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Abstract: Determining the nature of orbital tumors is challenging for current imaging interpretation
methods, which hinders timely treatment. This study aimed to propose an end-to-end deep learning
system to automatically diagnose orbital tumors. A multi-center dataset of 602 non-contrast-enhanced
computed tomography (CT) images were prepared. After image annotation and preprocessing, the CT
images were used to train and test the deep learning (DL) model for the following two stages: orbital
tumor segmentation and classification. The performance on the testing set was compared with the
assessment of three ophthalmologists. For tumor segmentation, the model achieved a satisfactory per-
formance, with an average dice similarity coefficient of 0.89. The classification model had an accuracy
of 86.96%, a sensitivity of 80.00%, and a specificity of 94.12%. The area under the receiver operating
characteristics curve (AUC) of the 10-fold cross-validation ranged from 0.8439 to 0.9546. There was no
significant difference on diagnostic performance of the DL-based system and three ophthalmologists
(p > 0.05). The proposed end-to-end deep learning system could deliver accurate segmentation and
diagnosis of orbital tumors based on noninvasive CT images. Its effectiveness and independence from
human interaction allow the potential for tumor screening in the orbit and other parts of the body.

Keywords: hemangioma; lymphoma; deep learning; segmentation; classification

1. Introduction

Early diagnosis of orbital tumors is critical for timely intervention, appropriate treat-
ment selection, and prognosis prediction. Different orbital tumors have varying treatment
protocols owing to their distinct cellular origins. Hemangioma is the most common primary
benign orbital tumor, accounting for 6% of all orbital lesions [1]. It is characterized by slow
growth [2]. Immediate surgical excision is only recommended in case of evident vision
deterioration, while conservative treatment is a valid option for patients in the absence of
vision deficits [3–5]. Contrastingly, radiotherapy is the first-line treatment for malignant
lymphomas [6,7], which are the most common malignant neoplasms in adults [1,8]. The
risk of malignant tumor metastases and recurrence increases without optimal clinical in-
tervention, appropriate therapy protocol, and follow-up frequency. Therefore, the early
diagnosis and timely treatment of orbital tumors are of crucial importance.

Computed tomography (CT) and magnetic resonance imaging (MRI) are the imaging
modalities of choice for detecting orbital tumors [9,10]. Previously, ultrasound was a rapid,
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inexpensive, and non-invasive medical technology, but it is not the first choice for orbital
tumor classification due to its limited value of size detection, location, and relationship to
the surrounding structures [11]. CT and MRI are capable of providing images inside the
orbit via radio waves and magnetic fields [12,13]. These techniques narrow the differential
diagnosis and allow disease staging by assessing the tumor location, homogeneity, margin,
signal intensity, and relationship with adjacent structures [10,14,15]. Compared with
CT, MRI has an advantage in higher soft tissue resolution, but the application of orbital
tumor screening is limited because of the expensive cost and long exam time. Contrast-
enhanced CT and MRI could visualize blood flow in various types of orbital tumors, which
is beneficial for diagnosing malignant and benign orbital tumors. However, contrast-
enhanced CT and MRI are invasive technologies and cannot be performed on patients with
contraindications, which include contrast agent allergy, renal insufficiency, claustrophobia,
etc. [16]. All of these factors preclude the possibility of contrast-enhanced CT and MRI
being well-suited orbital tumor screening tools. Non-contrast-enhanced CT is widely
used for detecting orbital tumors, but the imaging findings often overlap and hence pose
a diagnostic challenge [17].

Artificial intelligence (AI), a branch of computer science, represents the techniques
that enable computers to simulate and extend human intelligence. Machine learning
(ML) is a mainstream of AI technology, which is capable of automatically improving
computer algorithms by analyzing the features of input rather than following explicit
program instructions [18,19]. Conventional ML and deep learning (DL) are two variations
of ML [20,21]. With the excellent ability to analyze high-level features, interpreting medical
images based on DL has gradually become the research hotspot.

In recent years, DL has been paid increasing attention in the field of ophthalmology,
and many DL-based models have been proposed to assist in the automatic diagnosis,
grading, and prognosis prediction of various ocular diseases [22–24]. With the need for
orbital image analysis skyrocketing, more and more DL networks have been applied to
detect and segment intricate anatomical structures of the orbit [25,26]. The capability
of achieving pixel-level classification on CT images using DL-based algorithms implies
the potential for precise segmentation of orbital tumors. Previous studies had attempted
to distinguish ocular adnexal lymphoma from idiopathic orbital inflammation on MRI
images and reached diagnostic performance superior to the radiology resident [27,28].
DL-based models have also displayed outstanding performance for automatic tumor
classification in medical imaging of multiple organs, such as the lung [29,30], brain [31],
and breast [32]. Taken together, we hypothesized that DL-based algorithms had the efficacy
of high-precision segmentation and classification of orbital tumors on CT images.

In this study, we retrospectively collected 602 non-contrast-enhanced CT images
of 64 patients with orbital tumors (using cavernous hemangiomas and lymphomas as
representatives of benign and malignant tumors) from two independent hospitals. An end-
to-end DL-based model was established to automatically segment orbital tumors and
distinguish malignant orbital tumors from benign ones.

2. Materials and Methods
2.1. Patients

This retrospective study was reviewed and approved by the institutional review board.
All the patients enrolled in this study were recruited from two independent institutions:
the Second Affiliated Hospital of Zhejiang University, from February 2009 to June 2020, and
Tianjin Medical University Eye Hospital, from December 2017 to May 2018. The inclusion
criteria were as follows: (1) histopathological diagnosis of hemangioma or lymphoma
based on the excised tissues from the orbital lesions and (2) patients with non–contrast-
enhanced CT images before surgery. The exclusion criteria were: (1) patients with unclear
histopathological results; (2) poor CT image quality or without CT images in axial view; and
(3) history of eye or orbital surgery, trauma, radiation treatment, or other orbital therapy.
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2.2. CT Image Acquisition and Annotation

Non-contrast-enhanced CT scans (Sensation 16, Somatom perspective, Somatom Defi-
nition AS, and Somatom Definition Flash, Siemens Healthcare, Erlangen, Germany; Optima
CT540, LightSpeed RT16, and ACTs, GE Healthcare, Milwaukee, USA) were performed
on all patients with benign and malignant orbital tumors before surgical excision. The
scanning parameters were as follows: 120–130 kVp, 180–300 mAs, 0.94 spiral pitch, and
1.0–4.0 mm slice thickness.

In all CT images, those showing orbital masses in the axial view were selected.
A certified ophthalmologist with 2 years of experience used the ITK-SNAP software (ver-
sion 3.6.0, www.itksnap.org, accessed on 21 January 2023) to manually annotate the ROI in
each image. All labels were saved as TIFF images.

2.3. Preprocessing and Network Architecture

In this study, a total of 602 non-contrast-enhanced CT images from 64 patients were
included, which were randomly divided into a training set with 482 images, a validation
set with 51 images, and a testing set with 69 images. An end-to-end DL-based system
composed of U-Net and ResNet-34 was established to detect and classify orbital tumors.
We trained these two sub-networks independently and finally tested the entire system.
Figure 1 illustrates the workflow of this study.
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2.3.1. Preprocessing of the CT Images

In the preprocessing step, the original CT images in the format of DICOM were
converted into 512 × 512 grayscale images in the format of TIFF. To avoid misidentifying
non-tumor tissue with high signals as orbital tumors, the grayscale values of all pixels with
more than 200 were reset to zero. Then, to speed up the training process, the input images
were resized to 256 × 256 resolution. The data augmentation technique was applied to
solve the overfitting caused by the small dataset. Symmetry and rotation transformation

www.itksnap.org
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(with a maximum rotation angle of 10◦) were adopted in the U-Net training set. In the
ResNet-34 training set, a translational transformation (horizontal and vertical) was used.

2.3.2. Segmentation Network

The automatic segmentation network was trained with U-Net as the backbone. U-Net
is one of the most popular network structures in medical image segmentation, which shows
advanced performance in the segmentation of small targets [33]. In this study, we used the
non-contrast-enhanced orbital CT images to train a 2-dimensional U-Net for orbital tumor
detection and segmentation. The U-Net, containing an encoder and a decoder, has a U-
shaped structure. During the encoding stage, multi-scale feature maps are extracted from
input images through multiple down-sampling. The size of the feature map decreased from
256 × 256 as input to 16 × 16 at the bottom, and the number of channels increased from 1
at the origin to 1024 at the last. Inversely, in the decoding stage, the up-sampling operation
was conducted to sequentially recover high-level semantic information. Meanwhile, the
low-level details of different scales at the down-sampling step were combined with the
high-level semantics at the up-sampling step by skip connection, which was conducive to
generating more accurate segmentation masks. The size of the feature map increased from
16 × 16 to 256 × 256, and the number of channels decreased from 1024 to 1. The output
was a probability map of the orbital tumor. This probability map was binarized to get the
mask images of orbital tumors, and the threshold was set to 0.5. The local tiny outliers were
eliminated using a denoising approach to further enhance the segmentation performance.
Additionally, the small cavities within the segmented orbital tumors were fulfilled by the
morphological process. The final boundary of the segmented orbital tumor was smoothed
using median filtering to approximate the shape of ground truth. Gradient descent was
performed using the Adam optimizer, and cross entropy was employed to represent the
loss function. The batch size was set to 2, and the epoch was set to 300. The initial learning
rate was set to 0.001; then, every 80 epochs it was reduced by a factor of 10.

2.3.3. Classification Network

The classification network was based on ResNet-34 [34], which used 3 × 3 convolution
kernels to extract high-level features of CT images through the deep structure. It was com-
posed of an input convolutional layer, a max-pooling layer, 16 residual blocks, an average
pooling layer, a fully connected layer, and a softmax layer. Each residual block consisted
of two convolution layers and an identity mapping. Three of these residual blocks were
special. Since the convolution layer changed the size of the feature map and the number of
channels, the identity mapping additionally introduced the convolution kernel of 1 × 1 to
reduce the size of the feature map and increase the number of channels. It was performed
with a stride of 2. The identity mapping structure of ResNet-34 avoided the problem of
gradient vanishing during gradient descent and preserved the network’s deep hierarchical
structure at the same time, which enabled the network to extract the higher-order image
features. This guaranteed the accuracy of prediction. The final output was changed from
1000 to 2 classes to identify malignant and benign tumors. Gradient descent was performed
using the Adam optimizer, and cross entropy was employed to represent the loss function.
The batch size was set to 1 and the epoch to 50. The initial learning rate was set to 0.01;
then, every 20 epochs, it was reduced by a factor of 10.

The proposed method was trained on a machine with NVIDIA GeForce GTX970 on
an Intel i7-4770K CPU with 16 GB RAM.

2.4. Assessment by Ophthalmologists

To compare the classification performance between the proposed method and clini-
cians’ visual assessment, three ophthalmologists independently reviewed all the axial CT
images in the testing set. The images were anonymized before visual analysis. All ophthal-
mologists were blinded to the histopathological results, and the diagnosis was made based
on image features including the location, number, homogeneity, and boundaries of the



J. Pers. Med. 2023, 13, 204 5 of 13

lesions. Then, the sensitivity, specificity, and diagnostic accuracy of the visual assessment
were calculated according to the histopathological results.

2.5. Statistical Analysis

The segmentation performance of orbit mass was quantitatively assessed using dice
similarity of coefficient (DSC) [35] by comparison of manual annotations and automatic
segmentations. The DSC is defined as

DSC = 2 × TP / (FP + 2 × TP + FN) (1)

where TP, FP, and FN are the numbers of true positive, false positive, and false negative
detections, respectively. To visualize the automatic segmentation results, the recall-to-dice
curve and the precision-to-recall curve were also drawn. Precision and recall are defined as

Precision = TP / (TP + FP) (2)

Recall = TP / (TP + FN) (3)

The classification performance based on DL was evaluated by the receiver operating
characteristics curve (ROC) and the area under the ROC (AUC). In addition, the sensitivity,
specificity, accuracy, false-positive rate, false-negative rate, positive predictive rate, and
negative predictive rate of the automatic classification model and 3 ophthalmologists
were calculated to further evaluate the diagnosis ability of the proposed automatic orbital
tumor system.

Sensitivity = TP / (TP + FN) (4)

Specificity = TN / (TN + FP) (5)

Accuracy = (TP + TN) / (TP + TN+ FP + FN) (6)

False-positive rate = FP / (FP + TN) (7)

False-negative rate = FN / (TP + FN) (8)

Positive predictive rate = TP / (TP + FP) (9)

Negative predictive rate = TN / (TN + FN) (10)

where TP, TN, FP, and FN are the numbers of true positive, true negative, false positive,
and false negative classifications.

Independent samples t-test and Chi-square test were used to analyze the differences
in age and sex, respectively. The diagnostic performance of the DL-based system and
3 ophthalmologists were evaluated using the Chi-square test. All the above statistical
analyses were performed using SPSS Statistics 20.0 (IBM Corporation, Armonk, NY, USA).
A p value less than 0.05 was considered statistically significant. The DSC was calculated
using MATLAB R2015b (The MathWorks, Natick, MA, USA). The ROC and confusion
matrices were obtained with Python 3.6 using the Matplotlib package.

3. Results
3.1. Demographic Data

A total of 64 patients (mean age: 51.69 years old), including 36 males and 28 females
were recruited in this study. The benign orbital tumor group consisted of 35 patients (mean
age: 47.46 years old), and the malignant orbital tumor group included 29 patients (mean
age: 56.79 years old). The demographic information is shown in Table 1. There were no
significant differences between these two groups in terms of age and sex. Histopathological
exam results showed that all patients had cavernous hemangioma in the benign orbital
tumor group. In the malignant group, 25 patients (86.21%) had mucosa-associated lym-
phoid tissue (MLAT), 3 patients (10.34%) had diffuse large B-cell lymphoma (DLBL), and
1 patient (3.45%) had follicular lymphoma (FL).
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Table 1. Demographic data of patients with orbital tumors.

Items Total Hemangioma Lymphoma

Number of patients 64 35 29
Male 36 17 19

Female 28 18 10
Mean age (years) 51.69 47.46 56.79

3.2. Tumor Segmentation in CT images

A total of 69 axial CT images were randomly selected as the testing set, and this
testing set was used in both segmentation and classification networks. Figure 2 shows the
representative segmentation results of the benign and malignant orbital tumors using the
proposed DL algorithm. Figure 2a,d show the original non-contrast-enhanced CT images
of the patients with cavernous hemangioma and lymphoma, respectively. Comparison of
the ground truth [red annotations in Figure 2b,e] and DL algorithm predicted segmentation
[green annotations in Figure 2c,f] showed good performance in segmenting orbital tumors
of different natures. The DSC quantitively described the overlap of the ground truth and
the predicted result. The mean DSC value was 0.89 in the testing set. The recall-to-dice and
precision-to-recall scatter diagrams in Figure 2g,h display the detailed segmentation results
of all images in the testing set, demonstrating that high precision and recall were achieved
in most images.
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Figure 2. Segmentation performance of the deep learning algorithm: (a,d) representative origi-
nal computed tomography images from patients with hemangioma and lymphoma, respectively;
(b,e) manual annotations which are shown in red; (c,f) automatic segmentation results which are
shown in green; (g,h) recall-to-dice and precision-to-recall scatter diagrams.

3.3. Tumor Classification

The ROC analysis demonstrates the effectiveness of ResNet-34 in benign and ma-
lignant orbital tumor classification, with an AUC of 0.9126. The diagnostic results of
three ophthalmologists are also visualized in Figure 3a. Since the dataset used in this study
was relatively small and from two individual institutions, 10-fold cross-validation was
carried out to verify the stability and robustness of the proposed DL methods. The entire
dataset of 602 images was randomly divided into 10 folds. At each passage, nine folds were
randomly taken as the training set, and the remaining fold was taken as the testing set.
This process was repeated 10 times to make sure each image had been trained and tested.
Figure 3b shows that a consistent performance was obtained, with the AUC of the binary
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classification ranging from 0.8439 to 0.9546. Figure 3c–f show the confusion matrices of the
DL-based model and three ophthalmologists, respectively. The number of orbital tumors
that were misdiagnosed by the DL algorithm and ophthalmologist B was the same (nine
images, 13.04%), which was smaller than the other ophthalmologists. There are 11 (15.94%)
and 10 (14.49%) images that were misclassified by ophthalmologists A and C, respectively.
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(a) the receiver operating characteristic (ROC) curve of ResNet-34; (b) result analysis of the 10-fold
cross-validation; (c–f) confusion matrices of the deep-learning-based model and 3 ophthalmologists.

3.4. Comparison with Ophthalmologists’ Assessment

The Chi-square test showed no significant difference between the diagnostic perfor-
mance of the DL-based system and three ophthalmologists (p > 0.05). Figure 4b displays
representative examples of tumor classification. Table 2 shows that the accuracy of ResNet-
34 was equal to ophthalmologist B (86.96%) and higher than ophthalmologist A (84.06%)
and C (85.51%). The sensitivity of the DL-based model and three ophthalmologists was
80.00%, 85.71%, 77.14%, and 82.86%. The specificity was 94.12%, 82.35%, 97.06%, and
88.24%, respectively. Compared with ophthalmologist B, the false-negative rate of the DL
algorithm was lower (20.00% versus 22.86%).
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Table 2. Diagnostic performance of ResNet-34 and 3 ophthalmologists.

Items ResNet-34
Ophthalmologist

A B C

Sensitivity (%) 80.00 85.71 77.14 82.86
Specificity (%) 94.12 82.35 97.06 88.24

False-Positive Rate (%) 5.88 17.65 2.94 11.76
False-Negative Rate (%) 20.00 14.29 22.86 17.14

Positive Predictive Value (%) 93.33 83.33 96.43 87.88
Negative Predictive Value (%) 82.05 84.85 80.49 83.33

Accuracy (%) 86.96 84.06 86.96 85.51
AUC 0.9126 / / /
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4. Discussion

In this retrospective study, we established a multicenter dataset consisting of patients
with cavernous hemangioma and lymphoma and proposed an end-to-end DL-based system
to automatically segment and classify benign and malignant orbital tumors. The diag-
nostic performance of this automatic system was further explored by comparison with
three certified ophthalmologists. The results showed that the automatic orbital tumor
system could accurately segment orbital tumors on non-contrast-enhanced CT images with
a mean DSC of 0.89. The diagnostic performance of the DL-based system was equal to
three ophthalmologists.

Early recognition and diagnosis of orbital tumors are critical for treatment decisions
and follow-up management. The discovery of benign tumors in orbit does not necessarily
mandate its invasive treatment. A proportion of patients with asymptomatic benign orbital
tumors may never require excision. Scheuerle et al. reported that all orbital hemangioma
patients who received conservative treatment remained stable with a follow-up period
between 3 to 10 years [3]. Patients with malignant orbital tumors may receive more
aggressive treatment options, including surgery, radiotherapy, and chemotherapy [6].
A closer follow-up is also required to monitor the progress of malignant orbital tumors
and ensure early intervention when recurrence is detected. Additionally, the advanced
clinical stage of malignant tumors was proved to be the variable that was significantly
associated with poor prognosis [36,37]. Hence, early detection of orbital tumors is also of
critical importance for the prediction of prognosis.

It is often considered essential to perform a surgical orbital biopsy to confirm the
diagnosis of orbital masses with unknown aetiology [38]. The surgical orbital biopsy could
simultaneously be the diagnostic and therapeutic procedure for patients who need surgical
excision due to visual threat or suspicion of malignancy. Nevertheless, for patients with
benign orbital tumors that can be managed conservatively, this invasive procedure could
merely be used as a diagnostic criterion. In these cases, the accuracy of non-invasive or
minimally invasive diagnostic modalities should be improved.

CT and MRI, exhibiting the location, content, soft tissue, and bone characteristics of
orbital tumors, are important tools to assist ophthalmologists in making the preliminary
diagnosis. However, the accuracy of clinical and radiological diagnosis was not always
satisfactory, and the positive prediction rate relied highly on the skills and knowledge of
the reviewers. Koukkoulli et al. [39] retrospectively analyzed patients who underwent
surgical orbital biopsy from 2003 to 2015, involving more than 100 orbital lesions. The
accuracy of the diagnoses made by the ophthalmologists and the radiologists was compared
with histological results. The results showed that correct diagnoses were reached in less
than 50% of all cases reviewed by ophthalmologists and radiologists alike. In addition,
34.8% and 39.3% of all cases reviewed by ophthalmologists and radiologists reported no
differential diagnosis. In practical clinical settings, ophthalmologists often asked a detailed
history and performed a comprehensive ocular examination, and then correctly concluded
that orbital imaging was required but reached no specific diagnosis. Radiologists often
reported the imaging findings using suggestive language and provided a list of possible
diagnoses. In our study, the accuracy of differentiating benign and malignant orbital
tumors reached 86.96%, exhibiting the robustness of the proposed system. The AUC of
10-fold cross-validation ranged from 0.8439 to 0.9546, which indicated the stability and
repeatability of this DL-based system.

To differentiate benign and malignant orbital tumors, several studies attempted to
interpret CT and/or MRI to figure out predictive features, but the results were not always
consistent. Ben et al. [17] established a guideline for reviewing orbital CT and/or MRI based
on 84 features. Applying this guideline, three physicians reevaluated all images. Then,
the differential ability of the multiple features to discriminate between benign, malignant,
and inflammatory orbital lesions was calculated. None of these features had the high
sensitivity to distinguish the nature of different orbital lesions. Xian et al. [10] reported
that some MRI image features were associated with malignant orbital lesions, and the
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inter-observer agreement between the two observers was excellent. The features that
had a high sensitivity and specificity for the prediction of malignant lesions were the
involvement of preseptal space, ill-defined margin, molding around orbital structures,
isointensity on T2-weighted MRI images, homogeneous enhancement, and washout-type
time-intensity curve (TIC). Yuan et al. [40] further explored the diagnostic efficacy of TIC
on dynamic contrast-enhanced MRI images. The results demonstrated that the orbital mass
with a washout pattern of TIC may be more likely to be malignant, while those having the
persistent pattern of TIC would be more suggestive to be identified as benign. In addition,
Khalek et al. [41] found that the apparent diffusion coefficient value at three-T diffusion
MRI was a feature that could diagnose malignant versus benign orbital lesions.

The aforementioned studies indicated that features of benign and malignant orbital
masses may be overlapped, and it may be difficult to establish an efficient feature map.
Furthermore, the detection and annotation of orbital lesions were still manual. Some
features, such as the shape and margin of masses, were assessed by ophthalmologists or
radiologists. Such processes with human involvement may be influenced by the experi-
ence of the reviewer. The lack of ophthalmologists [42] and the increased workload of
radiologists [43] make it even harder to accurate diagnosis of benign and malignant orbital
tumors. In this study, the proposed end-to-end orbital tumor diagnosis system applied the
algorithm to automatically analyze the high-level features of non-contrast-enhanced CT,
discerning malignant from benign tumors without any manual processing.

AI-based models could help improve the precision of image interpretation. Several
studies had showed the efficiency of AI-based algorithms in distinguishing orbital masses
on CT and MRI. Guo et al. [27] employed an MR-based radiomics signature to distin-
guish ocular adnexal lymphoma (OAL) and idiopathic orbital inflammation (IOI), which
reached an AUC of 0.74 and 0.73 in primary and validation cohorts. Han et al. [44] used
an ML-based model to automatically identify the differences in orbital cavernous venous
malformation from non-contrast-enhanced CT. Hou et al. [28] reported a bag-of-features
(BOF)-based radiomic analysis method, with a support vector machine as the classifier.
Differentiation with augmentation achieved an AUC of 0.803 in the test group from contrast-
enhanced MRI, but the same analysis results from pre-contrast MRI were significantly less
reliable. Radiomics has the advantage of extracting and analyzing high-dimensional quan-
titative features obtained from medical images at high throughput [45]. However, the
efficacy of radiomics-based methods relied on the segmentation accuracy of the ROI, the
quantity and type of extracted features, and the choice of the classifier. In the studies
mentioned above, ROI segmentation was conducted manually, which may be affected
by the subjective bias of observers. Bi et al. [46] applied three DL models to differentiate
cavernous hemangiomas from schwannomas. The first two models were employed for
eye and tumor location. The third classification model had an accuracy of 91.13% in the
transverse T1 CE sequence. However, the highest accuracies were achieved in CE MRI,
an invasive imaging examination. In this study, we simplified the workflow. In the testing
set, after inputting non-contrast-enhanced CT images, the DL-based system could segment
the tumoral regions and output the diagnosis of benign and malignant orbital tumors
end-to-end, reducing the workload of clinicians.

Although the present study demonstrated the potential utility of DL in the detection
and classification of orbital tumors, it had several limitations. First, the number of patients
included was relatively small. For further studies, a larger number of cases and more
types of orbital tumors are necessary. Second, in this retrospective study, the CT images
selected had different slice thicknesses and scanning parameters with different CT scanners.
However, these differences of input data also demonstrated the generalizability of the
proposed method. Third, although the diagnosis performance reached a satisfactory result
that was equal to three certified ophthalmologists, it was not compared with contrast-
enhanced CT or MRI images. Therefore, it is promising to use different kinds of input
images and make comparisons between CT and MRI images, as well as between non-
contrast-enhanced and contrast-enhanced images. Fourth, the axial CT scans used in this
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study could only provide two-dimensional tumor features. In the future, location features
should be combined with three-dimensional medical images to improve the diagnosis
performance of automatic orbital tumor analysis systems.

5. Conclusions

In conclusion, the results of our study showed that the proposed DL-based system
could effectively segment and classify different orbital tumors. It may provide accurate
diagnostic assistance for inexperienced clinicians and help make treatment decisions. In
the future, with the improvement of DL technology, these techniques have the potential to
assist in the diagnosis of different tumors in several bodily areas.
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