that the evolution in different species is independent.
Arabidopsis and tomato had a much closer evolutionary relationship than rice (Figure 3a). Sev-
eral CrRLK1L proteins, including AtFERONIA, AtCAP1/ERU, AtCURVY1, AtTHESEUS1,
AtANXUR1/2, AtBUPS1/2, and AtHERK1, have been well characterized in Arabidopsis.
In tomato, one copy of SlFERONIA (SlCrRLK1L20), SlCAP1/ERU (SlCrRLK1L11), and
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SlCURVY1 (SlRLK1L15) and two copies of SlTHESEUS1 (SlCrRLK1L22/SlCrRLK1L14),
SlANXUR1/2 (SlCrRLK1L1/SlCrRLK1L18), SlBUPS1/2 (SlCrRLK1L2/SlCrRLK1L23), and
SlHERK1/2 (SlCrRLK1L24/SlCrRLK1L4), were identified.
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2.3. Tomato CrRLK1L Gene Locations and Duplication on Tomato Chromosome

To better understand the relationship between tomato CrRLK1L genes, the chromo-
somal distribution and collinearity of these genes were analyzed by TBtools. The results
were as follows: The tomato CrRLK1L genes were distributed on chromosomes 1 to 3, 5 to
7, and 9 to 11, and not distributed on chromosomes 4, 8, and 12 (Figure 3b). Chromosome 2
had the largest number of SlCrRLK1L genes, and chromosomes 7 and 11 had only one SlCr-
RLK1L gene (Figure 3b). Segmental duplication played an important role in the gene family
expansion. During this study, one-step MCScanX was used to reveal the collinearity of the
SlCrRLK1L genes. As shown in Figure 3b, there was a collinearity relationship between
SlCrRLK1L2, SlCrRLK1L23, SlCrRLK1L3, and SlCrRLK1L20, which showed duplication
events of these genes.

2.4. Tomato CrRLK1L Protein Domain and Gene Structure

In order to further confirm the SlCrRLK1L proteins, conserved domain detection was
carried out. All of the sequences were submitted to the NCBI Batch CD-Search to search
for common domains. As a result, the malectin domain, the malectin-like domain, and the
PKc-like domain were verified (Figure 4). At the same time, DeepTMHMM (https://dtu.
biolib.com/DeepTMHMM) (accessed on 3 September 2022) was used to detect the signal
peptide and transmembrane helix of SlCrRLK1Ls. As shown in Figure 4, Tables S3 and S4,
all of the SlCrRLK1L proteins held one signal peptide and one transmembrane helix, except
for SlCrRLK1L11. SlCrRLK1L11 had two transmembrane helices and no signal peptides.

https://dtu.biolib.com/DeepTMHMM
https://dtu.biolib.com/DeepTMHMM
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As for the gene structure, 13 out of the 24 SlCrRLK1L genes possessed continuous
CDSs, and 11 SlCrRLK1L genes had no introns (Figure 4). A total of 4 of the SlCrRLK1L
members (SlCrRLK1L1, 7, 9, and 20) had only one intron, while the other 9 members
(SlCrRLK1L5, 6, 8, 10, 11, 12, 13, 19, and 21) had multiple introns.

2.5. Prediction of SlCrRLK1L Conserved Protein Motifs

The SlCrRLK1L conserved protein motifs were analyzed by MEME (https://meme-
suite.org/meme/tools/meme) (accessed on 1 September 2022). In total, ten conserved
motifs were acquired (Figure 5, motif one to ten); the amino acid numbers ranged from
21 to 50. Among them, motifs one to five could be found in all of the 24 members, while mo-
tif seven could only be found in 14 members (Figure 5). The similarities in the characteristic
motifs between the SlCrRLK1L proteins may reflect functional similarities.

2.6. Subcellular Localization

Previous studies have found that most CrRLK1L proteins are localized in the plasma
membrane. In this study, three assays were used to predict the subcellular localization of
the SlCrRLK1L proteins. As shown in Table S3, almost all of the SlCrRLK1L proteins were
predicted to localize in the plasma membrane, which was consistent with our SlCrRLK1L20
subcellular localization results. Meanwhile, the results obtained by different prediction
methods were also different. The CELLO and MultiLoc2 shared most of their results,
while the Plant-mPLoc Computation did not, owing to their various predicted algorithms.
In addition, the signal peptide and transmembrane helix predictions of the SlCrRLK1L
proteins further demonstrated the membrane localization of these proteins.

2.7. SlCrRLK1L Gene Promoter Analysis

To better explore the putative functions in tomatoes, the SlCrRLK1L promoters were
analyzed by PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)
(accessed on 3 September 2022) and PlantTFDB (http://planttfdb.gao-lab.org/index.php)
(accessed on 5 September 2022). The PlantCARE tool was used to detect the predicted
cis-acting elements. As a result, 709 cis-acting elements were predicted in the SlCrRLK1L

https://meme-suite.org/meme/tools/meme
https://meme-suite.org/meme/tools/meme
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://planttfdb.gao-lab.org/index.php


Int. J. Mol. Sci. 2023, 24, 3142 7 of 16

promoters, which were divided into 20 featured categories (Figure 6; Table S5). The
predicted cis-acting elements were mainly related to light, low temperature, ethylene,
gibberellin, abscisic acid (ABA), methyl jasmonate (MeJA), salicylic acid (SA), auxin, and
wound responsiveness, suggesting that SlCrRLK1L may participate in hormone, stress,
and defense responses. In addition, PlantTFDB was selected to predict transcription factor
binding sites. As shown in Figure 6 and Table S6, 712 binding sites were identified in
the SlCrRLK1L promoters; the represented sites were visualized and belonged to various
types of transcription factors. Among them, NAC, AP2, MIKC-MADS, Dof, and MYB were
the most abundant. However, there was no available data on the SlCrRLK1L18 promoter
because of incomplete sequencing or annotation of the genome.
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2.8. SlCrRLK1L Gene Expression Pattern Analysis

It has been experimentally demonstrated that the CrRLK1L genes have tissue-specific
expression patterns in Arabidopsis, tobacco, and apple [34,39,40]. To study the tissue-specific
expression in tomato CrRLK1L genes, the expression profiles of all of the 24 SlCrRLK1L
genes were examined in ten samples (root, leaf, bud, flower, from 1 cm to 3 cm of fruit,
mature green fruit, breaker fruit, and breaker plus a 10-day fruit). The original RNA-
seq data was extracted from the SGN tomato functional genomic database (SGN-TFGD,
http://ted.bti.cornell.edu/cgi-bin/TFGD/digital/home.cgi) (accessed on 4 September
2022) [36,41]. As shown in Figure 7a, SlCrRLK1L20 was dominantly expressed in all
ten samples, especially in the roots and fruits. SlCrRLK1L2, SlCrRLK1L5, SlCrRLK1L16,
SlCrRLK1L17, and SlCrRLK1L23 were mainly expressed in the flowers. SlCrRLK1L7 and
SlCrRLK1L15 had relatively high expression levels in the fruits, and SlCrRLK1L7 held the
highest expression level in the leaves as compared to the other genes. Compared with other
tissues, SlCrRLK1L8 and SlCrRLK1L12 had relatively high expression levels in the roots. The
other SlCrRLK1L genes held relatively low expression levels in all of the examined samples.

The promoter analysis of the SlCrRLK1L genes indicated that SlCrRLK1L might not
only be involved in plant growth but also in defense responses. To explore this query,
we calculated and compared the expression ratios of SlCrRLK1Ls treated with different
bacteria and PAMP using the RNA-seq data from SGN-TFGD. The expression levels of the
SlCrRLK1L genes changed with the different treatments, yet some of them possessed no
available data (Figure 7b). When treated with flgII-28, a pathogen-associated molecular
pattern (PAMP) founded in Pseudomonas syringae pv. tomato T1, SlCrRLK1L3, 7, 8, 9, and 15
were up-regulated and SlCrRLK1L2, 21, and 22 were down-regulated. Only SlCrRLK1L22
and SlCrRLK1L11 were significantly down-regulated by Pseudomonas syringae pv. tomato
DC3000 or Agrobacterium tumefaciens infections. As for the Pseudomonas fluorescens and Pseu-
domonas putida treatments, SlCrRLK1L2 was significantly down-regulated by P. fluorescens
and P. putida, while SlCrRLK1L3 was significantly up-regulated by these two bacteria.

http://ted.bti.cornell.edu/cgi-bin/TFGD/digital/home.cgi
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expressions in various bacteria and PAMP. No available data are represented by a gray color. All of
the data were acquired from the SGN RNA-seq database.

3. Discussion

As an important member of the plant RLK family, CrRLK1Ls have been found in
many species, including angiosperms (for example, Arabidopsis, rice, and apple), gym-
nosperms (Picea abies), and early diverging lineages (for example, the Closterium peracerosum-
strigosumlittorale complex, Marchantia polymorpha, and Physcomitrella patens) (Table 2). How-
ever, the structural characteristics and functions of the tomato CrRLK1L gene family remain
unclear. Based on this, we comprehensively analyzed the physicochemical properties, struc-
tural characteristics, and expression patterns of tomato CrRLK1Ls.
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Table 2. The identified CrRLK1L numbers in various species.

Species Number of CrRLK1Ls Reference

Arabidopsis thaliana 17 [42]
Oryza sativa (rice) 16 [43]

Malus domestica (apple) 74 [40]
Fragaria vesca (strawberry) 62 [44]

Citrus sinensis ‘Valencia’ (Citrus) 47 [45]
Glycine max L. (soybean) 38 [33]

Nicotiana tabacum L. (tobacco) 48 [34]
Nicotiana benthamiana 31 [46]
Chenopodium quinoa 26 [35]

Pyrus bretchneideri (pear) 26 [32]
Populus trichocarpa (black cottonwood) 42 [47]

Gossypium raimondii, G. arboreum, and G.
hirsutum TM-1 (cotton) 44 [48]

Boea hygrometrica 18 [49]
Solanum tuberosum (potato) 17 [50]

Solanum lycopersicum (tomato) 24 This study
Amborella trichopoda 9 [51]

Marchantia polymorpha 1 [52]
Physcomitrella patens 6 [53]

Selaginella moellendorffii 2 [54]
Picea abies 7 [55]

Closterium peracerosum-strigosumlittorale
complex 1 [56]

A previous study found that there were 23 CrRLK1L subfamily members in the tomato
genome [37]. In this study, after sequence analysis, we used a new method to search the
state-of-the-art and well-annotated tomato protein databases, and 24 SlCrRLK1Ls were
re-identified. A comparison between the tomato CrRLK1L proteins in “this study” and
a “previous study [37]” was also carried out. As shown in Figure S1, eight proteins were
identified here for the first time. These proteins have not been identified previously, maybe
due to the different analytical methods and genome annotations used. In addition, the
annotations in SGN and NCBI had some differences. In short, some of the SlCrRLK1L gene
structures from the SGN database lacked well-annotated UTRs and CDSs (Figure S1). To
ensure the accuracy of the results, SlCrRLK1L20 was selected for further analysis. The
results showed that NCBI had better annotations than SGN at this point (Figure 2). This
situation is also present in other species. After the first identification, subsequent re-
studies found that the number of CrRLK1Ls was different from that in previous studies of
Arabidopsis and rice [27,57].

Homologous proteins often have similar functions. The phylogenetic analysis revealed
that tomato CrRLK1Ls were closely related to Arabidopsis. Our homology search showed
that 11 out of the 24 SlCrRLK1Ls had Arabidopsis homologs with known functions. It
is speculated that these homologous genes may have evolved from a common ancestor,
implying that they may have similar functions in some signaling pathways.

In Arabidopsis, rice, apple, strawberry, and soybean, CrRLK1Ls have been proven to be
involved in development, fertility, environmental responses, and immunity [2]. Our cis-
activating elements and transcription factor binding site analysis indicated that SlCrRLK1Ls
may be involved in plant development, hormones, and environmental responses, such as
auxin, ethylene, abscisic acid, wounds, light, and temperature (Figure 6), some of which
were confirmed in Arabidopsis homologs, as illustrated above. Gene expressions were
closely linked to their functions. During fruit ripening, SlCrRLK1L20 showed a very high
abundance of expression (Figure 7), which was consistent with its function in regulating
fruit ripening [30]. Moreover, the expression pattern analysis suggested that SlCrRLK1Ls
may participate in the response to bacterial infections. Upon treatment, SlCrRLK1L2, 3, 8,
11, 15, 19, and 22 displayed relatively strong responses (Figure 7), indicating that these
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genes may be involved in plant–pathogen interactions. The functions of these SlCrRLK1L
members need further exploration in the future.

In conclusion, we identified and analyzed the CrRLK1L family in tomato by bioinfor-
matic, biochemical, and cell biology assays and provided a theoretical basis and guidance
for further functional studies of these proteins.

4. Materials and Methods
4.1. Protein Identification and Phylogenetic Analysis

The genome sequence and annotations of tomatoes were downloaded from the National
Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/) (Bethesda,
MD, USA, accessed on 31 August 2022) and the Sol Genomics Network (SGN, https:
//solgenomics.net/) (Ithaca, NY, USA, accessed on 30 August 2022) [36,58]. The Arabidopsis,
rice, and Catharanthus roseus CrRLK1L protein sequences were downloaded from TAIR (https:
//www.arabidopsis.org/) (Newark, CA, USA, accessed on 20 April 2020) [59], EnsemblPlants
(http://plants.ensembl.org/index.html) (Hinxton, UK, accessed on 20 April 2020) [60], and
NCBI, according to their accession numbers. Firstly, the Arabidopsis CrRLK1L protein se-
quences were set as queries to Pfam (http://pfam.xfam.org/) (Hinxton, UK, accessed on 6
September 2022) [61] to identify their conserved domains. As a result, malectin-like (PF12819)
and PK-Tyr-Ser-Thr (PF07714) HMM profiles were obtained and subjected to Simple HMM
Search tools from TBtools v1.108 (Guangzhou, China) [62] to screen the tomato CrRLK1L
protein candidates (sequence and domain scores, E-value < 0.05). The Venn image was il-
lustrated by VENNY, version 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/index.html)
(Madrid, Spain, accessed on 19 September 2022). The predicted molecular weight (MW), theo-
retical isoelectric point (pI), and grand average of hydropathicity (GRAVY) of the SlCrRLK1Ls
were determined by ExPASy-ProtParam (https://www.expasy.org/resources/protparam)
(Lausanne, Switzerland, accessed on 19 September 2022) [63].

The obtained tomato, Arabidopsis, rice, and Catharanthus roseus CrRLK1L whole protein
sequences were aligned by ClustalW and submitted to MEGA, version 11 (State College, PA,
USA) [64], to construct a neighbor-joining phylogenetic tree with 1000 bootstrap replicates,
a pairwise deletion, and a Poisson model. Then, the tree file was optimized by iTOL, version
6 (https://itol.embl.de/) (Heidelberg, Germany, accessed on 23 September 2022) [65].

4.2. Antibody Preparation

The specific polypeptide (KDLNESPGYDASMTDSRS) was synthesized and used as
an antigen for immunizing rabbits in order to prepare the anti-SlCrRLK1L20 polyclonal
antibody by the Abmart (Shanghai) company (Shanghai, China).

4.3. Western Blot Assay

The total proteins were extracted as described previously [30] and separated using
a 10% SDS-PAGE gel. After the electrophoresis, the proteins were transferred to a PVDF
membrane. The PVDF membrane was blocked in 5% skim milk for 1 h and then incubated
with anti-HA (Abmart; 1:5000) and anti-SlCrRLK1L20 (this study; 1:1000) antibodies for 1 h,
respectively. The images were captured by a chemiluminescent imaging system (Tanon).
SlCrRLK1L20-HA and SlCrRLK1L20 were detected with the anti-HA and anti-SlCrRLK1L20
antibodies, respectively.

4.4. Gene Location and Collinearity Analysis

The location information of the SlCrRLK1L genes on the tomato chromosomes was
obtained from the NCBI database and was illustrated by Advanced Circos (TBtools
v1.108) [62]. The collinearity analysis of the SlCrRLK1L genes was conducted using the
one-step MCScanX from TBtools with the default parameters [62].

https://www.ncbi.nlm.nih.gov/
https://solgenomics.net/
https://solgenomics.net/
https://www.arabidopsis.org/
https://www.arabidopsis.org/
http://plants.ensembl.org/index.html
http://pfam.xfam.org/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://www.expasy.org/resources/protparam
https://itol.embl.de/
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4.5. Subcellular Localization Analysis

The SlCrRLK1L protein sequences were submitted to the Plant-mPLoc (http://www.
csbio.sjtu.edu.cn/bioinf/plant-multi/) (Shanghai, China, accessed on 4 September 2022),
CELLO, version 2.5, (http://cello.life.nctu.edu.tw/) (accessed on 4 September 2022) and
MultiLoc2 (https://abi-services.informatik.uni-tuebingen.de/multiloc2/webloc.cgi) (Tübin-
gen, Germany, accessed on 4 September 2022) webtools to predict their possible subcellular
localization using the default parameters [66–68]. As for the subcellular localization of SlCr-
RLK1L20, a confocal assay was used. The SlCrRLK1L20 CDS was amplified by PCR and then
inserted into pCAMBIA2300-GFP vectors. The recombinant plasmids were transferred into
the Agrobacterium tumefaciens strain GV3101 and then infiltrated into the epidermal cells of
Nicotiana benthamiana. The leaves were observed at 48 h post-infiltration by a laser scanning
confocal microscope.

4.6. Protein Domain and Gene Structure Analyses

For the protein domain analyses, the SlCrRLK1L protein sequences were submitted to
the NCBI Batch CD-Search (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.
cgi?) (Bethesda, MD, USA, accessed on 3 September 2022) [69] and processed using the
default parameters, and the results (E-value < 1 × 10−10) were then obtained. The signal
peptide and transmembrane helix regions were predicted by DeepTMHMM (https://dtu.
biolib.com/DeepTMHMM) (Copenhagen, Denmark, accessed on 3 September 2022) [70]
using the default parameters. The detailed protein domain data are listed in Table S4. For
the gene structure analyses, the SlCrRLK1L gene annotation files were obtained from NCBI
and subjected to the Visualize Gene Structure tools from TBtools for visualization.

4.7. Conserved Protein Motif Analysis

The SlCrRLK1L protein sequences were submitted to the MEME suite 5.5.0 webtool
(https://meme-suite.org/meme/tools/meme) (San Diego, CA, USA, accessed on 1 Septem-
ber 2022) [71] and processed using the default parameters, and the result file was visualized
using the Visualize MEME/MAST Motif Pattern (TBtools v1.108).

4.8. Promoter Analysis

The 2000 bp region upstream of the SlCrRLK1L CDS start sites was obtained from the
tomato genome using GXF Sequence Extract (TBtools) and then submitted to PlantCARE
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (Gent, Belgium, accessed
on 3 September 2022) [72] and PlantTFDB, version 5.0 (http://planttfdb.gao-lab.org/index.
php) (Beijing, China, accessed on 5 September 2022) [73], to identify the cis-acting elements
and transcription factor binding sites using the default parameters. The results are listed in
Tables S5 and S6 and visualized using the Simple BioSequence Viewer (TBtools v1.108).

4.9. Gene Expression Pattern Analysis

The SlCrRLK1L gene expression pattern analysis used RNA-seq data from the SGN
tomato functional genomic database (SGN-TFGD, http://ted.bti.cornell.edu/cgi-bin/
TFGD/digital/home.cgi) (Ithaca, NY, USA, accessed on 4 September 2022) [36,41]. For the
expression pattern of the bacteria and the PAMP treatment, the expression data ratio was
calculated and transformed with log2 to normalize. The data are listed in Tables S7 and
S8. Morpheus (https://software.broadinstitute.org/morpheus/) (Cambridge, MA, USA,
accessed on 4 September 2022) was adopted to illustrate the heatmap.

4.10. Accession Number

The detailed accession number can be found in Table S9.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24043142/s1.
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