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Abstract

Understanding mechanisms of protein folding and binding is crucial to designing their molecular 

function. Molecular dynamics (MD) simulations and Markov State Model (MSM) approaches 

provide a powerful way to understand complex conformational change that occurs over long 

timescales. Such dynamics are important for the design of therapeutic peptidomimetic ligands, 

whose affinity and binding mechanism are dictated by a combination of folding and binding. To 

examine the role of preorganization in peptide binding to protein targets, we performed massively 

parallel explicit-solvent MD simulations of cyclic β-hairpin ligands designed to mimic the p53 

transactivation domain and competitively bind MDM2. Disrupting the MDM2-p53 interaction is 

a therapeutic strategy to prevent degradation of the p53 tumor suppressor in cancer cells. MSM 

analysis of over 3 ms of aggregate trajectory data enabled us to build a detailed mechanistic model 

of coupled folding and binding of four cyclic peptides which we compare to experimental binding 

affinities and rates. The results show a striking relationship between the relative preorganization of 

each ligand in solution and its affinity for MDM2. Specifically, changes in peptide conformational 

populations predicted by the MSMs suggest that entropy loss upon binding is the main factor 

influencing affinity. The MSMs also enable detailed examination of non-native interactions 
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which lead to misfolded states, and comparison of structural ensembles with experimental NMR 

measurements. In contrast to an MSM study of p53 TAD binding to MDM2, MSMs of cyclic 

β-hairpin binding show a conformational selection mechanism. Finally, we make progress towards 

predicting accurate off-rates of cyclic peptides using multiensemble Markov models (MEMMs) 

constructed from unbiased and biased simulated trajectories.

Graphical Abstract

INTRODUCTION

Understanding the conformational dynamics that underlies protein folding and binding is 

crucial to designing their molecular function. Molecular dynamics (MD) simulations have 

steadily become a powerful tool to gain mechanistic understanding of complex processes 

at the atomic level. Thanks to advances in computer hardware and enhanced sampling 

strategies, MD simulations can now routinely model conformational dynamics on the 

microsecond timescale, which is crucial for understanding the significant conformational 

rearrangements that peptides can undergo, and their association with protein targets.

Cyclic peptides have many beneficial properties for therapeutic development over their 

linear counterparts, including improved physical and chemical stability, binding affinity and 

membrane permeability. Much of these benefits are believed to arise through their intrinsic 

conformational preorganization in solution.1–6

A well-studied protein-peptide interaction targeted by cyclic peptides is between the E3 

ubiquitin ligase MDM2 (mouse double minute 2 homolog) and the tumor suppressor protein 

p53, a potent transcription factor which plays a multifaceted role in the cell cycle.7 The level 

and activity of wild-type p53 in the cell is controlled by MDM2, its negative regulator,8–11 

both by binding to the transactivation domain (TAD) of p53 and inhibiting its transcriptional 

activity,12 and by targeting p53 for degradation in the proteasome.13 In many cancers 

(about 50%), wild-type p53 is retained, but cannot mediate tumor suppression because of 

over-expression of MDM2. Therefore, many cancer therapeutic peptidomimetics have been 

developed to disrupt the MDM2/p53 interaction by competitively binding to MDM2.
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The rational design of peptidomimetic ligands targeting MDM2 has benefited greatly from 

the existence of a crystal structure of p53 TAD (residues 15–29) bound to MDM2,12 which 

shows the intrinsically disordered p53 TAD14 bound to the hydrophobic cleft of MDM2 in 

a helical conformation, with p53 TAD residues Phe19, Trp23 and Leu26 filling the cleft. In 

addition to small molecule binders,15,16 a number of linear and cyclic and binders of MDM2 

have been developed, including stapled peptides,17,18 β-peptides,19 cyclic β-hairpins20–23 

and D-peptides.24–26 Cyclic β-hairpins ligands, pioneered by the Robinson group, represent 

a particularly attractive scaffold, stabilized by cyclization, intra-strand hydrogen-bonding 

and D-Pro/L-Pro capping groups that mimic β-turns.

A key design principle for cyclic peptides has been the idea that cyclization and crosslinking 

should enhance structural preorganization, which should in turn enhance binding affinity by 

decreasing the unfavorable conformational entropy change upon binding.6,21,27–33 This idea 

has been borne out for many different helical peptides. Helical stapled-peptides based on 

p53 bind with higher affinity than linear designs.17,34–36 Mutations of p53 TAD that enhance 

helicity also have higher affinity to MDM2 and affect signaling in cells.37 A Markov 

State Model (MSM) of p53 TAD-MDM2 binding reaction, built from 831 μs of aggregate 

trajectory data, reveals a mechanism in which binding of p53 TAD precedes folding, which 

predicts increased affinity as peptide helicity increases.38 An MSM of MDM2 binding for 

a more helical, high-affinity designed peptide PMI24 shows a mixture of induced-fit and 

conformational selection pathways.39

For cyclic β-hairpin binders of MDM2, the relationship between solution-state 

preorganization and binding properties is less clear. Unlike intrinsically disordered peptides, 

cyclic β-hairpins are partially folded in solution, and detailed characterization of the extent 

of their preorganization must come from careful comparison of biophysical measurements 

and simulated conformational ensembles. Recent work from Danelius et al. exploring the 

relationship between the rigidity of four cyclic β-hairpins and binding affinity to MDM2 

offers insight into this question.40 The first of these peptides (peptide 1) was originally 

designed by Fasan et al.23 to mimic p53 TAD by displaying residues Phe, 6-chloro-Trp 

and Leu in a similar geometry (Figure 1). Peptides 2, 3 and 4 (Figure 1b) replace the 

D-Pro/L-Pro capping motif with a D-Pro-Gly β-turn type II’ motif, substitute smaller polar 

residues (i.e. Glu → Ser), and explore different halogenated aromatic substitutions. Danelius 

et al. used solution-state NMR, along with the NAMFIS algorithm,41 to characterize the 

structural heterogeneity of each peptide, as well as the affinity of the four designs, measured 

using SPR and fluorescence polarization assays.

Here, to further explore the relationship between preorganization, binding affinity and 

binding mechanism, we perform massively parallel all-atom molecular simulations of the 

four peptides, both in solution, and in the presence of MDM2. By collecting and analyzing 

a large number of ab initio binding trajectories, we characterize both folding and binding 

mechanisms in microscopic detail.
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METHODS

Molecular Simulation of Cyclic Hairpin Designs.

Cyclic peptides were constructed using the AmberTools tleap program. Topologies for 

non-natural amino acids were built using UCSF Chimera and parameterized using the 

Generalized AMBER force field (GAFF),42 with partial charges computed using the AM1-

BCC43 methods. The ACPYPE program44 was then used to convert the topology file format 

for use with the GROMACS. MD simulations were performed using GROMACS 4.5.445 

on the Folding@home distributed computing platform.46 The AMBER ff99sb-ildn-NMR47 

force field was used in combination with the TIP3P explicit solvent model. Cubic periodic 

boxes were filled with solvated protein and counterions (0.1 M NaCl) to neutralize the 

system. A full list of particle numbers and box sizes can be found in Table S1. Simulations 

were minimized and equilibrated at 300 K at a constant pressure of 1 atm for 200 ps using 

a Berendsen thermostat and barostat with time constant 1 ps and compressibility 4.5 × 10−5 

bar−1. Trajectory data was generated using constant-volume molecular dynamics at 300 K, a 

stochastic (Langevin) integration with a 2 fs time step, and friction constant 1 ps−1.

Simulations of MDM2-bound cyclic β-hairpin peptide 1 were initiated from the crystal 

structure pose (PDBid: 2axi). Simulations of peptides 2, 3 and 4 were initiated from 

homology models built from the crystal structure template. Simulations of ab initio peptide 

binding to MDM2 were initiated from ten different starting configurations where the cyclic 

peptide is randomly inserted in the simulation box, and MDM2 is placed the center of the 

box. The distance between the center of mass of MDM2 and the peptide ligand was chosen 

to be at least 3.0 nm, the distance beyond which we consider the peptide to be unbound 

(Figure S1). Over 3 ms of aggregate trajectory data was collected for analysis (Figure S2). 

The total simulation time and average trajectory length for each simulation can be found in 

Table S2–S3.

Umbrella simulations of cyclic hairpins.

To enhance sampling of unbinding events, a series of umbrella simulations of peptide 1 

were performed. A harmonic restraint with force constant 200 kJ mol−1 nm−2 was enforced 

for the distance between the β-carbon (Cβ) of 6-Cl-Trp on peptide 1, and the α-carbon 

(Cα) of Gly58 on MDM2. Separate simulations were performed for a series of 27 different 

equilibrium distances ranging from 0.5 nm to 3.1 nm, in increments of 0.1 nm, resulting in ~ 

56 μs of aggregate trajectory data (Table S4).

Markov State Model (MSM) Construction.

MSM approaches have been used with great success to model the conformational 

dynamics of protein folding and binding as a kinetic network of metastable conformational 

states, providing the atomistic details to help complement and interpret experimental 

measurements.48–50 A summary of good practices for constructing MSMs in ligand binding 

mechanisms study can be found in this work.51 A key advantage of MSMs is the ability 

to infer information about folding thermodynamics and kinetics from ensembles of short, 

nonequilibrium trajectories.
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The MSMBuilder352 and PyEMMA53 software packages were used to construct MSMs 

from the simulation trajectory data. This involves the following steps: (1) featurizing the 

trajectory data, (2) projecting the time-series of features to a lower-dimensional subspace, 

(3) conformational clustering in this subspace to define kinetically metastable discrete states, 

and (4) using the observed transitions counts between discrete states to estimate T(τ), the 

matrix of transition probabilities between discrete states at lag time τ, from which all 

thermodynamic and kinetic properties can be inferred.

MSMs of cyclic peptides in solution.—To build MSMs of peptides in solution, we 

used the pairwise distances between Cα and Cβ atoms as features. Dihedral angle (ψ, φ) 

features were also tested (resulting in poorer models, see Results section). Time-structure-

based independent component analysis54,55 (tICA) was used to project the distance features 

to a low-dimensional subspace for the purpose of conformational clustering. The outputs of 

tICA are the set of time-lagged independent components (tICs) that best capture a low-rank 

approximation of the time-lagged correlation matrix. Thus, the tICs represent the degrees of 

freedom along which the longest-timescale conformational dynamics occurs.

Conformational clustering was performed using the k-centers algorithm over four tICs 

(derived using a tICA lag time of 5 ns) to identify 50 metastable states for each cyclic 

peptide. This number of metastable states (N) was chosen based on the generalized matrix 

Rayleigh quotient (GMRQ) variational cross-validation method.56 We calculate the GMRQ 

score over %50/%50 split-shuffle partitions of the trajectory data, where half of the data is 

used for training, and the rest is used for testing (Figure S3). We can see for N ≥ 50 states, 

the GMRQ scores are all about the same.

A maximum-likelihood estimator (MLE) was used to estimate the MSM transition matrix 

from sliding-window counts. An MSM lag time of 20 ns was chosen for construction of 

the MSM model. Plots of implied time scales versus MSM lag time showed convergence 

near 20 ns, validating that dynamics was sufficiently Markovian (Figure S4). To compare 

differences in folding landscape between different peptides, we also construct what we call 

“joint MSMs” from the combined simulation data for multiple peptides. Previous work from 

our group showed the success of probing important differences in conformational dynamics 

by construction of joint MSMs with unified set of state definitions.57–59

MSMs of cyclic peptide binding to MDM2.—To build MSMs of the peptide binding 

to MDM2, we chose two different featurizations for comparison. The first set of features, 

which we will call F1, consisted of pairwise distances between Cα and Cβ atoms in the 

peptide and Cα and Cβ atoms for selected residues in MDM2: Lys51, Leu54, Phe55, Leu57, 

Gly58, Gln59, Ile61, Met62, Tyr67, Gly72, Val75, Ser92, Val93, His96, Ile99, Tyr100, 

Ile103. (see Figure S5). The second set of features, which we will call F2, consisted of 

pairwise distances between Cα, Cβ and side chain heavy atoms in the peptide, and Cα and 

Cβ of selected residues in MDM2 (the same as listed above). Similar featurizations were 

used in our previous work, and found to be especially useful in analyzing peptide binding 

dynamics at high resolution.38
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For peptide 1, all bound-state and ab initio binding trajectories (started from unbound states) 

were used as the input data to construct MSMs due to the large amount of data from 

binding simulations. The use of a combination of bound-state and binding trajectories in 

MSM construction has shown great success to understand binding mechanism at a higher 

resolution of motions.60 To identify trajectories in which the peptide ligand successfully 

binds to MDM2, the center-of-mass distance between MDM2 and the cyclic peptide 

was computed and compared with the reference distance (1.2 nm) from crystal structure 

(PDBid:2axi).

The GMRQ method was used to determine optimal hyperparameters for constructing MSMs 

(Figure S6), such as the number of metastable states (200 states for the peptide 1 system). A 

tICA lag time of 5 ns and 4 tICA components were used for tICA analysis. A lag time of 25 

ns was used for MSMs of peptide 1 binding to MDM2.

Transition Path Theory analysis.

Transition Path Theory61–63 (TPT) analysis was performed to estimate binding pathways, 

fluxes, and rates using the MSMs of cyclic peptides association. Briefly, TPT uses the 

transition probability matrix T(τ) to solve a set of self-consistent equations to obtain 

committor values qi
+ for every state i. The committor value qi

+ is the probability that a 

trajectory started from state i will reach a set of sink states (B) before reaching a set of 

source states (A). Once the committor values are determined, the reaction rate kAB can be 

computed as kAB = F
τ∑iπi 1 − qi

+  where F = ∑i ∈ A ∑i ∉ AπiTij
(τ)qi

+ is the total flux and πi 

is the equilibrium population of state i. The rate kAB is the expected number of observed 

A → B transitions per unit time τ, which can be converted to a predicted rate constant by 

kAB′ = kAB/c where c is the simulated molar concentration.

To calculate rates of cyclic peptide binding to MDM2, unbound states used in TPT 

calculations are defined based on the relative distances between the ligand and MDM2 

(Figure S7). Any conformational states with an ensemble averaged distance smaller than 

0.8 nm and larger than 3.0 nm are defined as bound and unbound states, respectively 

(Figure S8). Uncertainty estimates were calculated using a bootstrap procedure, whereby ten 

different MSMs were constructed by sampling the input trajectories with replacement.

Multiensemble Markov model construction.

The recently developed TRAM estimator by the Noé group (transition-based reweighting 

analysis method) combines the features of free energy estimators like MBAR with the 

features of transition count-based MSM rate estimators and gives results better than either 

alone.64,65 In order to better estimate kinetics and thermodynamic properties, a MEMM 

was built from the unbiased MD and umbrella simulation trajectory data. To define MEMM 

states, we first used tICA to project the combined simulation data of both unbiased and 

umbrella sampling to tICs, using as features pairwise distances between Cα and Cβ atoms in 

ligands and selected residues in MDM2 (see Figure S5). We then confirmed both unbiased 

and umbrella simulation share the same slow motions (tIC1 and tIC2) (Figure S9). Then 

we used the state definitions from our MSM of peptide binding to assign state indices 
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to each snapshot of the umbrella simulation trajectory data (based on their Euclidean 

distance to the cluster centers). In total, 200 microstates were used for MEMM construction. 

The trajectory data included both unbiased simulations starting from unbound state, and 

umbrella simulations starting from bound state. A lag time of 25 ns was used for TRAM 

estimation based on the convergence of the implied time scales (Figure S10). Uncertainty 

estimates were calculated using a bootstrap procedure, whereby ten different MEMMs were 

constructed by sampling the input trajectories from each ensemble with replacement.

Bayes Factor Analysis.

A Bayes factor method was used to identify important contacts in each metastable state 

in MSM. Consider two sets of inter-residue contacts {Cij} and {Cij}*. The variables Cij 

are contact indicator variables. If a contact is present between residues i and j, then Cij = 

1 otherwise, Cij = 0. The Bayes factor BF is defined as the ratio of probabilities that the 

structure is in state k given the set of contacts {Cij} versus the set of contact {Cij}*:

BF = P k ∣ Cij
P k ∣ Cij * (1)

Suppose the two sets of contacts differ only by a single contact, Cmn, that is formed in the 

first set of contacts and not formed in the second set. If we assume that each contact is 

statistically independent, such that P (k | {Cij}) = Πij P (k | Cij), then cancellation of terms 

and application of Bayes’ Theorem yields:

BFk Cmn = P k ∣ cmn = 1
P k ∣ cmn = 0 = P Cmn = 1 ∣ k P Cmn = 0

P Cmn = 0 ∣ k P Cmn = 1 (2)

In practice, the Bayes factor BFk(Cmn) is estimated from the frequencies of contacts N 
observed in the simulations, where P(Cmn = 1) = N(Cmn = 1)/Ntotal and P(Cmn = 0) = 1 − 

P(Cmn = 1), P(Cmn = 1 | k) = N(Cmn = 1 | k)/Ntotal and P(Cmn = 0 | k) = (Nk − N(Cmn = 1 

| k))/Ntotal where Nk is the number of snapshots assigned to microstate k. A pseudo-count 

N(Cmn = 1 | k) = 1 is given to avoid a zero-valued denominator in the Bayes factors. 

Since Ntotal is a very large number (≥ 1M) this approximation does not affect the results. 

In our analysis, we used the MDTraj library66 to compute contacts separated by three or 

more residues and define a contact formed if any pair of non-hydrogen atoms between two 

residues is closer than 0.4 nm.

NAMFIS analysis.

To identify the conformational families adopted in solution, we used the NMR Analysis 

of Molecular Flexibility In Solution (NAMFIS) algorithm,41 which has previously been 

successfully applied to describe the solution ensembles of linear peptides67 as well 

as of peptide,68–70 natural product71,72 and drug73,74 macrocycles. It identifies solution 

conformers and their molar fraction by deconvoluting time-averaged NMR spectroscopic 

data using a computationally generated ensemble as an additional input. This input ensemble 

has to cover the full conformational space available for the molecule, and hence cannot 
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originate from a structure refinement that uses (experimental) restraints. Motivated by 

the poor, < 0.5 mg/mL, aqueous solubility of the studied peptides, NOE build-up rates 

and scalar coupling constants were obtained by recording spectra for DMSO-d6 solutions, 

similar to previous investigations of systems barely soluble in water,67,70,71,74 at a 900 MHz 

NMR spectrometer, as described in detail by Danelius et al.40

We used two different sets of data as theoretical input ensembles for the NAMFIS 

algorithm: (i) one generated from an MSM constructed using unbiased MD simulations, 

or (ii) one computed using restraint-free Monte Carlo conformational search, as described 

earlier.40 The latter theoretical input ensemble was built by combination of the output 

conformers from two independent conformational searches using the OPLS-2005 and the 

AMBER* force fields, respectively, as implemented in the software Macromodel v9.1. 

Using only conformers within 42 kJ mol−1 from the global minimum, the ensembles 

were combined and redundant conformations were eliminated. The solution-state ensembles 

were then established by deconvolution of the experimentally obtained time-averaged 

interatomic distances, derived from NOE build up rates, and dihedral angles, obtained 

from scalar couplings, into conformational ensembles by varying the probabilities of each 

conformer of the priory predicted theoretical conformational pools. The conformers with 

non-zero probabilities were classified in terms of β-hairpin folding, with the overall folded 

populations being given in Table 1. We wish to emphasize that the NAMFIS algorithm 

is entirely driven by experimental data, and does not use any computed energies in the 

identification of conformers or their populations, and thereby it avoids the risks associated 

with the well-known method dependence of computed energies.75 On the other hand, the 

reliability of its output vastly depends on the completeness of the theoretical input, which 

has to represent the entire theoretically available conformational space for the studied 

flexible compound. The quality of various input theoretical conformational ensembles may 

be evaluated by statistical algorithms for model comparison (see Results).

RESULTS AND DISCUSSION

MSMs suggest a highly preorganized solution-state conformational ensemble for peptide 
1.

For each of the solution-state simulations of the four peptides, tICA analysis was performed 

as described in Methods. The projection of distance-feature trajectories to the first two 

tICs reveal long-lived kinetic intermediates across the folding landscape (Figure 2). 

Comparison of the tICA projections show that conformation sampling for peptide 1 is highly 

concentrated in the native-state basin, in marked contrast to peptides 2, 3 and 4, which 

populate a number of non-native basins.

Direct comparison of the tICA projections of the four peptides is problematic because 

the tICs are unique to each peptide’s dynamics. To obtain a better comparison of how 

conformational dynamics varies across the four peptide designs, we constructed joint MSMs 

trained on the time-series of features for multiple peptides. In agreement with the individual 

tICA projections, joint tICA projections for pairs of peptides consistently show significant 

solution-state preorganization for peptide 1 (Figure S11–S13). Since peptide 1 has a D-Pro/

L-Pro turn motif, while peptides 2, 3 and 4 have a D-Pro-Gly turn, the simulations suggest 
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that replacing the highly flexible glycine with L-proline can significantly rigidify the overall 

cyclic peptide structure. This is consistent with known ability of D-Pro/L-Pro turn mimics to 

robustly induce hairpin structure.76

To gain structural insight into the interactions that uniquely define non-native 

conformational basins, we computed Bayes factors to identify key inter-residue contacts 

as described in Methods (Figure S14–S16). For peptide 1, the most populated misfolded 

state is characterized by a non-native hydrogen-bond registration and interactions between 

Pro10 and aromatic side-chains. According to the tICA analysis, transitions between this 

state and the native state constitute the slowest (most time-correlated) dynamics. While this 

misfolded state is long-lived, few trajectories (1.13%) sample this conformational basin. An 

MSM model constructed from the trajectory data predicts a population of 11.8% for all 

misfolded states, which is much lower than the native state (88.2%, see Table 2).

Peptide 2 and 3 have a similar tICA landscape (Figure 2) due to the high similarity in 

sequences (only the halogen atom is different). They also have the lowest folded state 

population compared with other peptides (Table 2). The misfolded states are mainly induced 

by non-native hydrogen bonding between Ser side chains and Glu/Asp side chains (Figure 

S15). One of the design motivations for these peptide sequences, in which Glu residues of 

peptide 1 are replaced by Ser, is to provide higher ligand flexibility in solution.40 However, 

our results would suggest that increased flexibility introduces unexpected interactions which 

further lower preorganization. In addition to distance features, we also constructed MSMs 

using backbone dihedral angle features, to determine whether it resulted in better models of 

molecular kinetics. By the variational principle of conformational dynamics,77 the optimal 

eigenbasis to model molecular kinetics is the one that maximizes the eigenvalues of a 

time-correlation matrix, which means that slower implied timescales indicate a better model 

(assuming finite-sampling/over-training errors are negligible). We find that dihedral angle 

features lead to faster timescales than distance features (Figure S17), and therefore reject this 

approach in favor of pairwise distance featurization.

Binding affinities of cyclic peptides are highly correlated with solution-state stability.

The highly similar binding interfaces of the four peptides allows for a unique opportunity to 

examine the relationship between solution-state pre-organization and binding affinity. While 

tICA analysis provides a qualitative analysis of the relative stability of peptides in solution, 

here we compare several more quantitative approaches.

Two metrics offer a relatively simple quantitative assessment of peptide preorganization 

in solution: (1) the native state population predicted by the MSMs, and (2) the β-strand 

content as computed by the Dictionary of Protein Secondary Structure (DSSP) algorithm. 

Both metrics provide identical rankings of the preorganization of the four peptides (Table 

2). Comparison of predicted native state population with experimental binding affinities40 

reveals a remarkable correlation (R2 = 0.950) between preorganization and experimental 

binding affinity (Figure 3a). This result suggests an expanded view in which not only 

cyclization can stabilize peptides to enhance their affinity,17,78,79 but sequence-based 

modulation of their intrinsic flexibility and folding properties.
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To further explore the relationship between solution-state preorganization and binding 

affinity, we examined the applicability of two other models. First, we consider a 

conformational selection model in which the peptide must fold completely before binding 

to MDM2. In this case, the predicted dissociation constant is KD = KD* 1 + Ku , where KD*

is the dissociation constant for a folded (i.e. completely preorganized) peptide, and Ku is 

the unfolding equilibrium constant (see SI for derivation). Using least-squares fitting of 

ln KD* 1 + Ku  to the experimental ln KD, we found that KD* = 0.519 μM best matched the 

simulation results, with reasonable correlation (R2 = 0.793) between theory and experiment 

(Figure 3b).

Going beyond this simple two-state folding model, we next considered a model in which 

the free energy of binding ΔGbind is related to the change in the peptide’s conformational 

entropy upon binding, ΔSbind. To see if this was the case, we used a featurization that 

only included pairwise distances of atoms in the ligand to construct joint MSMs from 

simulated trajectories of 1) the ligand in solution, 2) the ligand bound to MDM2, and 3) 

ab initio binding simulations. As expected, when bound with MDM2 (no unbinding events 

were observed), a very restricted set of conformational states are visited by peptide 1–4, 

and more conformational heterogeneity is observed when the peptide if unbound (Figure 4, 

S18–S20). The value of TΔSbind was estimated as T(Sb–Su) where Su and Sb are peptide 

conformational entropies in the unbound and bound states, respectively, calculated from 

MSMs built from trajectory data of the ligand in solution, and ligand bound to MDM2, 

respectively. Entropies were estimated using the formula S = −RΣipi lnpi where pi are the 

metastable state populations of the MSM.

If we assume that the different binding free energies of the four peptides are due entirely to 

differences in ΔSbind, we would expect that the experimental values of ln KD vs. TΔSbind 

would obey a linear relationship, with a slope of −1/RT. Indeed, a scatter plot shows 

these values to be highly correlated (R2 = 0.962), with nearly exactly the expected slope 

(Figure 3c). This result suggests that solution-state preorganization completely determines 

the binding affinity of the four peptides. Moreover, it suggests that atomically-detailed 

simulation models may be essential for predicting this kind of information.

We note that such strong correlation with solution-state entropy is likely due in part to the 

high similarly of the four peptides’ residues that form an interface with MDM2, and might 

not be observed for sequence variants which more directly perturb the binding interface. 

Other studies have also pointed out counterexamples where enhanced preorganization results 

in weaker binding, suggesting that greater flexibility may be necessary for some designed 

ligands.80,81

Comparison of simulated ensembles with structural NMR measurements.

To validate the accuracy of our simulated ensembles, we compared simulated interproton 

distances to NOE measurements published by Danelius et al.40 Simulated ensemble-

averaged NOE distances di were computed as di = ∑jπj〈ri
−6〉j

−1/6
 where πj is the predicted 

equilibrium population of MSM state j, ri is distance for proton pair i, and the bracketed 

term represents the ensemble average over conformations belonging to state j.
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A comparison of experimental and predicted NOE distances shows rms differences to be 

1.55, 2.61, 2.68, and 1.35 Å for peptides 1–4, respectively (Figure S22). These differences 

are comparable to the rms differences of the back-calculated solution structures solved by 

Danelius et al. (1.18, 0.60, 0.82 and 0.43 Å for peptides 1–4, respectively), but slightly 

larger, which we attribute to our completely unrestrained simulations, performed in different 

solvent conditions than experiment. As is commonly found in NMR structural refinements, 

predicted NOE distances consistently overestimate the experimental values, in part because 

of the difficulty in simultaneously satisfying competing distance restraints.

To further evaluate the ability of the simulated ensembles to recapitulate the observed 

experimental NOEs, we constructed a representative collection of proton pairs that do not 
exhibit experimental NOEs, by randomly selecting pairs from the set of NOE protons, 

excluding those from adjacent residues. The predicted distributions of NOE distances 

from this ‘null’ set comprise distances whose average exceeds ~7.5 Å. This indicates that 

simulated ensembles correctly predict proton pairs with experimentally observed NOEs 

to be in close contact, while proton pairs with no experimentally observed NOE are 

predicted to be far apart (Figure 5), suggesting the simulated ensembles agree well with 

the experimental NMR spectroscopy. Lists of specific interproton distances for each peptide, 

and their experimental and calculated NOE distances, along with a description of the ‘null’ 

set of chosen proton pairs, are described in Tables S5–S8.

A confusing discrepancy between our work and that of Danelius et al. was the apparent 

disagreement in the extent of folded structure reported for peptides 1–4. In Danelius et 

al., peptides 2 and 3 are reported as having the greatest extent of β-hairpin structure, 

while our simulations predict that peptide 1 has the greatest extent of folded structure. A 

deeper analysis, however, shows these disagreements are superficial. In Danelius et al., the 

NAMFIS algorithm41 was used to determine an ensemble of structures compatible with 

NOE constraints, and their relative populations. These populations were in turn used to 

characterize the extent of β-hairpin population in solution, according to a metric where 

any structures with at least three hydrogen bonds (defined as hydrogen bond donor and 

acceptor distance within 0.3 nm) are considered as folded to a hairpin. When we input our 

MSM states and the ensemble averaged NOE distances to NAMFIS, we achieve excellent 

agreement with the results reported by Danelius et al. (Table 1).

Further comparison of the two input ensembles was performed using Akaike Information 

Criterion (AIC) analyses.82 This statistical technique compares the ability of various 

models to describe reality, that is, the fit of the models to experimentally obtained 

observables. Model selection is important, as an under-fitted model may not capture the 

true conformational variability of a flexible molecule, whereas an over-fitted one lacks 

generality. The summary of the AIC analyses of the input models (i) and (ii) for the four 

peptides are given in Table 3.

The AIC analyses (Table 3) suggests that there is a decisive evidence that the Monte 

Carlo-derived input ensemble is the more robust model. This means that the NAMFIS output 

derived using the Monte Carlo conformational search better fits to the experimental data, as 

this input ensemble contains all, or at least more conformers that are present in the real-life 
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solution. There several possible explanations for this result, perhaps the most important 

being that the MD simulations (and subsequent MSMs) were performed in aqueous solution, 

whereas the NMR data was obtained for DMSO-solutions (made necessary by the low 

aqueous solubility of the studied peptides). Another explanation is provided by the nature of 

the conformational search methods. A Monte Carlo conformational search provides a highly 

diverse set of conformers, but an unreliable energetic ranking (not used in the NAMFIS 

analyses), whereas molecular dynamics is capable of reliably identifying the dominant 

solution conformers. Thus, MD methods may have difficulty discovering less-populated 

conformers, which in turn may complicate the ensemble fitting to experimental data. Finding 

the relevant conformations of macrocycles in solution has previously been shown to pose a 

significant challenge.84

SSD is the sum of square differences between the measured and modelled distances, as 

defined by Snyder et al.,83 along with the error estimates given in the same article (NOE 

distance < 2.5 Å: ± 0.1 Å error, NOE distance 2.5 – 3.0 Å: ± 0.2; 3.0 – 3.5 Å: ± 0.3; NOE 

distance 3.5 – 6.0 Å: ± 0.4). AIC is the Akaike information criterion, AICc is the small 

sample size-corrected AIC that has a compensation for over-fitting for systems with small 

sample size, ΔAICc is the difference in AIC of an individual model as compared to the 

best model, wi is the Akaike weight of evidence in favor of a model being the actual best 

model for the given data, ERi is the evidence ratio describing the relative likelihood of a 

pair of models, and LERi is the logarithmic evidence ratio. The difference in LERi expresses 

the degree by which the best proposed model is better than all other anticipated models. 

Accordingly, the model best fitting with reality has LERi 0, and an LERi difference of 0 – 

0.5 is interpreted as “weak”, 0.5 – 1 as “substantial”, 1 – 2 as “strong”, and > 2 as “decisive” 

evidence.

That said, it is likely that the NAMFIS analysis does not agree with the MSM predictions 

of folded state populations (Table 2) because of the major differences in the information 

each algorithm uses to arrive at conformational population estimates. MSMs rely heavily on 

the simulation model, estimating conformational populations based on transitions observed 

between metastable stables, with the only restraints being detailed balance. NAMFIS, as 

mentioned above, relies much more on restraints derived from experimental observables, 

estimating conformational populations from a constraint-based analysis of states with viable 

structures. A more thorough analysis comparing the performance of MSMs (which can 

reconciled with experimental restraints using the BICePs algorithm85–87) and NAMFIS 

remains an interesting topic for future research.

Binding mechanisms of designed cyclic MDM2 ligands.

A powerful advantage of MSMs is the ability to obtain information about both kinetics and 

thermodynamics. Towards this end, we performed MD simulations of MDM2 with cyclic 

peptide ligands initiated from bound and unbound states, which generated hundreds of ab 
initio binding events. The resulting trajectory data was combined and used to construct 

MSMs of the binding reaction, as described in Methods. Roughly equal numbers of binding 

events were observed for all ten starting positions of the ligand, which suggests that the 

simulated binding dynamics is not biased by the initial configuration (Figure S23).
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For peptides 2, 3 and 4, we find that the tICA landscapes (i.e. the projection of the trajectory 

data to the first two tICs) are similar. As an example, we present the tICA landscape 

(constructed using feature set F1, see Methods) for peptide 4 (Figure 6). Results for peptides 

2 and 3 are shown in Figure S24. For these peptides, the slowest motion (along tIC1) 

corresponds to peptide binding, while the next-slowest motion (along tIC2) corresponds to 

peptide folding. The tICA landscape shows the vast majority of binding pathways must 

first visit intermediates where the peptide is folded, but not yet bound to MDM2 in the 

correct binding pose. Thus, we conclude that designed cyclic peptides 2, 3 and 4 bind via a 

conformational selection mechanism.

In contrast to peptides 2–4, peptide 1 shows very little unfolding, resulting in a unique tICA 

landscape in which most metastable states have folded peptide conformations similar to the 

crystal pose (Figure 7). This finding is consistent with our simulations of cyclic peptides 

in solution, which show that peptide 1 has the highest extent of preorganization, and a 

more stable folded state than peptides 2–4. For this system, we found that feature set F2 

(which includes heavy atoms of peptide side chains) produced superior models. The use of 

the F2 feature set resulted in slower implied timescales than F1, suggesting an MSM less 

prone to lumping errors, and better able to capture the relevant dynamics (Figure S25a–b). 

Moreover, the F2 featurization was able to discern binding to the correct pose on the 2D 

tICA landscape (Figure S25c–f).

Similar to the tICA landscapes of peptides 2, 3 and 4, dynamical motion along the largest 

tICA component (tIC1) corresponds to binding of the cyclic peptide to the crystallographic 

pose (Figure 7d). Motion along the next-slowest component (tIC2), however, represents 

binding of the peptide to two major off-pathway traps, in poses that differ from the crystal 

structure (Figure 7b, h). The center of the tICA landscape corresponds to the unbound state; 

therefore, most trajectories that visit these “trap” states must first unbind to correctly reach 

to the crystallographic bound-state pose.

Further inspection of the two trap states reveal near-bound poses in which hydrophobic 

residues designed to mimic the “hot spot” residues of Phe19, Trp23, and Leu26 of p53-

TAD are mismatched with their preferred pocket in the MDM2 receptor. In peptide 1, 

6-chloro-Trp (residue 3) is designed to mimic Trp23 in p53-TAD. In the two near-bound 

poses, we find instead that Phe8 (Figure 7a) and Phe1 (Figure 7g) occupy the pocket in 

MDM2 where Trp23 normally residues. These binding poses are further stabilized by π-

stacking interactions between His74-Trp(Cl)3, Trp6-Tyr78 (Figure 7c) and Phe33-Trp(Cl)3, 

Trp6-Tyr45 (Figure 7i).

The significance of the trap states is intriguing to consider. Because the folding of peptide 

1 is so robust, such trap states likely represent long-lived local free energy minima which 

may compete with the crystallographic bound state. Discovering “trap” binding modes in 

computational peptide design efforts may be useful in either penalizing off-pathway poses, 

or in discover alternative motifs that could be further optimized.
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Predicted binding rates of cyclic peptide 1 to MDM2.

To estimate the kinetics of cyclic peptides binding to MDM2, we computed mean-first-

passage times (MFPTs) using TPT analysis based on constructed MSMs (see Methods). 

We present results only for peptide 1 (see Table 4), for which experimental measurements 

performed using surface plasmon resonance (SPR) have been published by Danelius et al.40 

The predicted binding rate, kon, of peptide 1 agrees with the experimental measurement 

within an order of magnitude (Table 4). The estimated unbinding rate, koff, and the bound-

state population, πbound, however, are poorly underestimated. Similar results were found for 

an MSM model of p53 TAD binding to MDM2,38 and the reason for it is well-known: MSM 

estimators assume that input trajectory data is sampled at equilibrium, which is impractical 

for binding simulations of this kind. To realize this, consider a scenario in which a peptide 

has dissociation constant of KD ~100 nM. At our simulated concentration, we should expect 

only 3 of 100,000 samples to be in the unbound state. For MSM estimators that enforce 

detailed balance (as used in this study), input data that includes more than this fraction of 

unbound-state samples would tend to underestimate kon and overestimate koff. For MSM 

estimators that do not enforce detailed balance (such as a row-normalized counts estimator), 

finite-sampling error will affect estimates similarly.

To improve these estimates, we were interested in constructing multi-ensemble Markov 

models from umbrella simulations of peptide unbinding (see Methods) using an estimator 

called TRAM (Transition-based Reweighting Analysis Method),64 which uses samples from 

multiple thermodynamic ensembles to estimate both free energies of metastable states and 

the transition rates between them. The approach has been used to much more accurately 

estimate slow dissociation rates of ligands, including for high-affinity designed peptide 

ligands of MDM2.65

We find that rate estimation using TRAM greatly improves the accuracy of both koff 

and πbound when compared to the conventional MSM (Table 4). Specifically, the TRAM 

estimation of πbound (~96%) agrees better with the experimental value (99.997%). The 

TRAM estimate of koff is similarly improved (i.e. smaller by a factor of 20) over the 

conventional MSM estimate, and is within two orders of magnitude from the experimental 

value. One might expect this estimate to improve further if kon estimates weren’t 

overestimated with respect to experiment by an order of magnitude. While rate predictions 

from TRAM are far from perfect, we note that the improvements are remarkable given that 

the total amount of biased trajectory data (from umbrella simulations, see Methods) used in 

the calculation is only ~ 4% of the unbiased data.

We also note that relatively few MD-based estimates of koff for high-affinity peptide 

ligands have been reported in the literature to date, and that the accuracy of the TRAM 

results we achieve is comparable to the current state-of-the-art (around one or two orders 

of magnitude). For the designed PMI peptide, a nanomolar inhibitor of MDM2 with 

experimental koff of 3.73 [2.93, 4.05] × 10−2 s−1, Paul et al. report estimates of 1.14 [0.72, 

2.08] s−1 and 1.25 [0.25, 6.7] × 10−1 s−1 using two different rate matrix estimators.65

These results show the utility of multi-ensemble Markov models in accurately estimating 

kinetics and thermodynamic of peptide binding, which bodes well for future studies using 
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greater amounts of biased trajectory data. Accurate prediction of koff is highly desirable, 

as the dissociation rate is recognized as an important quantity in drug efficacy and safety 

in drug discovery.88–90 Much pioneering work has recently been done to develop improved 

methods for predicting dissociation rates of protein-ligand interactions,91–94 and we are 

eager to contribute efforts towards this goal.

CONCLUSION

We have used molecular simulation approaches to understand the relationship between 

solution-state preorganization, binding mechanism, and binding affinity for four designed 

cyclic peptide ligands of MDM2. The microscopic view of conformational dynamics 

provided by Markov models reveals good agreement with previously published NMR 

studies, and a strong correlation between the loss of conformational entropy upon binding, 

and the experimental binding free energy. The best model explaining this correlation is 

one where solution-state preorganization completely determines the binding affinity of the 

four peptides, suggesting that simulation-based prediction of the solution-state properties of 

cyclic peptide binders may be key to discovering peptides with enhanced binding affinity.

Markov state models of the binding reaction for the four cyclic peptides show a 

conformational selection mechanism of binding. Even for the most preorganized design, 

peptide 1, non-native “trap” states are present, which could be designable features in future 

computational design studies. MSMs give reasonable agreement with experiment binding 

rates, which can be improved using the TRAM estimator alongside additional umbrella 

sampling simulations.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(a) Superposition of the crystal structure of peptide 1 bound to MDM2 (PDBid: 2axi, 

magenta) and the crystal structure of the p53 transactivation domain peptide (green) bound 

to MDM2 (red, PDBid: 1ycr). (b) Structures of the four designed cyclic β-hairpins examined 

in this study. Peptide 1 was originally designed by Fasan et al.23 Peptide 4 is obtained 

by substitution of Glu and L-Pro with Ser and Gly, respectively. Peptide 2 is obtained by 

further substitution of Trp and 6-chloro-(L)-Trp with Glu and 4-chloro-(L)-Phe. Peptide 3 is 

obtained after further replacement of 4-chloro-(L)-Phe with 4-bromo-(L)-Phe. (c) Sequences 

of the four peptides examined in this study. Single-letter residue codes U = 6-chloro-(L)-

tryptophan; X = 4-chloro-(L)-phenylalanine; Z = 4-bromo-(L)-phenylalanine.
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Figure 2: 
A heat map of ligand-only simulation trajectory data projected to the 2D tICA landscape of 

(a) peptide 1, (b) peptide 2, (c) peptide 3, (d) peptide 4. The native folded states are circled 

in red.
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Figure 3: 
(a) Experimentally measured dissociation constants versus folded state population predicted 

by MSMs. (b) Experimentally measured dissociation constants versus predictions from 

a three-state conformational selection model. (c) Experimentally measured dissociation 

constants versus −TΔSbind.
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Figure 4: 
(a) Combined trajectory data of peptide 1 projected to the 2D tICA landscape. (b-d) 

Transformation of simulation trajectory data using tICA model generated from combined 

trajectory data for ligand only, bound state and unbound state.

Ge et al. Page 24

J Chem Inf Model. Author manuscript; available in PMC 2023 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Simulated ensembles correctly predict proton pairs with experimentally observed NOEs to 

be in close contact, while proton pairs with no experimentally observed NOEs are predicted 

to be far apart. Experimental distances (blue) and simulated distances (green) for proton 

pairs with experimentally observed NOEs are compared to an equal number of randomly 

chosen ‘null’ distances (red) for proton pairs without experimentally observed NOEs. To 

guide the eye, Gaussian distributions with the sample mean and variance of each set of 

distances are shown. (The full list of proton pairs are described in Tables S5–S8.)
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Figure 6: 
The slowest dynamics (along tIC1) corresponds to the binding process whereas the next-

slowest dynamics corresponds to the ligand folding process. A conformational selection 

binding mechanism is revealed from the tICA landscape. Averaged distances between 

selected residues on MDM2 and the ligand (see Figure S6) is shown in blue and rmsd 

change along tIC2 is shown in magenta.
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Figure 7: 
The slowest dynamics (along tIC1) corresponds to the binding process whereas the next-

slowest dynamics corresponds to the ligand binding with different poses other than the 

crystal structure. Snapshot from simulation trajectories with key interactions observed are 

shown for selected metastable states.
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Table 1:

NAMFIS predicted folded state population.

Peptide Previous published NAMFIS analysis40 (%)
NAMFIS predicted folded state population from MSMs using a H-bonding 
metric (%)

1 24 20

2 61 63

3 61 56

4 39 57
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Table 2:

Stability predicted from simulations vs. binding affinities measured from experiments. The uncertainty 

estimates of predictions are done by sampling the input trajectories with replacement (10 times).

Peptide β-strand content in solution (DSSP) (%) folded state population in solution (MSMs) (%) Binding affinities KD (μM)

1 33.66 ± 0.29 88.49 ± 4.31 0.127 ± 0.001

2 0.73 ± 0.07 11.49 ± 1.90 7.00 ± 0.10

3 0.52 ± 0.05 10.19 ± 3.82 5.73 ± 0.09

4 19.70 ± 1.02 47.94 ± 3.79 2.50 ± 0.02
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Table 3:

Summary of AIC results for the theoretical models used as input for the estimation of the β-hairpin 

populations of peptides 1–4.

Model SSD AIC AICc ΔAICc Wi ERi LERi

Peptide 1

Monte Carlo 576.5 594.5 595.9 0.0 1.0 1.0 0

MD sim. 815.1 851.1 873.1 277.2 0.0 1.6e60 60.2

Peptide 2

Monte Carlo 150.9 164.9 166.1 0.0 1.0 1.0 0

MD sim. 459.8 471.8 473.8 307.7 0.0 6.6e51 66.8

Peptide 3

Monte Carlo 227.7 241.7 242.9 0.0 1.0 1.0 0.0

MD sim. 509.5 515.5 516.0 273.1 0.0 2.0e59 59.3

Peptide 4

Monte Carlo 147.5 165.5 167.4 0.0 1.0 1.0 0.0

MD sim. 357.9 367.9 369.2 201.8 0.0 6.8e43 43.8

SSD is the sum of square differences between the measured and modelled distances, as defined by Snyder et al.,83 along with the error estimates 
given in the same article (NOE distance < 2.5 Å: ± 0.1 Å error, NOE distance 2.5 – 3.0 Å: ± 0.2; 3.0 – 3.5 Å: ± 0.3; NOE distance 3.5 – 6.0 Å: 
± 0.4). AIC is the Akaike information criterion, AICc is the small sample size-corrected AIC that has a compensation for over-fitting for systems 
with small sample size, ΔAICc is the difference in AIC of an individual model as compared to the best model, wi is the Akaike weight of evidence 

in favor of a model being the actual best model for the given data, ERi is the evidence ratio describing the relative likelihood of a pair of models, 

and LERi is the logarithmic evidence ratio. The difference in LERi expresses the degree by which the best proposed model is better than all other 

anticipated models. Accordingly, the model best fitting with reality has LERi 0, and an LERi difference of 0 – 0.5 is interpreted as “weak”, 0.5 – 1 

as “substantial”, 1 – 2 as “strong”, and > 2 as “decisive” evidence.
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Table 4:

Estimated kinetics and thermodynamics properties using different estimators. Uncertainties are derived from 

10-fold bootstrapping of input trajectories with replacement. Uncertainties in estimated rates k are reported as 

confidence intervals (brackets), calculated from ±σln k.

Estimator πbound (%) kon (s−1M−1) koff (s−1)

MSM 56.51 ± 10.73 8.20 [5.63, 10.74] ×106 9.98 [6.53, 13.44] ×102

TRAM 96.12 ± 4.25 8.03 [4.62, 13.96] ×106 3.72 [0.30, 45.80] ×101

Experiment 99.997* 8.30 (± 0.02) × 105 1.074 (± 0.001) × 10−1

*
derived from experimental measured KD = 129.3 ± 0.3 nM (see SI).
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