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Abstract: As the technology revolution and industrialization have flourished in the last few decades,
the development of humidity nanosensors has become more important for the detection and control of
humidity in the industry production line, food preservation, chemistry, agriculture and environmental
monitoring. The new nanostructured materials and fabrication in nanosensors are linked to better
sensor performance, especially for superior humidity sensing, following the intensive research into
the design and synthesis of nanomaterials in the last few years. Various nanomaterials, such as
ceramics, polymers, semiconductor and sulfide, carbon-based, triboelectrical nanogenerator (TENG),
and MXene, have been studied for their potential ability to sense humidity with structures of
nanowires, nanotubes, nanopores, and monolayers. These nanosensors have been synthesized via
a wide range of processes, including solution synthesis, anodization, physical vapor deposition
(PVD), or chemical vapor deposition (CVD). The sensing mechanism, process improvement and
nanostructure modulation of different types of materials are mostly inexhaustible, but they are all
inseparable from the goals of the effective response, high sensitivity and low response–recovery time
of humidity sensors. In this review, we focus on the sensing mechanism of direct and indirect sensing,
various fabrication methods, nanomaterial geometry and recent advances in humidity nanosensors.
Various types of capacitive, resistive and optical humidity nanosensors are introduced, alongside
illustration of the properties and nanostructures of various materials. The similarities and differences
of the humidity-sensitive mechanisms of different types of materials are summarized. Applications
such as IoT, and the environmental and human-body monitoring of nanosensors are the development
trends for futures advancements.

Keywords: nanosensors; nanostructure; nanomaterials; fabrication; humidity; application; response;
sensitivity; nanowires; nanotubes; nanopores; monolayer

1. Introduction

Relative humidity (RH) is expressed as a percentage, which indicates a present state of
absolute humidity relative to the saturation level at a given temperature. As the technology
revolution and industrialization have flourished, the measurement of RH has become
an important issue in industry, food preservation, chemistry, agriculture, environmental
monitoring and our daily life [1–5]. The applications of humidity nanosensors is described
in Figure 1, including: (a) manufacturing industry for clean rooms, production lines and
process control; (b) architecture for paint and construction timber; (c) air conditioning for
industry and human comfort; (d) agriculture for planting, flowering cycle and automatic
sprinkler adjustment; (e) weather forecasts for humidity and probability of precipitation
reports; and (f) preservation of food, chemistry and artwork. Therefore, accurate and
reliable humidity measurement and the performance of humidity sensors for environment
monitoring is an important issue in our daily life, and the applications of IoT sensors and
human-body monitoring will be a major development trend for advancement in the future.
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Figure 1. The applications of humidity nanosensors in our daily life. 

Some materials and measurement types of humidity nanosensor technologies have 
been researched in the literature; materials including ceramic [6–10], polymer [11–17], 
semiconductor [18–22], carbon-based [23–28], and MXene material [29,30] are shown in 
Figure 2. Generally, the semiconductor and carbon-based humidity sensor can achieve 
higher sensor response, accompanied by a complex fabrication procedure and longer 
process time. The ceramic humidity sensors, such as anodic aluminum oxide (AAO), 
have good thermal stability and wear resistance to overcome severe environments. The 
polymer-based materials have lower performance in humidity sensing, but it is possible 
to combine the nanosensor with cellulose for portable devices [31–33]. In terms of the 
humidity measurement types, these can be divided into two categories: electrical 
[10,26,27,34–38] and optical nanosensors [28]. In electrical sensors, capacitance 
[10,26,34,35] and resistance [27,36–38] measurement types are the most common. Hu-
midity sensors for current [39] measurement are mostly made of semiconductor materi-
als because their resistance will be significantly reduced by humidity increments, re-
sulting in dramatic changes in current. However, with other materials (such as ceramics, 
polymers), it is difficult to measure current signals due to their high resistance, so capac-
itance and resistance is still the predominant approach. After the emergence of triboe-
lectric nanogenerators (TENG) for self-powered high-sensitivity sensor applications [40], 
the measurement method using voltage as an indicator has been extended to humidity 
sensors. There is an increasing trend of articles using TENG to measure humidity using 
its voltage variation [41–44]. Another novel material which has attracted attention for 

Figure 1. The applications of humidity nanosensors in our daily life.

Some materials and measurement types of humidity nanosensor technologies have
been researched in the literature; materials including ceramic [6–10], polymer [11–17], semi-
conductor [18–22], carbon-based [23–28], and MXene material [29,30] are shown in Figure 2.
Generally, the semiconductor and carbon-based humidity sensor can achieve higher sensor
response, accompanied by a complex fabrication procedure and longer process time. The
ceramic humidity sensors, such as anodic aluminum oxide (AAO), have good thermal
stability and wear resistance to overcome severe environments. The polymer-based ma-
terials have lower performance in humidity sensing, but it is possible to combine the
nanosensor with cellulose for portable devices [31–33]. In terms of the humidity measure-
ment types, these can be divided into two categories: electrical [10,26,27,34–38] and optical
nanosensors [28]. In electrical sensors, capacitance [10,26,34,35] and resistance [27,36–38]
measurement types are the most common. Humidity sensors for current [39] measurement
are mostly made of semiconductor materials because their resistance will be significantly
reduced by humidity increments, resulting in dramatic changes in current. However, with
other materials (such as ceramics, polymers), it is difficult to measure current signals due to
their high resistance, so capacitance and resistance is still the predominant approach. After
the emergence of triboelectric nanogenerators (TENG) for self-powered high-sensitivity
sensor applications [40], the measurement method using voltage as an indicator has been ex-
tended to humidity sensors. There is an increasing trend of articles using TENG to measure
humidity using its voltage variation [41–44]. Another novel material which has attracted
attention for humidity sensing is MXene material [29,30]. The special sensing mechanism of
the nanostructure is transformed with high physical and chemical stability, which is worth
studying for applications in human health monitoring in our daily life. In addition, optical
humidity sensors [45–50] can rely on power or wavelength measurement. Optical humidity
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sensors are mainly made of ceramic or polymer materials, and water-vapor adsorption
would change the optical property of these materials, resulting in a color change in the
nanosensor. There is also some research focusing on semiconductor-based optical humidity
sensors, but electrical properties are still the primary concern for semiconductor materials.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 33 
 

 

humidity sensing is MXene material [29,30]. The special sensing mechanism of the 
nanostructure is transformed with high physical and chemical stability, which is worth 
studying for applications in human health monitoring in our daily life. In addition, op-
tical humidity sensors [45–50] can rely on power or wavelength measurement. Optical 
humidity sensors are mainly made of ceramic or polymer materials, and water-vapor 
adsorption would change the optical property of these materials, resulting in a color 
change in the nanosensor. There is also some research focusing on semiconductor-based 
optical humidity sensors, but electrical properties are still the primary concern for semi-
conductor materials. 

 
Figure 2. The materials and measurement types of humidity nanosensors. 

The humidity nanosensor system [49] includes the humidity nanosensors, signal 
transfer and the data-analysis system. The signal change of the humidity sensor comes 
from the adsorption of water vapor, and then the signal is transmitted to the measure-
ment system or the user interface, as illustrated in Figure 3a. The optical sensor needs to 
convert the signal into electrical data which can be analyzed by the measuring instru-
ment (Figure 3b), so its cost and system complexity are higher than the electrical sensor, 
in which most current optical sensor research still employs the naked eye to judge dis-
coloration ability. The recent advances in humidity nanosensors often focus on the de-
velopment of new functional materials for sensor process enhancements such as low cost 
and shorter process time, and performance improvement in terms of response, response–
recovery time, and stable signal. In this paper, the new nanostructured materials of ce-
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Figure 2. The materials and measurement types of humidity nanosensors.

The humidity nanosensor system [49] includes the humidity nanosensors, signal
transfer and the data-analysis system. The signal change of the humidity sensor comes
from the adsorption of water vapor, and then the signal is transmitted to the measurement
system or the user interface, as illustrated in Figure 3a. The optical sensor needs to
convert the signal into electrical data which can be analyzed by the measuring instrument
(Figure 3b), so its cost and system complexity are higher than the electrical sensor, in which
most current optical sensor research still employs the naked eye to judge discoloration
ability. The recent advances in humidity nanosensors often focus on the development of
new functional materials for sensor process enhancements such as low cost and shorter
process time, and performance improvement in terms of response, response–recovery time,
and stable signal. In this paper, the new nanostructured materials of ceramic, polymer,
semiconductor, and carbon-based material and their fabrication processes of solution
synthesis, anodization, PVD, or CVD will be reviewed. The sensing mechanism of different
materials is discussed, and the sensor measurement types, as well as the performance
in terms of response, sensitivity, and response–recovery time will be listed in a table for
detailed comparison.
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2. Materials and Methods for Nanosensor Synthesis
2.1. Solution Method

The solution method [51–54] is the most common fabrication process for functional
group synthesis of humidity sensors, especially for polymer, semiconductor, carbon-based,
and MXene ones. Solution synthesis can simply be composed of two solutions mixed, or of
multiple solutions with the addition of catalysts, sensitizers and dispersants. The solution is
usually coated on the sensing substrate using various methods, such as casting [38,52], spin
coating [26,51], ink-jet printing [18] or screen printing [54]. For example, Dipankar et al.
proposed the CdS nanoparticle-coated paper humidity sensor [38]. The sensing material
of CdS nanoparticles was synthesized using the schematic solution method, as shown in
Figure 4. The substrate was prepared using filter paper with size of 1 cm × 1 cm, and a
cellulose fiber network with 31–38% porosity. The as-prepared CdS nanoparticles with a
size of ~3 ± 2 nm were then cast on the substrate. The sensor was then dried for 24 h before
the silver Ag electrodes were coated, as depicted in the cross-section schematic diagram in
Figure 4.

Another example was proposed by Ahmad et al.: to develop the organic nanostructure
sensing layer on an AAO template for humidity sensing by Aluminum 1,8,15,22-tetrakis
29H, 31H phthalocyanine chloride (chloroaluminum phthalocyanine; AlPcCl) [51]. Two
different solutions, by dissolving 5 and 10 mg of AlPcCl powder and 1 mL chloroform
(CHCl3), were prepared. The nanoporous structures were prepared from a commercially
available AAO template with the spin-coating process to from the AlPcCl dielectric thin
film, the schematic cross-sectional diagram is shown in Figure 5. In this method, the
nano-structure can be controlled through solution concentration and spin rate. The alu-
minum electrodes were sputtered on the sensor top to form the sensor structure for LCR
measurement. In the two papers mentioned above and thoughts on humidity sensors of
different materials, higher sensor response is achieved, but this is accompanied by complex
solution preparation and longer process times.
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2.2. Anodization

Anodization is a typical electrochemical deposition technology. Among many humidity-
sensor materials, it is mostly used in the preparation of Al2O3 [51,55–59] and TiO2 [60].
This method will be described below in terms of the mechanism of anodic aluminum oxide
(AAO) [61,62].

AAO is performed under specific electrochemical conditions. They are mainly created
by two chemical equation formulas for the formation of Al2O3 on Al surfaces and the
dissolution of Al+ at the barrier layer [61,62], as drawn in Figure 6. The equations are
expressed as:

2Al3+
(aq) + 3OH−(aq) → Al2O3(s) + 3H+

(aq) (1)

Al2O3(s) + 6H+
(aq) → 2Al3+

(aq) + 3H2O(l) (2)
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During the anodization process, the dissociation degree of water molecules is very
low, so the source of oxygen ions is mainly generated by the action of acid radical ions
in the electrolyte. When the anions interact with water molecules, the hydrogen ions
and hydroxide ions will break to produce hydroxide ions (OH−) or oxygen ions (O2−).
Generally, AAO is anodized in sulfuric acid, oxalic acid, phosphoric acid or chromic acid,
with aluminum as the anode and other suitable metals as the cathode. The AAO nanopore
structure is modulated by the parameters voltage, electrolyte concentration and time to form
various nanostructure. Figure 7 shows the SEM micrographs of AAO nanostructures using
different concentrations of oxalic acid [63]. The AAO was performed using a three-electrode
electrochemical cell and the potentiostat under two-step direct current anodization at 40V
with different concentrations of 0.3, 0.5 and 0.7 M oxalic acid for 1 h, respectively. The
pore diameters of AAO analyzed by ImageJ software are 55.1 nm (0.3 M), 55.9 nm (0.5 M)
and 56.8 nm (0.7 M), respectively, see Figure 7a–c. The thickness examination at 0.3, 0.5
and 0.7 M of AAO are 16.0 µm, 19.1 µm and 22.3 µm in Figure 7d–f, respectively. The
thickness or growth rate of the AAO film increases with the electrolyte concentration due
to a general chemical reaction proportional to reactant concentration. The AAO structure
grows vertically downward, and the original aluminum metal substrate is beneficial to the
parallel capacitor structure. Therefore, most AAO-based humidity sensors are produced
with a metal–dielectric–metal structure for capacitance or resistance measurement using
the PVD process to contact the electrodes [63–65]. On the other hand, some groups used
AAO as a template to synthesize nanocomposite films for humidity sensing, such as the
AlPcCl-AAO structure in Section 2.1 [51].
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Figure 7. SEM micrographs of the top views and cross sections of the AAO membranes formed
through two-step anodization at 40V and 25 ◦C for 1 h in the oxalic acid solution with concentrations:
(a,d) 0.3 M; (b,e) 0.5 M; and (c,f) 0.7 M [62].

2.3. PVD

In physical vapor deposition, sputtering [63–71] is a method commonly used for
various materials of humidity sensors. Sputtering can integrate two completely different
materials into one sensing device. At present, there are two processes used: sputtering
metal on the sensing material to prepare electrodes, or sputtering the sensing material
on the substrate to prepare a humidity-sensing device. In addition, sputtering on flexible
substrates such as PET or cellulose is a mainstream process for portable devices.

Shen et al. proposed a flexible humidity sensor by applying the sputtering method to
integrate MoO3 nanosheets on an ITO as-deposited PET substrate [66]. First, the MoO3 was
synthesized using the solution method with stirring and ultrasonicating. For the MoO3
humidity-sensing device, the ITO pattern was deposited using photolithography and
magnetron sputtering on a flexible PET substrate with a thickness of 50 nm. In addition,
a 50 nm Al2O3 as an insulation layer was then deposited using photolithography and
atomic-layer deposition on the bottom electrode. Then, the MoO3 solution of the nanosheet
structure was spin-coated on the electrode; the sensor structure is drawn in Figure 8.
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Figure 8. Schematic structure of the flexible humidity nanosensor of MoO3 nanosheets on
ITO/PET substrates.

Another PVD process is evaporation, for humidity-sensor preparation. For instance,
Balde et al. [35] proposed an evaporation process integrating the anodization process to
fabricate a flexible humidity sensor on paper. First, the aluminum metal was evaporated
to a thickness of 300 nm on the paper, which was then anodized with phosphoric acid
at 100 to 140 V, and then the electrode was evaporated on the AAO with platinum mask
for pattern definition. A parallel capacitor structure was formed to integrate the ceramic
material onto the polymer-based flexible substrate to create a portable humidity-sensor
device. The process flow proposed by Balde et al. [35], with the evaporation of PVD, is
depicted in Figure 9.
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2.4. CVD

Chemical vapor deposition (CVD) is also one of the methods used in the humidity-
sensor manufacturing process [72–75]. Recently, Lee et al. [72] proposed the polymer-
based nanomesh humidity sensor for real-time skin humidity monitoring. They used the
solution method to synthesize poly(vinyl alcohol) (PVA) using an electrospinning system.
Subsequently, Parylene C was deposited using the CVD method until it was 200 nm thick,
and then a PVD process was carried out to deposit Au on the top surface to form the
sensor structure.

Another recent study into using the CVD process to develop humidity sensors was
proposed by Yadav et al. [75] using MWCNT for opto-electronic humidity-sensor applica-
tions. The experimental process flow is drawn in Figure 10. The catalyst Co nanoparticle
was prepared using the sol-gel technique (one of the solution synthesis methods) followed
by the supercritical drying process. The 0.5 M solution of cobalt chloride was dissolved in
200 mL ethanol, and stirred for 3 h at 650 rpm, followed by Polyethylene glycol (PEG) and
5 M solution of NaOH drop-added into the solution for catalyst preparation. Second, the
catalyst layer prepared was put inside the CVD chamber at a furnace temperature of 750 ◦C
for CNT growth. The CVD process consists of the quartz tube for CNT growth, and was
controlled according to the decrease in the quartz tube and temperature. The temperature
was maintained at 750 ◦C for 15 min and then the ethanol was injected into the chamber.
Finally, the sensing material of CNTs was formed with different lengths.
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3. Humidity Nanosensors
3.1. Ceramic

The recent innovations, such as new functional materials and fabrication procedures,
have significantly accelerated the development of flexible, wearable, and stable electronic
humidity sensors. The ceramic sensors, in particular, are in high demand as reliable
devices due to their anti-corrosion ability and high thermal stability. The combination
of ceramic thin films and polymer-based substrates have already become a new topic of
next-generation IoT sensors [6].

The ceramic sensor can be approximately divided into two types of electrical sensor:
the capacitance type or resistance type, and the optical sensor by spectrum or power mea-
surement. The sensing mechanism of ceramic-based humidity nanosensors is illustrated
in Figure 12 with the dielectric from the air of 1 and water molecules of 80. First, Nahar
et al. proposed that water molecules initially chemisorbed on the ceramic nanosensors
and that there are two hydroxyl groups formed per water molecule to connect the sensor
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surface [76]. The sensor response changes slightly at this stage at lower relative humidities
under 45%. When the RH% rises, the second layer of the physisorbed layer follow water
molecules physically bound with the hydroxyl groups of hydrogen bonds that form the first
physisorbed layer [76,77]. Hence, it is reasonable to expect the obvious increment in sensor
response during the establishment of the first water layer. This phenomenon is the same
in both electrical-type and optical-type humidity sensors, but the measurement systems
employ slightly different mechanisms. The electrical humidity-nanosensor system includes
humidity nanosensors, relative-humidity control chamber and the data-measurement in-
strument on a computer, as shown in Figure 13. The electrical signal change from the
nanosensor is mainly generated by the dielectric difference in capacitance-type sensors
and resistivity change in resistance-type sensors. Taking the capacitance-type humidity
sensor as an example, the dielectric constant of air and water are 1 and 80, respectively.
When the RH% increases, the air will be replaced by water molecules for higher capacitance
contribution.
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a higher water-molecule adsorption ratio. The AAO humidity nanosensor is a good can-
didate to prove this assertion, as its pore structure grows vertically downward, as de-

Figure 13. The schematic diagram of electrical humidity-nanosensor measurement system [77].

On the other hand, the optical nanosensor measurement is based on reflection or
transmission for wavelength peaks or power detection. In optical nanosensors, the most
famous type is the reflective wavelength-peak measurement. In this case, the optical
property change is due to the reflection index (n) change [50]. Take a nanoporous AAO
optical humidity sensor as an example, the sensor observed changes from purple to blue
at RH% from 27% to 80%, as shown in Figure 14. The structural color difference can be
explained using the interference formula:

2ndcosθ = mλ (3)

where n is the average reflection index of the sensing material, air, and water molecule;
d is the film thickness; θ is the measurement angle; m is the interference stage; and λ
is the wavelength peak. When the water molecule enters the pore of sensor, the average
reflection index increases by replacing air with water. This results in the λ red shift to a
higher wavelength, as shown in Figure 14 in the change from purple to blue.
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The recent advances in humidity sensors include functional material synthesis and
sensor performance enhancement. The improvement in response and sensitivity is reported
with high correlation to the specific surface area, because the signal increases with a higher
water-molecule adsorption ratio. The AAO humidity nanosensor is a good candidate
to prove this assertion, as its pore structure grows vertically downward, as described in
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Figure 15, a schematic diagram of water-molecule adsorption [59]. The sensor response R
is an important indicator of a capacitive sensor and defined as in Formula (4).

Response (R) =
C−C0

C0
(4)

where C and C0 are the measured capacitances at RH and dry air (RH of 0%), respec-
tively. To analyze the relationship between R and nanosensor structure, the calculation of
capacitance value is an important factor. The capacitance value can be defined with the
governing formula:

C =
εA
d

(5)

where ε, A and d stand for the dielectric constant, area and distance of a parallel capacitance,
respectively. The AAO capacitive sensor is a metal–ceramic–metal structure, which can be
equivalently regarded as a parallel capacitor in two materials of alumina (CAAO) and air in
pores (Cpore) for water molecules (H2O) to be diffused and adsorbed onto the pore wall, a,
and the equivalent capacitance (C) is described in formula:

C = CAAO + Cpore =
[
(
εpore A α + εAl2O3A (1− α)

]
d

(6)

where ε corresponds to a constant from the different materials, A corresponds to the
electrode area, α corresponds to porosity, and d is the thickness of AAO. In addition, the
ratio of the water-vapor adsorption area (~x) to the pore area (~α) at a specific humidity is
assumed, so that the RH at 0% (C0) can be expressed with the Formula (7):

C0 = CAAO + Cair
[
(
εair A α + εAl2O3A (1− α)

]
d

(7)

From Formulas (5) and (7), increasing A and reducing d can benefit the initial capaci-
tance for higher signal intensity. If water molecules diffuse into the nanosensor structure,
the ε(air,H2O) is much increased due to the high H2O dielectric constant of 80. The εair and
εAl2O3 are assumed to be 1 and 9.3. Based on Formulas (5) and (7), we can calculate the
response, and assume x to be the ratio of water-vapor adsorption under a certain relative
humidity. The total capacitance (C1) for water-vapor adsorption at a certain humidity level
is calculated in the formula:

C1 = CAAO + Cair + CH2O =

[
εair A (α− x) + εAl2O3A (1− α) + εH2O A x

]
d

(8)

Therefore, the sensor response (R) can be calculated:

Response =
C−C0

C0
=

{[
εair A (α− x) + εAl2O3 A (1− α) + εH2O A x

]
− [

(
εair A α + εAl2O3 A (1− α)

]}
[
(
εair A α + εAl2O3 A (1− α)

] =

(
εH2O x − εair x

)[
εair α + εAl2O3 (1− α)

] (9)

The enhancement of humidity-sensor performance is related to the x and α. The
water-molecules adsorption ratio (x) is linked to the geometry and number of AAO pores
concerned with the anodization-voltage-dependent Dp and Dint, which are the parameters
for the 2-D top view of AAO. In the formula, both A and d are eliminated, so the water-
molecule adsorption ratio (x) is the main factor to judge the sensor response, which is
significantly correlated to the specific surface area mentioned.
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The recent advances of several studies into ceramic humidity nanosensors are listed in
Table 1 for comparison [10,51,55–59,78–81]. The ceramic sensors are mainly manufactured
using solution methods [10,78,81], anodization [51,55–59] or the PVD [80] process. Due
to the poor conductivity of ceramics, the measurement type is divided into two types:
capacitance and resistance, or current or voltage types. The sensor performance of the
sensitivity in capacitance measurement is defined as:

Sensitivity =
C−C0

RH− RHinitial
(10)

Compared with response, the sensitivity focuses on the signal change at 1% of RH. In
addition, the response and sensitivity in resistive-type sensors are expressed as:

Response =

∣∣∣∣R− R0

R0

∣∣∣∣ (11)

Sensitivity =

∣∣∣∣ R− R0

RH− RHinitial

∣∣∣∣ (12)

where R and R0 stand for the highest and original value of resistance, respectively. In
ceramic- and polymer-based sensors, the resistance value at a higher RH% is lower, so the
response will not exceed 100%. However, to overcome the limitation of formula calculation,
some works proposed the resistive humidity-sensor response formula as:

Response =

∣∣∣∣R− R0

R

∣∣∣∣ (13)
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This issue is the factor according to which most papers claimed the capacitance-type
nanosensor has better performance. Furthermore, the response, in Table 1 listed below, is
about 8000%, which is relatively lower than the semiconductor- and carbon-based humidity
sensors. However, this benefits stability in severe environments; in addition, much more
research in optical-type humidity sensors, and combinations with polymer-based substrates
for flexible devices are discussed in Section 3.2.

Table 1. Ceramic-sensor performance comparison in measurement type, response/sensitivity and
response and recovery time.

Sensing Material Measurement
Type

RH Range
(% RH) Response/Sensitivity Response and

Recovery Time Refs

CaMgFe1.33Ti3O12 Capacitance 33–95 ~708%
(response) 8.53/11.25 s [10]

Spin coating polymer
material on AAO Capacitance 20–90 ~280%

(response) NA [51]

AAO on Si Capacitance 30–90 ~4.4%
(response) 289/286 s [55]

AAO Capacitance 15–80 8000%
(response) 45/36 s [56]

AAO Capacitance 20–80 5013%
(response) 8/9 s [59]

BaTiO3 ink Capacitance 20–80 575 nF/% RH 37/15 s [78]

BaTiO3-PMMA
composite Capacitance 30–98 1.9pF/%RH 120/60 s [79]

ZnO nanosheet Resistance 12–96 220%
(response) 600/3 s [80]

CoCr2O4 Capacitance 0–95 ~350%
(response) NA [81]

3.2. Polymers

In recent years, flexible and wearable sensing devices have been of great interest
due to their unique characteristics such as portability, endurance, light weight and the
combination with the IoT environment-monitoring concept [82,83]. Another superior char-
acteristic of polymer-based humidity sensors is compatibility with other sensing materials.
By integrating a sensing material onto a polymer substrate such as cellulose [84–90] or
PET [82,91] using the PVD, CVD or solution methods, it is able to enable the high-strength
materials to achieve flexible characteristics. Table 2 lists several different sensing mate-
rials with polymer-based substrates [82,84–91]. The semiconductor, graphene oxide and
ceramic materials were integrated on PET, cellulose, cellulose nanofibers (CNF), cellulose
nanocrystals (CNC), or carboxymethyl cellulose (CMC) for flexible and portable devices.

The sensing mechanism of polymer-based humidity nanosensors is drawn in Figure 16 [92],
which is similar to the water adsorption theory in ceramic sensors. The humidity-sensing
mechanism of polysquaraine (PMPS) was proposed by Lu et al. [92]. At lower RH values
(<54% in this paper), water molecules are adsorbed on the PMPS surfaces but fail to
establish a continuous network, so the current cannot pass through by the adsorbed water
(Figure 16a), resulting in higher impedance. In Figure 16b, the higher RH values (>54% in
this paper) could establish a the water-layer connection between the PMPS beads for higher
impedance, and the main charge carrier may be the H3O+, as depicted. The water-layer
connection illustrated here is the same as the physisorbed water-molecule layer mentioned
in the sensing mechanism of ceramic nanosensors in Section 3.1. Therefore, we can conclude
that the electrical humidity sensors based on ceramic and polymer materials experience
similar water-adsorption phenomena.
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Table 2. Humidity sensors using polymer substrates for flexible devices.

Sensing Material Substrate Refs

AAO Paper [35]

amphiphilic copolymer poly (vinyl alcohol) PET [82]

ZnO-cellulose Cellulose [84]

CNTs/ZnO/Ag/cellulosic paper Cellulose [85]

Graphene-coated cellulosic paper Cellulose [86]

CNF with polyethylene glycol (PEG) Cellulose nanofibers (CNF) [87]

GO-coated cellulosic paper Cellulose [88]

CNC/polyol Cellulose nanocrystals (CNC) [89]

CMC/CNTs Carboxymethyl cellulose (CMC) [90]

PET PET [91]
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Several polymer-based humidity sensors are listed in Table 3 for performance com-
parison [92–97]. The measurement types of impedance, resistance and capacitance are
commonly used with polymers because of their electricity. The difference in impedance,
resistance and capacitance measurement can be expressed using the following equation:

Z = R +
1

jwC
+ jwL (14)

where R corresponds to resistance, jw corresponds to frequency, and L is inductance. When
the frequency is smaller, the 1

jwC will be larger to dominate the impedance (Z); thus, the
frequency is usually set to below 1000 Hz in capacitance measurement. On the contrary,
larger frequencies lead the resistance signal to dominate the impedance (Z) result; therefore,
resistive-type sensors are usually measured under higher frequencies, of 100,000 Hz. The
sensor performance in Table 3 varies from 10% to 855%, which shows relatively lower
results in measurement. Although the performance of sensors using polymer as the sensing
layer is generally lower in the electrical-measurement type, they are still valued for their
excellent compatibility.
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Table 3. The comparison of polymer based electrical type humidity sensors.

Sensing Material Measurement
Type

RH Range
(% RH) Response/Sensitivity Response and

Recovery Time Refs

polysquaraine Impedance 33–95 NA 3/16 s [92]

FeCl4/PVDF
composite Resistance 35–90 75% About 120/180 s [93]

Keratin bio-composite
polymer Capacitance 16–82 855.66% 30/51 s [94]

PEDOT/PSS Resistance 0–28.4 13% 0.63/2.05 s [95]

polyimide Capacitance 25–85 16% NA [96]

MPOSS-PIL Impedance 11–95 NA 0.19/0.3 s [97]

In addition, polymer materials play an important role in optical humidity nanosen-
sors because of their unique characteristics such as conformity, light weight and flexibil-
ity [45–50]. According to measurement methods, optical humidity sensors can be divided
into two types: power and wavelength by reflection or transmission. Table 4 lists several
polymer-based optical humidity sensors for comparison [45–47,50,82,98]. Generally speak-
ing, they are based on the wavelength shift in the reflective spectrum [45–47,50,98], or the
transmission intensity [82], due to their transparency. Although the color changes in these
optical sensors are obvious, they are still not the mainstream, compared with electrical
sensing. This is because of the lower response and the necessity to convert the signal
before it is read by electronic devices (illustrated in Figure 3). In terms of response, the
initial value of the optical nanosensor is mostly in the visible-light (400–800 nm) range,
so the wavelength-peak shift is relatively small compared to the initial value, resulting in
generally lower sensitivity. In terms of the refractive index, the refractive index of water
is 1.33 times that of air. However, the electrical properties, such as dielectric coefficient,
have a difference of 80 times between water molecules compared to air. In other words,
the optical-properties change is too small compared to the electrical properties of sensor
design. Therefore, the optical humidity nanosensors in current development have not yet
become a mainstream sensing method.

Table 4. The polymer-based optical humidity sensors comparison.

Sensing Material Measurement Type Wavelength/Intensity
Change Refs

poly(styrene-methyl-methacrylate-acrylic
acid)/graphene Reflective spectrum About 101 nm [45]

cellulose nanocrystals/poly(ethylene
glycol)/[N-(3-N-benzyl-N,N-dimethylpropyl

ammonium chloride)-1,8-naphthalimide]hydrazine
Reflection spectrum About 164 nm [46]

poly(diallyldimethylammonium)/poly(styrenesulfonate)
polyelectrolyte multilayer Reflection spectrum About 129 nm [47]

konjac glucomannan Reflection spectrum About 385 nm [50]

poly (vinyl alcohol) on PET Transmission spectrum About 15% transmission
intensity [82]

cellulose nanocrystals/poly(ethylene glycol) Reflection spectrum About 172 nm [98]
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3.3. Semiconductor

Among all materials, semiconductors are the most widespread material for electri-
cal humidity-sensor fabrication. The sensing mechanism of semiconductor-based hu-
midity sensors, as drawn in Figure 17 [99], is a little different from the ceramics and
polymers mentioned in Sections 3.1 and 3.2. First, conventionally, the “proton hopping”
phenomenon from the second physisorbed layer dominates the humidity-sensing mech-
anism of semiconductor-based humidity sensors [99–101]. When the humidity sensor is
exposed to water vapor, it initially chemisorbed on the nanosensors and there are two
hydroxyl groups formed per water molecule to connect the surface of SiC, as drawn in
Figure 17. After the humidity exceeds a certain degree, the water molecules are physisorbed
on the chemisorbed layer by hydrogen bonds to form the first physisorbed layer. How-
ever, the water molecule on this layer is restricted by double hydrogen bonds, so that it
contributes few protons for conducting. As the humidity continues to increase, the second
physisorbed water layer is formed by a single hydrogen bond. Due to the weaker force
from the single hydrogen bond, water molecules on the second physisorbed water layer
contribute a large number of protons by hydronium ions (H3O+), as illustrated in the
Grotthuss chain reaction:

H2O + H3O+ → H3O+ + H2O (15)
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The proton is free to transfer along the chain and results in the reduction in the band
gap for better electrical conduction [99–101]. Another important factor in semiconductor
humidity-sensing mechanisms is called the “donor effect” [101]. At lower humidity levels,
the surface of SiC adsorbs oxygen, which is easily deionized to be O− or O2− species. These
species contribute space for charge accumulation as the depletion layer on the surface.
When the humidity increases, the O− or O2− becomes an acceptor for water molecules,
which will release the electrons (e−) to the depletion layer. Thus, this phenomenon will
increase the carrier concentration and affect the band gap of the semiconductor material,
resulting in a significant resistance reduction in the sensor. The donor effect happens
rapidly and is responsible for the fast response–recovery time of semiconductor humidity
sensors. Therefore, the semiconductor electrical humidity sensor is the most widespread
to achieve higher sensitivity with a fast response–recovery time. On the other hand, the
potential of optical humidity nanosensors is ignored due to its excellent electrical property,
so the research into semiconductor-based optical humidity sensors is relatively rare.
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Table 5 lists several semiconductor-based humidity sensors for comparison [36–39,102–105].
The features of semiconductor humidity sensors are a higher response/sensitivity and lower
response–recovery time. In addition to the resistive and capacitance measurement type,
the current-type measurement is also a proposed method in semiconductor nansosensor
research. For the mechanism discussion in Figure 17, the water-vapor adsorption can
significantly affect the band gap and reduce the resistance. Therefore, the current change
under a constant applied voltage is obvious. On the other hand, the ceramic- and polymer-
based materials are non-conductive, so the current measurement type in humidity sensors
is more widespread in semiconductor- and carbon-based materials. In recent years, sulfide-
based humidity sensors [106–111] are another novel material that research groups are
interested in. Most of the sulfide humidity sensors can be categorized as the semiconductor
type; for instance, the CdS [36–38,111], TiO2/PbSnS [106], SnS [107], SnS2 [108] or copper,
zinc, tin, sulfide (CZTS)-related [109] humidity nanosensors. Generally, the sulfide humidity
nanosensors contain the sensing material S or its compounds and have better affinity with
water molecules [111]. A 2D material with a high surface-to-volume ratio is of great
importance, so there is an opportunity to achieve a higher response [107]. The fabrication
method of sulfide-based humidity sensors mainly employs the solution method, which is
relatively complicated with requires a longer process time. Some papers are also listed in
Table 5 for comparison [107–109].

Table 5. The semiconductor humidity-nanosensor comparison.

Sensing Material Measurement
Type RH Range (% RH) Response/Sensitivity Response and

Recovery Time Refs

CdS Resistive 17–85% NA ~60 s [36]

CdS/Polyaniline Resistive 11–95% NA ~8 s [37]

CdS Resistive 5–99% ~60%
(response)

~55 s (normal)~3 s
(forced) [38]

SnS nanoflake Current 3–99% 2,491,000%
(response) 6/4 s [107]

SnS2 Resistive 2–99% 154,000%
(response) 13.2/0.87 s [108]

CZTS Resistive 10–90% 10.77 MΩ/%RH 7.4/58.1 s [109]

[(Me3)DAB(Me3)]
PbI4·H2O Current 10–100% ~1,000,000%

(response) NA [39]

SnO2/grapheme
oxide Capacitance 11–97% 1604.89 pF/%RH

(sensitivity) 102/6 s [102]

T3C2/polyelectrolyte Resistive 10−70% 1600%
(response) 110/220 ms [103]

Ti3C2/TiO2
Composite Capacitance 7−97% 1614 pF/% RH 0.5/2 s [104]

CoTiO3/TiO2
Composite Resistive 11–95% 15,723%

(response) NA [105]

Wang et al. proposed synthesizing the [(Me3)DAB(Me3)] PbI4·H2O with the solution
method for humidity-nanosensor fabrication [39]. The sensor was examined at a stable
voltage (1 V) to measure the current change at various humidity environments from 10% to
100%. The sensor response was up to 5 orders and estimated with a formula, where I and
I0 stand for the highest and original value of current, respectively:

Response =

∣∣∣∣ I− I0

I0

∣∣∣∣ (16)
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The response value can reach to ~1,000,000% in the RH range from 10% to 100%,
which is much larger than other works we mentioned except the SnS nanoflake sensor
with current-type measurement from 3% to 99% proposed by Tang et al. [107]. The current-
type semiconductor-based humidity nanosensors are able to achieve higher responses
due to a larger electrical conduction change. In addition, the response value will increase
sharply with the measured humidity range, so some researches were able to achieve higher
responses from larger RH ranges [39,107,108]. There are also some resistive-type humidity
sensors based on different materials with a higher sensor response (>10,000%) [39,105,107].
However, the resistance-response calculation is different for every group, as in Formulas
(11) and (13) in Section 3.2. With the RH increases, the resistance will decrease due to the
conductance change. In Formula (11), the resistive-type sensor is unable to achieve a higher
response than 100%. Taking the CdS/Polyaniline nanosensor proposed by Guo et al. [37]
as an example, the resistance varies from 1.8 × 105 KΩ to 90 KΩ at RH% from 11% to
95%. If the Formula (13) is applied to this case, the response can be higher to 200,000%;
however, only 100% was calculated using Formula (11). Therefore, some groups define
a response-estimation formula in their papers to present the sensor characteristics. For
example, Lu et al. [105] defined the sensor response as Formula (17), and the CoTiO3/TiO2
composite achieved 15723% using Formula (17).

S =
R0

R
(17)

3.4. Carbon-Based

Recently, two-dimensional (2D) nanomaterials have played an important role in hu-
midity nanosensors due to the larger specific surface area and high carrier mobility. The
nanostructures of carbon-based materials, such as grapheme oxide (GO) [88], carbon nan-
otube (CNT) or carbon nanofiber (CNF) [52,53,112–115], is an epoch-defining development
with a high specific surface area for water-molecule adsorption, and the electrical conduc-
tivity brought from free radicals of carbon-based materials makes its humidity-sensing
mechanism more interesting to study. The sensing mechanism of carbon-based humidity
nanosensors is similar to semiconductor ones, as drawn in Figure 18, from the work of Sun
et al. [116]. The water molecules are chemisorbed and physisorbed onto the GO nanos-
tructures. After the humidity increases to exceed a certain degree, the second physisorbed
water layer is formed by a single hydrogen bond, and reduces the conductance of humidity
sensors. In addition, the “proton hopping” effect occurs on the second physisorbed layer
with a significant change in the electricity of the GO. To sum up, four kinds of materi-
als were mentioned regarding their sensing properties, the ceramic- and polymer-based
materials are nonconductive, so that the humidity-sensing mechanism is only from the
chemisorbed and physisorbed phenomenon of water molecules. On the other hand, the
electricity of semiconductor- and carbon-based materials is between conductive and non-
conductive; therefore, the band-gap change and proton hopping will occur for significant
electricity changes.
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Table 6 lists several carbon-based humidity sensors for comparison [24,52,53,88,112–117].
The measurement types include impedance, capacitance, current and voltage. As in the
discussion of semiconductor sensors, the current detection [115] is easily measured by
resistance reduction to several orders. Some groups proposed high response/sensitivity
results for their GO/CNT nanosensor [52,116,117] due to the high specific surface area
for higher water adsorption ratio. For instance, Chen et al. proposed the highly sensitive
sensor based on GO with dispersed multi-walled carbon nanotubes (MWCNTs). The
MWCNTs are evenly dispersed in GO solution and restricted in GO layers. The GO
and CNTs/CNFs are dispersed in the nanosensor structure, similar to the monolayer for
water molecule capture. In addition, the definition of the response calculation affects the
results, as mentioned in 3.3 for semiconductor-based nanosensors. Li et al. proposed
the graphitic carbon nitride/polyethylene oxide hybrid structure for ultrahigh response
to 9,756,300% in impedance. The response calculation is based on Formula (13), due to
the lower impedance at higher RH%. Therefore, we can conclude that semiconductor or
carbon nanostructured humidity sensors provide a higher sensor response, and must be
measured using the resistive or current approaches for larger signal changes. In terms
of capacitance, the dielectric constant of water is 80, which is 80 times that of air, but the
resistivity can achieve a difference far from 80 times under the influence of band gap; thus,
it is reasonable that it achieves the best response/sensitivity. The material with the largest
change in surface conductivity must be the first choice, and its specific surface area achieves
a higher water-vapor adsorption ratio for better sensor performance.

In terms of the optical sensors made of carbon-based materials, these are mainly
proposed with wavelength and power measurement using microfiber knot resonators
(MKRs) [118,119], which evolved from microfiber resonators (MRs) by making a tie with
the MRs. The MRs humidity nanosensors include polymer, oxides and grapheme oxide as
the sensing material, and the microfiber is mainly made of silica [120–122]. The difference in
MRs and MKRs is the light path change from the knot of the fiber structure, which is drawn
in Figure 19a,b, respectively [118,119]. The light passes through the circulating path in the
MKRs with a phase shift of 2π, which results in periodic optical resonance in the MKRs. The
nanosensor performance is affected by the physical parameters of the waist diameter, knot
diameter and the chemical parameter of material characteristic in sensitive film. The recent
advances in MKRs development are listed in Table 7 for comparison [118–122]. The silica
MKRs are usually applied to MKRs, as optical humidity-sensor research has investigated
several sensitive materials to enhance the external perturbations. However, the sensitivity
listed in Table 7 is relatively lower compared with the electrical-type humidity sensors, so
the MKRs sensors are still primarily used in other fields such as for temperature, strain and
pressure sensors.
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Table 6. The carbon-based humidity nanosensor comparison.

Sensing Material Measurement
Type RH Range (% RH) Response/Sensitivity Response and

Recovery Time Refs

Graphitic carbon
nitride Impedance 11−97 9,756,300% (response) 2.2/3 s [24]

GO/MWCNT Capacitance 11−97 7980 pF/% RH
(sensitivity) 5/2.5 s [52]

CNF/CNT Current 11−95 65% (response) 321/435 s [53]

Graphene oxide
sheets Capacitance 30−90 5.65 fF/% RH

(sensitivity) NA [88]

SWCNT Conductance 10−90 37.5% (response) 6/200 s
(10−60% RH) [112]

MWCNT Conductance 20−90 61.0% (response) NA [113]

Graphite Voltage 20−70 215% (response) 6/8 min [114]

GO/MWCNT Current 11−95 33% (response) 470/500 s [115]

Graphene oxide Capacitance 15−95 35,000 pF/% RH
(sensitivity) 10.5/41 s [116]

Carbon nanofiber
(CNF) Capacitance 40−100 3500 % 41/50 s [117]
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Figure 19. The schematic sensor structure of (a) microfiber resonators (MRs) and (b) microfiber knot
resonators (MKRs). The arrows indicate the light paths.

Table 7. A brief comparison of MKRs humidity sensors.

Sensing Method Sensitive Material Sensitivity Refs

Silica MKRs MWCNT 1.10 µW/%RH [75]

Silica MKRs Silica 0.034 dB/% RH (power) [120]

Silica MKRs Graphene Oxide 0.0104 nm/% RH [121]

Silica MKRs Polyvinyl Alcohol (PVA) −1.53 nm/% RH [122]

MKRs Ag/TiO2 13.4 mW/% RH [123]
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3.5. TENG for Humidity Sensors

To solve the energy crisis and environmental-protection problems of using fossil fuels,
energy policies in the new era focus on improving green-energy technology [40,124–126].
This has already been a global trend in environmental protection and sustainable energy.
Triboelectric nanogenerators (TENGs) are an important solution for harvesting mechanical
energy from our daily life. Traditionally, the output performance is dependent on the
selected tribo-layers and morphology of TENG; that is, the triboelectricity of the materi-
als is largely determined by the property of the electronic affinity, and the morphology
contributed to an effective contact area [40,125,127,128]. Among several tribo-electrical
mechanisms for energy harvesting by TENG, the contact and separation mode is the
most widespread design for higher efficiency, and is also applied in the humidity-sensing
field [41–44]. Figure 20 shows the working-mechanism diagram of the cycling contact–
separation operation of TENGs with positive and negative tribo-layers of aluminum and a
graphite-doped PDMS [129]. In the initial position, the two tribo-layers are separated and
no charge transfer occurs; then, the two tribo-layer materials are pressed into contact using
mechanical force to generate triboelectricity due to the electron affinities of the materials
for the electron transfer from the aluminum to the graphite-doped PDMS composite film.
At this contact stage, aluminum is positively charged and the graphite-doped PDMS com-
posite film is negatively charged because of their own material tendency. In the releasing
stage, with the separation of the triboelectric layers, a potential difference starts to occur
between the two electrodes. The electrostatic induction drives the free electrons at the
bottom electrode to flow to the upper electrode to balance the potential difference until
completed separation. When the tribolayers materials are brought back into contact again,
the electrostatic induction motivates the electrons to transfer to the opposite direction again
until they are fully contacted.
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The new triboelectric nanogenerator (TENG) technology is successfully used for har-
vesting wasted energies from motion, sliding, vibration, hydraulic, or air power and has
received much attention for effective harvesting energy in numerous practical applications,
including consumer electronics, biosensors, pressure sensors, and portable electronic de-
vices. It is an important and a significant issue for TENG devices to develop a cost-effective
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and rapid processing, to be environmentally friendly, and to develop high-performance
technology. The TENG performance-measurement method is shown in Figure 21, with
an electrical recorder under the cycling contact and separation mode [130]. The output
voltage will change under different conditions, and material and surface morphologies
(Figure 21a,b).
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Figure 21. The TENG voltage waveform from cycling contact and separation test, and performance
measurement using recorder [130]. (a) voltage and (b) current was measured of the different TENG
during the real-time hand tapping, and (c) the image of TENG and measurement device through
external force.

In the TENG humidity-sensing field, the mechanism of electrical-signal formation is
totally different from the above. The TENG output voltage is mainly affected by the tribo-
electricity electron transfer from different materials. For the semiconductor- or polymer-
based materials we mentioned above, the water-molecule adsorption reduces the resistance
on the surface of the sensing material, resulting in an increase in conductance. However,
in terms of TENG, the water molecules will restrict the electron transfer and increase the
contact resistance from the tribolayers. Therefore, the TENG output voltage will reduce at
higher humidities [41,42,44].

Table 8 lists several TENG humidity sensors for comparison. The measurement type
is all voltage due to the tribo-electrical characteristics of the TENG. The response value
is estimated by Formula (18), where V and V0 stand for the highest and original value of
voltage, respectively:

Response =

∣∣∣∣V−V0

V

∣∣∣∣ (18)

where V0 is the voltage under the lowest humidity measured, and V is the voltage at the
highest RH. The influence of the response value of different formulas was discussed in
Sections 3.2 and 3.3. In TENGs, the voltage response is better estimated using Formula (18)
than (19), as below, because of the voltage reduction at higher RHs.

Response =

∣∣∣∣V−V0

V0

∣∣∣∣ (19)
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Table 8. The comparison of TENG humidity nanosensors.

Sensing Material Measurement
Type

RH Range
(% RH) Response Response and

Recovery Time Refs

Peanut shell powder (PSP)-based TENG Voltage 41.5–74.7 About 65% NA [41]

Sunflower husk powder based TENG Voltage 37–89 About 200% NA [42]

TiO2 based TENG Voltage 20–84 320% NA [44]

Poly(vinyl alcohol)/MXene Nanofber
TENG Voltage 11–97 4000% 0.9/6.3 s [131]

In sensor performance discussions, the poly (vinyl alcohol)/MXene nanofber TENG
proposed by Zhang et al. achieved a 4000% response and response–recovery time of
0.9/6.3 s. The TENG was synthesized using the solution method for poly (vinyl alco-
hol)/MXene preparation and MoSe2 monolayer from APCVD process for a self-powered
TENG. The higher specific surface area of nanofiber can achieve better performance in
sensor response.

Except the electrical humidity nanosensors mentioned above, a special smart de-
formable TENG was proposed by Chen et al. [43]. The vapor-driven actuator based on
perfluorosulfonic acid ionomer (PFSA) was used to detect the RH by automatically bending
to different angles. The schematic materials and detailed material structure design of the
humidity-responsive TENG actuator is shown in Figure 22, whereas the fluorinated ethy-
lene propylene (FEP) is as a dielectric layer with a negative tendency. With the humidity
changes, the TENG can spontaneously bend to different deformation angles and directions
through good mechanical strength and flexibility. In addition, the aluminum also works as
an electrode to collect the wind or water-drop energy in our environment.
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3.6. MXene-Based Humidity Sensor

In recent years, the novel material MXene has been applied to the humidity-sensing
field [29,30,132–135]. MXene is a new two-dimensional (2D) metal carbide and has received
much attention due to its high electrical conductivity and chemical stability [29]. It was
first proposed by Gogotsi et al. in 2011 using 2D nanosheets synthesized with Ti–C–O–F.
It is possible to print MXene through solution synthesis with high precision, and this
is performed with high sensitivity in capacitive-type measuring. For instance, Wang
and Feng et al. proposed the solution method and electroless deposition for MXene
humidity-sensor fabrication [29] with a sensor response of 131.4%. Fabric- or carbon-based
substrates are used in combination with an MXene sensing layer for portable or flexible
nanosensor devices. In 2022, Han et al. reported the MXene-with-MWCNT sensing device
in masks to monitor human breath in our daily lives [30], and achieved a 265% sensor
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response. In addition, Shen et al. proposed cellulose-fiber substrates for flexible humidity-
nanosensor preparation with a 90% response in the same year [134]. Relevant research
shows that this is a suitable material for current humidity sensors in the Internet of Things
and daily-life monitoring. However, the preparation and synthesis of MXene usually
used the HF solution for etching treatment [132–135]; this is harmful to our environment
and dangerous in experiment conduction. The challenge for MXene material is sensor-
performance improvement or pollution prevention from the chemical process.

The sensing mechanism of MXene can be divided into two parts. First is the chemisorbed
and physisorbed layer of water molecules, which is very similar to ceramic- and polymer-
based humidity nanosensors and was discussed in Sections 3.1 and 3.2. The other is the
layer distance in the MXene sensor structure. In lower humidity conditions, the interlayer
spacing of MXene nanosheets was mainly formed by the different degrees of the MXene
nanostructure. Due to the 2D nanostructure, the interlayer distance between MXene layers
would directly influence the electrical property when the structure expanded under high
humidity conditions, and the resistance of the sensor showed a more obvious increase [134].
Generally, the electrical signal of resistance will drop when humidity is higher in discussion
in Sections 3.1–3.5; thus, this is a major difference between MXene-based nanosensors and
other types due to its nanostructure transformation. In addition, the capacitance decreases
when humidity become higher, because the distance increases. From Formula (5), the
capacitance value is inversely proportional to the thickness (d), so the interlayer distance
will cause a lower capacitance signal. This is a major problem to the related research due to
the opposite phenomenon of two mechanisms. In the chemisorbed and physisorbed layer
of water molecule in higher humidity conditions, the capacitance contribution of water
molecule should cause the electrical signal to increase. However, the nanostructure change
dominates the capacitance contribution and results in the electrical-signal decrease and
shows a lower response. Therefore, the improvement of response or sensitivity is another
challenge to the MXene-based nanosensors.

3.7. Summary and Future Applications of Humidity Nanosensors

Humidity nanosensors were briefly reviewed and categorized into six types, and
the nanosensor performance is affected directly by the material, nanostructure and mea-
surement type and calculation formula. Humidity sensors made of ceramics, polymers,
semiconductors, and carbon materials have been developed for a long time, and the
research is moving forward with more economical manufacturing processes and better
sensor performances. On the other hand, humidity sensors made from TENG and MXene
materials have emerged in recent years, and have received more attention. Among the
above-mentioned various materials, the semiconductor and carbon humidity sensor can
achieve better performance. The sensing mechanism of various materials is related to the
adsorption of water vapor and photon hopping, but the adsorption of water molecules sig-
nificantly changes the electrical properties from semiconductor- and carbon-based sensors.
Therefore, in addition to resistance and capacitance, the sensing types also include current
and voltage types. The current-type humidity nanosensors are able to achieve a higher
response due to a larger electrical conduction change. The response value will increase
sharply with the measured humidity range, so some research may be able to reach a higher
response from a larger RH range. In addition, the response calculation based on the denom-
inator of the highest value or original data directly affects the response value. For instance,
the response calculation based on Formulas (11) and (13) shows significant differences, from
100% to 20,000%, in Section 3.3. On the other hand, the proportion of semiconductor- and
carbon-based materials produced by solution synthesis is much higher than for ceramic- or
polymer-based nanosensors, and the process tends to be more complicated with a longer
process time. Ceramics and polymers are still electrically non-conductive after the ad-
sorption of water vapor, so the response performance is usually not that good; however,
this does not mean that they have no research advantages. Ceramic materials have stable
physical and chemical properties and can withstand extreme environments, such as high
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temperatures, compared to semiconductors. Polymer materials have the advantage of
flexibility, and a variety of materials are combined with them to form flexible or wearable
devices, which is more in-line with future application trends. Among them, TENG is
also based on polymer material, but the mechanism is obviously different from the above.
The mechanism comes from the triboelectricity of the two materials, so the change in the
output voltage measurement is frequently used. MXene is a new material worth studying.
The nanostructure of the sensor will transform when humidity changes. However, the
contribution of water-vapor adsorption and nanostructural changes is opposite, and HF is
often used for etching in the fabrication process. How to improve the process and sensor
performance are the challenges of the future. In addition, the sensor performance is linked
to a high specific surface area [29,59,107], due to the higher proportion of water-molecule
contribution. The electrical signal differences become larger with increasing surface-to-
volume ratios [107]. In addition, the formula derivation of total circumference from Chung
et al. [59] indicates a similar result. With larger proportions of water-molecule adsorption,
a higher sensor response is achieved. Compared with electrical sensors, optical humidity
sensors have also been studied extensively, but the observation wavelength of visible light
has been limited. Furthermore, the refractive index change from air to water molecules
is relatively small compared with the electrical properties, especially the resistivity. It is
difficult to surpass the response of electrical sensors. Therefore, how to improve optical
sensors is a challenge for the future.

In addition to the traditional applications mentioned in Section 1, humidity sensors
are currently developing towards topics such as human-body monitoring, IoT sensors, and
environmental monitoring for advancement. For example, the MXene/MWCNT electronic
fabric in a mask was proposed by Han et al. [30]. The electronic components, including a
microcontroller, analog digital convertor (ADC) module and Bluetooth, were all integrated
with sensing layer. From the data feedback, the motion and the moisture from breath, it
was possible to perform human health monitoring [30]. Another example is the wearable
components combined with polymer materials in a baby-diaper alarm [111]. The resistance
was measured and analyzed corresponding with time at different wetness levels in mL for
human-body monitoring. The TENG introduced in Section 3.5 is also commonly used in
various sensing of the human body and human–machine interface [136], which is a future
trend under the development of the IoT sensors. Although the sensor itself can be made
non-toxic at present, the comfort of portable devices needs to be further improved in the
future. On the other hand, electrical sensors are widely used in the gas sensing [106] of
different substances, but water vapor and different gas molecules will affect each other’s
signals. For gas sensors, how to prevent moisture interference is an important issue. As for
the humidity sensor, how to prevent the interference of other substances is to be considered
in the future.

4. Conclusions

We briefly reviewed the research progress of the fabrication methods, measurement
types, sensing mechanisms and applications of humidity nanosensors in recent years.
First, the properties and characteristics of different materials, such as ceramics, polymers,
semiconductor, carbon-based, TENG, and MXene humidity nanosensors were summarized.
In addition, several fabrication processes, such as solution methods, anodization, PVD and
CVD, were described under several conditions for sensor preparation. Dozens of studies are
listed in several tables for comparison. The semiconductor- and carbon-based nanosensors
synthesized with solution methods are expected to achieve better sensor performance, a
higher response of >1,000,000% and shorter response–recovery time, below 1 s.

The recent advance of improving the sensor performance has been linked to high-
specific-surface-area [29,59,107] nanostructured materials such as monolayer, nanoflakes or
dispersed GO in the last few years. The higher proportion of water-molecule contact, the
higher the achieved sensor response. Another important factor to determine the nanosensor
performance is the measurement type with proper formula calculation. Generally, the
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resistive- and current-type measurement systems can amplify the difference in the signal
due to the significant change in the resistivity of different RHs, which is much larger
than the dielectric constant or refractive index change. Therefore, the semiconductor- and
carbon-based electrical nanosensors are the better choice in recent advances for promoting
humidity-sensor performance. Although it seems like the best option in the humidity-
sensing field, the ceramic- and polymer-based humidity nanosensors are still valuable.
Good stability and biocompatibility nanosensors with relatively fast and simple process
are reported by ceramic-based studies. In addition, the advantages of being flexible,
light weight, and portable are integrated into polymer-based devices for the trend in IoT
technology. Furthermore, optical humidity sensing still has a place because the signal can
be observed by the naked eye, without requiring electricity. New functional materials, a
better fabrication process, improvement in sensor performance, and real-time monitoring
from human body will direct the research and development of novel humidity nanosensors
to the demand in our daily life under different conditions, which also paves the way for
advancements in other applications of IoT, and environmental and human-body monitoring
in the future.

Author Contributions: C.-A.K. and C.-K.C. are equally contributed on the whole paper. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was partially sponsored by the Ministry of Science and Technology (MOST),
Taiwan, under no. MOST106-2221-E-006-101-MY3, 108-2221-E-006-187, 109-2221-E-006-006, 110-2221-
E-006-177 and 111-2221-E-006-130-MY2.

Data Availability Statement: Data are the coauthors’ research results and schematic drawings.

Acknowledgments: We also would like to thank the Core Facility Center in the National Cheng
Kung University for analysis-instrument support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Z.; Wang, J.; Xu, Y.; Shen, M.; Duan, C.; Dai, L.; Ni, Y. Green and sustainable cellulose-derived humidity sensors: A review.

Carbohydr. Polym. 2021, 270, 118385. [CrossRef] [PubMed]
2. Anisimov, Y.A.; Evitts, R.W.; Cree, D.E.; Wilson, L.D. Polyaniline/Biopolymer Composite Systems for Humidity Sensor Applica-

tions: A Review. Polymers 2021, 13, 2722. [CrossRef] [PubMed]
3. Barmpakos, D.; Kaltsas, G. A review on humidity, temperature and strain printed sensors—Current trends and future per-

spectives. Sensors 2021, 21, 739. [CrossRef] [PubMed]
4. Duan, Z.; Jiang, Y.; Tai, H. Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C

2021, 9, 14963–14980. [CrossRef]
5. Mishra, S.; Singh, A.K. Optical sensors for water and humidity and their further applications. Coord. Chem. Rev. 2021, 445, 214063.

[CrossRef]
6. Nakajima, T.; Fujio, Y.; Sugahara, T.; Tsuchiya, T. Flexible Ceramic Film Sensors for Free-Form Devices. Sensors 2022, 22, 1996.

[CrossRef] [PubMed]
7. Blank, T.A.; Eksperiandova, L.P.; Belikov, K.N. Recent trends of ceramic humidity sensors development: A review. Sens. Actuat. B

Chem. 2016, 228, 416–442. [CrossRef]
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