Table 1.
Donor cells | Acceptor cells | Type of transfer | References |
---|---|---|---|
Rat neuroendocrine pheochromocytoma cells | Rat neuroendocrine pheochromocytoma cells | TNTs | Rustom et al., 2004 |
Human embryonic kidney cells | Human embryonic kidney cells | TNTs | Rustom et al., 2004 |
Normal rat kidney cells | Normal rat kidney cells | TNTs | Rustom et al., 2004 |
Rat neonatal CMs | Human endothelial progenitor cells | Nanotubes | Koyanagi et al., 2005 |
Human macrophage | Human macrophages | TNTs | Onfelt et al., 2006 |
Human MSCs | Human alveolar adenocarcinoma cells | TNTs | Spees et al., 2006 |
Human skin fibroblast | Human alveolar adenocarcinoma cells | TNTs | Spees et al., 2006 |
Human MSCs | Rat CM | Nanotubes | Plotnikov et al., 2008 |
Rat MSCs | Rat lung ECs | Cx43-based intercellular gap junctional communication | Otsu et al., 2009 |
MSCs | Rat cardiomyoblasts | Nanotubes | Cselenyak et al., 2010 |
Rat kidney renal tubular cells | Human MSCs | TNTs and gap junctions | Plotnikov et al., 2010 |
Human MSCs | Rat kidney renal tubular cells | TNTs and gap junctions | Plotnikov et al., 2010 |
Mouse endothelial progenitor cells | Human umbilical vein ECs | TNTs | Yasuda et al., 2010 |
Human adipose-derived stem cells | Mouse CMs | Partial cell fusion | Acquistapace et al., 2011 |
Human proximal tubular epithelial cells | Human proximal tubular epithelial cells | TNT-like structures | Domhan et al., 2011 |
Rat ventricular CMs | Rat fibroblasts | Nanotubes | He et al., 2011 |
Rat ventricular CMs | Rat ventricular CMs | Nanotubes | He et al., 2011 |
Rat fibroblasts | Rat fibroblasts | Nanotubes | He et al., 2011 |
Rat fibroblasts | Rat ventricular CMs | Nanotubes | He et al., 2011 |
Rat hippocampal astrocytes | Rat hippocampal astrocytes | TNTs | Wang et al., 2011 |
Human MSCs | Human osteosarcoma cells | Partial cell fusion | Cho et al., 2012 |
Mouse BM-derived stromal cells | Mouse BM-derived stromal cells | Cx43-containing gap junctional channels, nanotubes, MVs | Islam et al., 2012 |
Human BM-derived stromal cells | Human BM-derived stromal cells | Cx43-containing gap junctional channels, nanotubes, MVs | Islam et al., 2012 |
Mouse BM-derived stromal cells* | Mouse alveolar epithelial cell* | Cx43-containing gap junctional channels, nanotubes, MVs | Islam et al., 2012 |
Human BM-derived stromal cells* | Mouse alveolar epithelial cell* | Cx43-containing gap junctional channels, nanotubes, MVs | Islam et al., 2012 |
Human pleural mesothelioma cells | Human pleural mesothelioma cells | TNTs | Lou et al., 2012 |
Human MSCs | Human vascular smooth muscle cells | TNTs | Vallabhaneni et al., 2012 |
Human vascular smooth muscle cells | Human MSCs | TNTs | Vallabhaneni et al., 2012 |
Human retinal pigment epithelial cells | Human retinal pigment epithelial cells | TNTs | Witting et al., 2012) |
Human ECs | Human ovarian cancer cells | TNTs | Pasquier et al., 2013 |
Human ECs | Human breast cancer cells | TNTs | Pasquier et al., 2013 |
MSC* | Bronchial epithelial cells* | TNTs | Ahmad et al., 2014 |
Platelets | Neutrophils | ECVs | Boudreau et al., 2014 |
Murine neuronal cells* | Murine glial cells* | Protrusions | Davis et al., 2014 |
MSCs* | Lung epithelial cells* | TNTs | Li et al., 2014 |
MSCs | Human umbilical vein ECs | TNTs | Li et al., 2014 |
Human multipotent MSCs | Rat neuronal cells | Intercellular contacts | Babenko et al., 2015 |
Human multipotent MSCs | Rat glial cells | Intercellular contacts | Babenko et al., 2015 |
Breast cancer cells | Breast cancer cells | n.s. | Jayaprakash et al., 2015 |
Normal fibroblast cells | Normal fibroblast cells | n.s. | Jayaprakash et al., 2015 |
Human MSCs | Macrophages | MVs | Phinney et al., 2015 |
Human MSCs* | Macrophages* | MVs | Phinney et al., 2015 |
Pheochromocytoma cells | Pheochromocytoma cells | TNTs | Okafo et al., 2017 |
MSCs | Rat cardiomyoblasts | TNTs | Han et al., 2016 |
Astrocytes* | Neuronal cells* | Extracellular mitochondrial particles | Hayakawa et al., 2016 |
MSCs* | Lung alveolar macrophages* | TNTs | Jackson et al., 2016a, b |
MSCs | Corneal epithelial cells | TNTs | Jiang et al., 2016 |
Mouse sister germ cells | Mouse oocytes | Microtubes | Lei and Spradling, 2016 |
BM stromal cells | Acute myeloid leukemic cells | Endocytosis | Moschoi et al., 2016 |
BM stromal cells* | Acute myeloid leukemic cells* | Endocytosis | Moschoi et al., 2016 |
MSCs* | Murine CMs* | TNTs | Zhang et al., 2016 |
MSCs | Murine CMs | TNTs | Zhang et al., 2016 |
MSCs | MERRF cybrid cells | n.s. | Chuang et al., 2017 |
Malignant urothelial carcinoma cells | Non-malignant urinary papillary urothelial tumor cells | TNTs | Lu et al., 2017 |
Human MSCs | Human CMs | n.s. | Mahrouf-Yorgov et al., 2017 |
Human MSCs | Human ECs | n.s. | Mahrouf-Yorgov et al., 2017 |
Human CMs | Human MSCs | n.s. | Mahrouf-Yorgov et al., 2017 |
Human ECs | Human MSCs | n.s. | Mahrouf-Yorgov et al., 2017 |
BM stromal cells* | Acute myeloid leukemia cells* | TNTs | Marlein et al., 2017 |
Mesenchymal stromal cells* | Macrophages* | EVs | Morrison et al., 2017 |
Human healthy astrocytes | Human stressed astrocytes | TNTs | Rostami et al., 2017 |
Human multipotent MSCs | Rat astrocytes | TNTs | Babenko et al., 2018 |
Human multipotent MSCs | Neuron-like PC12 pheochromocytoma ρ0 cells | TNTs | Babenko et al., 2018 |
MSCs | Neural stem cells | Actin-based intercellular structures | Boukelmoune et al., 2018 |
Monkey kidney cells | Monkey kidney cells | TNTs | Guo et al., 2018 |
Porcine alveolar macrophages | Porcine alveolar macrophages | TNTs | Guo et al., 2018 |
Porcine umbilical cord MSCs | Porcine alveolar macrophages | TNTs | Guo et al., 2018 |
Endothelial progenitor cells | Brain ECs | Endothelial progenitor cell–derived mitochondrial particles | Hayakawa et al., 2018 |
Myeloid-derived regulatory cells | T Cells | ECVs | Hough et al., 2018 |
Cardiac myofibroblasts | Cardiomyocytes | Nanotubes | Shen et al., 2018 |
T cell acute lymphoblastic leukemia cells | MSCs | TNTs | Wang e al., 2018 |
MSCs | T Cell acute lymphoblastic leukemia cells | TNTs | Wang et al., 2018 |
Human induced pluripotent stem cell–derived MSCs | Human bronchial epithelium cells | TNTs (Cx43 mediated) | Yao et al., 2018 |
Human induced pluripotent stem cell–derived MSCs* | Murine epithelial cells* | TNTs (Cx43 mediated) | Yao et al., 2018 |
Scattered tubular-like cells | Tubular epithelial cells | ECVs | Zou et al., 2018 |
MSCs | Acute lymphoblastic leukemia cells | TNTs | Burt et al., 2019 |
BM MSCs | Human ECs | TNTs | Feng et al., 2019 |
Human astrocytes | Human astrocytes | n.s. | Gao et al., 2019 |
Human neuronal cells | Human astrocytes | n.s. | Gao et al., 2019 |
Cancer-associated fibroblasts | Prostate cancer cells | Cellular bridges | Ippolito et al., 2019 |
Cancer-associated fibroblasts* | Prostate cancer cells* | Cellular bridges | Ippolito et al., 2019 |
BM-derived MSCs | Proximal tubular epithelial cells | n.s. | Konari et al., 2019 |
BM-derived MSCs* | Proximal tubular epithelial cells* | n.s. | Konari et al., 2019 |
Rat MSCs | Rat neurons | Gap junction intercellular communication | Li et al., 2019 |
Rat MSCs* | Rat neurons* | Gap junction intercellular communication | Li et al., 2019 |
Astrocytes | Primary rat neuronal cells | n.s. | Lippert and Borlongan, 2019 |
BM stromal cells | MM cells | TNTs | Marlein et al., 2019 |
BM stromal cells | Hematopoietic stem cells | Gap junction | Mistry et al., 2019 |
BM stromal cells* | Hematopoietic stem cells* | Gap junction | Mistry et al., 2019 |
Astrocytes | Neurons | n.s. | English et al., 2020 |
Murine hematopoietic stem and progenitor cells* | Murine mesenchymal stromal cells* | Cell-contact dependent, Cx43-mediated | Golan et al., 2020 |
Murine CMs* | Murine macrophages* | Cardiomyocyte-derived exophers (subcellular particles) | Nocolas-Avila et al., 2020 |
Mesenchymal stromal cells | Islet β cells | TNTs | Rackham et al., 2020 |
Murine white adipocytes* | Murine macrophages* | n.s. | Brestoff et al., 2021 |
Human MSCs | Injured alveolar epithelial cells | Cx43-containing gap junctional channels | Huang et al., 2021 |
Platelets | MSCs | Dynamin-dependent clathrin-mediated endocytosis | Levoux et al., 2021 |
Platelets* | MSCs* | Dynamin-dependent clathrin-mediated endocytosis | Levoux et al., 2021 |
BM stromal cells | Myeloma cells | TNTs and partial cell fusion | Matula et al., 2021 |
Myeloma cells | BM stromal cells | TNTs and partial cell fusion | Matula et al., 2021 |
Murine ovarian follicles | Murine ovarian follicles | Gap junction internalization | Norris, 2021 |
Glioblastoma stem cells | Glioblastoma stem cells | TNTs | Pinto et al., 2021 |
3D-glioblastoma organoids | 3D-glioblastoma organoids | TNTs | Pinto et al., 2021 |
Human breast epithelial cancer cells | Human breast epithelial cancer cells | ECVs | Rabas et al., 2021 |
Murine high-metastatic lung carcinoma cells | Murine low-metastatic lung carcinoma cells | ECVs | Takenaga et al., 2021 |
Murine low-metastatic lung carcinoma cells | Murine high-metastatic lung carcinoma cells | ECVs | Takenaga et al., 2021 |
Murine high-metastatic lung carcinoma cells* | Murine low-metastatic lung carcinoma cells and cancer-associated fibroblasts* | ECVs | Takenaga et al., 2021 |
MSCs | Neurons | Cell-to-cell contact | Tseng et al., 2021 |
Human glioblastoma cells | Human primary astrocytes | TNTs | Valdebenito et al., 2021 |
Human neurons | Human astrocytes | TNTs | Lampinen et al., 2022 |
Murine neurons | Murine astrocytes | TNTs | Lampinen et al., 2022 |
Murine brown adipocytes* | Murine adipocytes* | ECVs | Rosina et al., 2022 |
Effector immune cells | Breast cancer cells | TNTs | Saha et al., 2022 |
T cells* | Lung carcinoma cells* | TNTs | Saha et al., 2022 |
T cells* | Melanoma cells* | TNTs | Saha et al., 2022 |
in vivo work
Note: TNTs, nanotubes, protrusions, microtubes, actin-based intercellular structures, cellular bridges—types of filamentous tubes that function as intercellular bridges. n.s., not specified in original paper.