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Abstract: Non-human primates contribute to the spread of yellow fever virus (YFV) and the establish-
ment of transmission cycles in endemic areas, such as Brazil. This study aims to investigate virological,
histopathological and immunohistochemical findings in livers of squirrel monkeys (Saimiri spp.)
infected with the YFV. Viremia occurred 1–30 days post infection (dpi) and the virus showed a
predilection for the middle zone (Z2). The livers were jaundiced with subcapsular and hemorrhagic
multifocal petechiae. Apoptosis, lytic and coagulative necrosis, steatosis and cellular edema were
also observed. The immune response was characterized by the expression of S100, CD11b, CD57,
CD4 and CD20; endothelial markers; stress and cell death; pro and anti-inflammatory cytokines, as
well as Treg (IL-35) and IL-17 throughout the experimental period. Lesions during the severe phase of
the disease were associated with excessive production of apoptotic pro-inflammatory cytokines, such
as IFN-γ and TNF-α, released by inflammatory response cells (CD4+ and CD8+ T lymphocytes) and
associated with high expression of molecules of adhesion in the inflammatory foci observed in Z2.
Immunostaining of the local endothelium in vascular cells and the bile duct was intense, suggesting
a fundamental role in liver damage and in the pathogenesis of the disease.

Keywords: yellow fever; pathogenesis; experimental infection; immunology of yellow fever virus
infection; yellow fever virus; Saimiri spp.

1. Introduction

Yellow fever remains a significant public health problem in tropical region of Africa
and South America. The disease is endemic in 45 countries (11 South American; 34 African),
which periodically experience outbreaks and where, according to the World Health Organi-
zation, it is consistently underreported [1,2].

The yellow fever virus (YFV) infection in humans can be asymptomatic or symp-
tomatic. Approximately 60–80% of infections are asymptomatic or oligosymptomatic.
Clinically, it can be mild, moderate, or severe with a high fatality rate (50%). Most severe

Viruses 2023, 15, 551. https://doi.org/10.3390/v15020551 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v15020551
https://doi.org/10.3390/v15020551
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-1014-2999
https://orcid.org/0000-0003-1622-9849
https://orcid.org/0000-0002-4369-5178
https://orcid.org/0000-0001-6210-6917
https://orcid.org/0000-0002-9400-2036
https://orcid.org/0000-0002-6267-9966
https://orcid.org/0000-0002-6603-5527
https://doi.org/10.3390/v15020551
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v15020551?type=check_update&version=2


Viruses 2023, 15, 551 2 of 16

cases present with the classical signs of hepatic and renal failure, including jaundice, olig-
uria/anuria, albuminuria, and hemorrhages. The severe form of the disease is characterized
by simultaneous involvement of several organs [3,4].

Understanding the YFV–host relationship is essential to comprehension of the mecha-
nisms that affect the innate and adaptive immune responses to the virus infection. Studies
with humans and experimental animal models have shown that the liver is the main target
organ of YFV. Hepatic lesions appear to be caused by both the direct cytopathic effects
and the immune response induced by cytokines and immune cells. These effects have
been well characterized in previous studies [5,6], that demonstrated the histopathological
features found in human liver samples were related not only to the presence of viral antigen
in the hepatic tissue, but also to the expression of several cytokines, mainly TNF-α and
TGF-β, and their relationships with the apoptotic cellular immune response are particularly
important in the development of hepatic lesions.

The epidemiological relevance of yellow fever and its importance for public health
are justified by the epidemic potential of the YFV, mainly in urban areas, where the high
rate of Aedes aegypti and the high population contingent of unvaccinated susceptible are
of concern [7]. The use of experimental animal models of the YFV infection in neotropical
non-human primates (NHPs), may help to define the roles of cytokines and other factors
that are involved in responses to different clinical forms of disease, thereby improving
our understanding of the pathogenesis of the disease. In this study, we characterized
the hepatic tissue changes and in situ immune responses in an experimental squirrel
monkey (Saimiri spp.) model of YFV infection, using a South American genotype I strain of
virus. Squirrel Monkey are widely distributed in the Amazon region in Northern South
America, which increase their importance as primary hosts, viral amplifiers, and sources of
information on the dynamics of the circulation of YFV during and outside of epidemics.

2. Materials and Methods
2.1. Samples

Eleven laboratory-reared squirrel monkeys (Saimiri spp.) from a breeding colony of the
National Primate Center (CENP) Ananindeua, Pará, Brazil were used in the study. Before
the infection all animals were bled and tested negative by hemagglutination-inhibition (HI)
test for the presence of antibodies against YFV, dengue virus 1–4, Ilheus virus, Rocio virus,
and Sant Louis virus. The non-immune animals were intradermally infected with YFV
genotype I isolate BeH655417 (infectious dose: 1 × 106 plaque forming units (PFU)/mL).
One animal was not infected and served as a negative control. The YFV sample used in
this study was originally obtained from a severe fatal human case in Roraima, Brazil in
2014 and was genetically characterized as of South American genotype I (BeH655417) and
isolated in the Evandro Chagas Institute (IEC), Ananindeua, Pará, Brazil and propagated by
a single additional passage in C6/36 cells. Infection by YFV cells was confirmed by indirect
immunofluorescence assay with polyclonal and monoclonal anti-YFV antibodies [8].

One monkey was euthanized each day during the first 7 days and at 10-, 20-, and
30-days post-infection (dpi). For necropsy, the animals were euthanized intravenously with
ketamine (15 mg/kg) and xylazine (1 mg/kg) [9]. Subsequently, macroscopic examination
and photographic documentation (Fujifilm S290, Tokyo, Japan) was performed. Liver tissue
was collected as three individual samples: two were preserved at −70 ◦C and the third was
fixed in 10% buffered formalin for 24 h and then stored in 70% ethanol until processing.

2.2. Viral RNA Detection

RNA extraction was done with a Maxwell® extraction platform (Promega, Madison,
WI, USA) and the commercially available Maxwell® 10 LEV simply RNA Tissue Kit ac-
cording to the manufacturer’s protocol. For the quantification of viral load, was used a
commercial GoTaq Probe 1-Step RT-qPCR System kit (Promega) in conjunction with the
absolute quantification method using a pGEM®-T Easy vector-cloned plasmid (Promega)
from the YFV genome as previously described [10].
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2.3. Histological and Immunohistochemical Assays for Detection of Viral Antigen and Cytokines

For histopathological analysis, 5-µm-thick histological sections of paraffin-embedded
tissue specimens were stained with hematoxylin–eosin (HE). Immunohistochemistry (IHC)
was adapted according to the previously described protocol [11]. An anti-YFV antibody
produced in Balb-C mice was prepared by the IEC and included in a streptavidin–alkaline
phosphatase assay. For the other markers, we performed an IHC assay for detection, based
on complex formation with EnVision horseradish peroxidase (HRP)–polymer (Agilent,
Santa Clara, CA, USA). Briefly, tissue samples were dewaxed in xylol and rehydrated in
ethyl alcohol (90%, 80%, and then 70%). Endogenous peroxidase was inhibited by incubat-
ing the tissue in 3% hydrogen peroxide for 45 min. Antigen retrieval was performed by
heating the sample in citrate buffer (pH 6.0) for 20 min at 90 ◦C. Nonspecific protein binding
was blocked by incubating in 10% concentrated skim milk for 30 min. The histological
sections were incubated at room temperature with primary antibodies diluted in 1% bovine
albumin for 14 h. The slides were immersed in phosphate-buffered saline and incubated
with the secondary EnVision HRP–polymer-conjugated antibody in a 37 ◦C oven for 30 min.
The sections were developed with a chromogen solution consisting of 0.03% diaminobenzi-
dine and 3% hydrogen peroxide. Tissue staining was carried out using Harris hematoxylin
for 1 min. Finally, the histological sections were mounted in slides and analyzed in light
microscopes. Relation of primary antibodies used in immunohistochemical reactions are
available in the Tables S1 and S3.

2.4. Quantitative Analysis

For quantitative analysis, we analyzed samples with the Axio Imager Z1 optical
microscope (Carl Zeiss, Ober Kochen, Germany) using a 1 cm2 graduated reticle (area:
0.0625 mm2) under a 400× objective. Immunologically marked cells were counted in
10 hepatic acini subdivided into the periportal (Z1), midzone (Z2), and central vein (Z3)
areas and the portal tract (PT). We calculated the mean number of cells in each area and
divided the result by 0.0625 mm2 [12] (Table S2).

2.5. Statistical Analysis

The data obtained in the experiments were stored on electronic spreadsheets. We per-
formed statistical analysis with GraphPad Prism version 5.0 (GraphPad, San Diego, CA, USA).
A descriptive statistic was applied where, in the univariate analysis, frequencies and measures
of central tendency were obtained. Values of p < 0.05 were considered statistically significant.

3. Results
3.1. Viral Kinetics and Macroscopic, Histopathological, and Immunohistochemical Detection of
YFV Infection

The macroscopic changes caused by YFV infection in the squirrel monkeys followed
the classical pattern. The livers were of normal size. However, they were diffusely jaundiced
(2–10 dpi) during the acute phase (1–7 dpi) and at the onset of the convalescence phase
(10–30 dpi). We observed a heterogeneous pattern in the hepatic tissue with irregular
red areas amid lighter areas (4–5 dpi) with multifocal distribution, as well as subcapsular
multifocal petechiae (7 dpi), and severe organ bleeding (6 dpi). In the convalescence phase,
these alterations had disappeared or were minimal (20–30 dpi). One infected animal died
on 6 dpi (Figure 1A).
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assay (IHC) in the 4 hepatic compartments analyzed demonstrating a wide predominance in Z2 

Figure 1. Gross macroscopy, viral load, histopathology and immunohistochemical assay in hepatic
parenchyma of squirrel monkey (Saimiri spp.) infected with YFV South American genotype I.
(A) Macroscopic representation of liver infected with YFV at 6 dpi showing an icteric and hemorrhagic
pattern compared to a normal uninfected liver. (B) Evolution of viral kinetics highlighting viremic
peak at 4 dpi. (C) Quantification of cell expressing specific YFV antigens by Immunohistochemical
assay (IHC) in the 4 hepatic compartments analyzed demonstrating a wide predominance in Z2
during the acute phase of infection. (D) Representative histopathology photographs showing the
involvement of Z3, with emphasis to lytic necrosis (asterisks), intense hemorrhage (black circle),
positive immunohistochemistry for presence of specific YFV antigens in hepatocytes (red circle).
(E) Histopathology showing the major involvement of Z2 with lytic necrosis area (black circle),
positive immunohistochemistry showing large amounts of YFV antigens in hepatocytes (red circle).
(F) Representative histopathology photographs of Z1, showing areas of periportal lytic necrosis and
hemorrhages (black cycle), positive immunohistochemical for defection of specific YFV antigens
and a periportal infiltrate is highlighted (red circle) and Kupffer cells (arrow). (G) Representative
histopathology photographs of portal tract (PT) showing inflammatory infiltrate (black circle), positive
immunohistochemistry for YFV antigens periportal infiltrate (red circle) and in the bile duct (black
arrow); (D–G) Negative control for YFV antigens in Z3, Z2, Z1, and PT.

The YFV genome was only detected in the monkeys during the acute phase of infection.
The peak viremias occurred at 4 dpi (803,000 copies/µL) and 5 dpi (304,000 copies/µL)
(Figure 1B). Viral antigens were predominantly detected in Z2 in hepatocytes and Kupf-
fer cells. YFV tropism for Z2 progressed during the acute phase, leading to increased
immunostaining at 4 to 6 dpi (Figure 1C).

Histopathological analysis revealed portal spaces that generally presented with a
mild or moderate inflammatory infiltrate of lymphocytes, plasma cells, and macrophages
that were disproportionate to the degree of hepatic parenchyma impairment. Hepatocyte
vacuolation, coagulative and lytic necrosis, and apoptosis were associated with periportal
mononuclear infiltrates, congestion, and hemorrhages during the acute phase (1–7 dpi).
(Figure 1D–G).

In areas with centrilobular and midzonal lesions, most hepatocytes were granulated
with an atypical eosinophilic cytoplasm and showed signs of karyolysis, pycnosis, and
karyorrhexis. Hypertrophy and hyperplasia of Kupffer cells and moderate endothelial
swelling were observed and were most evident in Z2. In Z1, the remaining hepatocytes
showed swelling and marked vacuolization of the cytoplasm. The main findings in the
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convalescence phase were hepatocyte swelling and the presence of portal inflammatory
infiltrates, which decreased up to 30 dpi (Figure 1D–G).

3.2. Characterization of In Situ Immune Cell Phenotypes and Protein Expression Profiles in the
Hepatic Parenchyma

We characterized the in situ immune cell phenotypes in YFV-infected squirrel monkey
livers using commercial antibodies against S100 (APC), CD11b (Macrophages), CD57 (NK
Cells), CD4 (T Cells), and CD20 (B Cells). The expression of all markers in infected animals
was higher during the acute phase than in the control tissue and decreased during the
convalescence phase, the exception was CD20, which was not detected at 6 dpi (Figure 2E,J).
S100 was more highly expressed in the PT than in Z2, mainly in the bile duct (Figure 2A,F).
In contrast, the expression of CD11b and CD57 was highest in Z2 (Figure 2B,G,C,H). CD4
markers of helper T cells were more highly expressed in Z2 (Figure 2D,I).
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Figure 2. Quantitative immunohistochemical analysis for specific antibodies for immune cells
in Z3, Z2, Z1 and PT cells in hepatic parenchyma of squirrel monkeys (Saimiri spp.) infected
with YFV. Circles represent areas expressing higher immunostaining cells in different hepatic areas.
(A) Expression of S100. (F) Immunostaining for S100 in Kupffer cells (F-Z3), inflammatory infiltrate
(F-Z2), hepatocytes (F-Z1) and bile duct (F-PT). (B) Expression of CD11b. (G) Immunostaining for
CD11b macrophages in inflammatory infiltrate (G-Z3), (G-Z2), (G-Z1), (G-PT). (C) Expression of
CD57 NK cell. (H) Immunostaining for CD57 in inflammatory infiltrate in all hepatic compartments
(H-Z3), (H-Z2), (H-Z1), (H-PT). (D) CD4 expression. (I) Immunostaining for CD4 T lymphocyte in the
inflammatory infiltrate in all acini areas (I-Z3), (I-Z2), (I-Z1), (I-PT). (E) Expression of CD20 (B cell).
(J) Absence of Immunostaining for CD20 in all acini areas (J-Z3), (J-Z2), (J-Z1), (J-PT). (E–J) obtained
after 6 dpi.
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In addition, the endothelial activation and adhesion markers VCAM-1, ICAM-1, and
VLA-4 were expressed not only by endothelial cells in Z1 and Z2, but also by Kupffer
cells in the sinusoidal cords (Figure 3). We also evaluated the expression of the cell stress
response and death markers Caspase 3, MLKL, iNOS and lysozyme after squirrel monkey
experimental YFV infections. They were also most highly expressed in Z2, especially in
hepatocytes and Kupffer cells during the acute phase of infection (Figure 4). Finally, the
Th1 (IFN-γ, IFN-β, TNF-α, and IL-8), Th17 (IL-17), and Th2 (TGF-β, IL-10 and IL-4) and
Treg (IL-35) cytokines were most highly expressed in the acute phase, mainly at 6 dpi, in
areas with extensive tissue damage, such as Z2 (Figures 5 and 6). They were also expressed
in the convalescence phase, although to a lesser degree. An illustration of a negative control
is included in Figure S1.
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Figure 3. Quantitative immunohistochemical analysis of selected endothelial cell markers in zones Z3,
Z2, Z1 and PT in hepatic parenchyma of squirrel monkeys (Saimiri spp.) infected with YFV. Circles
represent areas expressing higher immunostaining cells in different hepatic areas. (A) Expression of
VCAM-1. (D) Immunostaining for VCAM-1 in the inflammatory infiltrate (D-Z3), in Kupffer cells (D-Z2),
(D-Z1) and bile duct (D-PT). (B) Expression of ICAM-1. (E) Immunostaining for ICAM-1 in hepatocytes
(E-Z3), (E-Z2), (E-Z1) in Kupffer cells, (E-PT) in the bile duct. (C) VLA-4 expression. (F) Immunostaining
for VLA-4 in endothelial and Kupffer (F-Z3) cells, (F-Z2) in inflammatory infiltrate, (F-Z1), (F-PT) in
6 dpi bile duct.
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Figure 4. Quantitative immunohistochemical analysis of specific markers in Z3, Z2, Z1 and PT in
the hepatic parenchyma of squirrel monkeys (Saimiri spp.) infected with YFV. Circles represent
areas expressing higher immunostaining cells in different hepatic areas. (A) Caspase 3 expression.
(E) Immunostaining for Caspase 3 in hepatocytes (E-Z3), (E-Z2), (E-Z1) and bile duct (E-PT). (B)
MLKL expression. (F) Immunostaining for MLKL in hepatocytes and inflammatory infiltrate (F-
Z3), (F-Z2) inflammatory infiltrate, (F-Z1) in hepatocytes, (F-PT) in hepatocytes. (C) Expression
of iNOS. (G) Immunostaining for iNOS in inflammatory infiltrate (G-Z3), (G-Z2) in hepatocytes,
(G-Z1) hepatocytes, (G-PT) bile duct and inflammatory infiltrate. (D) Lysozyme Expression. (H) In
inflammatory infiltrate (E-Z3), (E-Z2), (H-Z1) in Kupffer cells, (H-PT) in inflammatory infiltrate at
6 dpi.
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Figure 5. Quantitative immunohistochemical analysis of selected pro- inflammatory cytokines in
zones Z3, Z2, Z1 and PT in the hepatic parenchyma of squirrel monkeys (Saimiri spp.) infected
with YFV. Circles represent areas expressing higher immunostaining cells in different hepatic areas.
(A) IFN-γ expression. (F)-Immunostaining for IFN-γ in hepatocytes (F-Z3), and in inflammatory
infiltrate (F-Z2), (F-Z1), (F-PT). (B) Expression of IFN-β. (G) Immunostaining for IFN-β in hepatocytes
(F-Z3), (F-Z2) in inflammatory infiltrate, (F-Z1) in hepatocytes, (F-PT). (C) Expression of TNF-α.
(H) Immunostaining for TNF-α in inflammatory infiltrate (F-Z3), (F-Z2), (F-Z1), (F-PT). (D) Expression
of IL-8. (I) Immunostaining for IL-8 in hepatocytes (F-Z3), (F-Z2), (F-Z1), (F-PT). (E) Expression of
IL-17. (J) Immunostaining for IL-17 in hepatocytes (J-Z3), (J-Z2), (J-Z1), (J-PT) in 6 dpi.
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Figure 6. Quantitative immunohistochemical analysis of selected anti- inflammatory cytokines
in zones Z3, Z2, Z1 and PT in hepatic parenchyma of squirrel monkeys (Saimiri spp.) infected
with YFV. Circles represent areas expressing higher immunostaining cells in different hepatic areas.
(A) Expression of IL-4. (E) Immunostaining for IL-4 in hepatocytes (E-Z3), (E-Z2), (E-Z1) in inflamma-
tory infiltrate area (E-PT). (B) Expression of IL-10. (F) Immunostaining for IL-10 in hepatocytes (F-Z3),
(F-Z2), (F-Z1), (F-PT). (C) Expression of IL-35. (G) Immunostaining for IL-35 in hepatocytes in all ex-
amined hepatic tissues (G-Z3), (G-Z2), (G-Z1), (G-PT). (D) Expression of TGF-β. (H) Immunostaining
for TGF-β in the inflammatory infiltrate (H-Z3), (H-Z2), and in hepatocytes (H-Z1), (H-PT) 6 dpi.

4. Discussion

The risk of YF reurbanization where Aedes aegypti is currently established, especially
in endemic and populated developing countries such as Brazil, has generated worldwide
concern. Despite the magnitude and rapid expansion of the recent yellow fever epidemic
in Brazil, little is known about YFV dispersion between the primary hosts and their specific
in situ immune responses [13]. We found that YFV infects squirrel monkeys with intense
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hepatic tropism in the first days of infection. From day 7 onward, which coincided with
beginning of the convalescence phase, viral RNA decreased drastically, likely due the
activation of the immune response. These results have been corroborated in previous exper-
imental studies with other flaviviruses and older descriptions of hepatic experiments with
YFV. In fact, squirrel monkeys infected with dengue virus (DENV) and Zika virus (ZIKV);
rhesus macaques (Macaca mullata) infected with DENV, YFV, and ZIKV; or marmosets
(Callithrix penicillata) infected with DENV and ZIKV all exhibit more pronounced viremia,
biochemical, and tissue changes in the early days of infection than squirrel monkeys
infected with YFV [14–20].

We found by IHC that YFV has a tropism for several resident cells of the hepatic
parenchyma, with a clear preference for hepatocytes, Kupffer cells, bile duct cells, and
vascular endothelial cells in the PT. Other studies have reported a similar YFV tropism for
the liver, as corroborated by high viral antigen IHC staining in hepatocytes and Kupffer
and endothelial cells, which likely serve as the primary sites for YFV replication in the
liver excepting for bile duct cells that together with endothelial cells seems to have an
important role in disease pathogenesis in hepatic tissues. In addition, Kupffer cells are
a major population of antigen-presenting cells (APCs) in the hepatic environment; they
present MHC II-linked viral antigens to CD4+ and CD8+ T lymphocytes in the hepatic
inflammatory infiltrate during YFV infection [5,6,21,22].

The histopathological changes in the experimental model showed that the hepatic
parenchyma lesions were most intense in Z2, as previously widely reported [1,5,21]. The
animal that died at 6 dpi had major alterations in its hepatic tissue due to deleterious effects
of the virus and showed that squirrel monkeys have a relative resistance to YFV infection
with a small proportion of infected animals developing of severe fatal disease. On the other
side, despite the decline of the viral load at 7 dpi, the hepatic lesions in the animals were
pronounced and present variable intensities, which indicates the activation of the immune
response, which should have a role in the resistance to YFV and helping of survival of
many of infected animals.

As previously described in the human liver [1,5,21], the main type of YFV-induced cell
death was apoptosis, followed by lytic and coagulative necrosis, as demonstrated by intense
immunostaining for caspase 3 and MLKL, respectively. We observed irregular changes
in caspase 3 staining over the course of the experiment. One hypothesis that accounts for
this finding is that the vascular impairment associated with YFV results in intense tissue
hypoxia, which may ultimately culminate in coagulative necrotic lesions. Indeed, intense
midzone lesions have been associated with low-flow hypoxia. It is noteworthy, therefore,
that the more pronounced midzone (Z2) lesions were also associated with YFV tropism for
this zone, resulting in cell death by apoptosis and/or lytic necrosis, probably due to the
cellular viral cycle and the host immune response locally mediated by cytokines such as
TNF-α and TGF-β, as previously demonstrated in the YF liver of human fatal cases [1,5,21].

Necrosis and apoptosis are classically associated with infectious liver diseases [23,24].
Another mechanism of cell death, necroptosis, which has not previously been described
during YF, appears to contribute to disease pathogenesis in our model, as characterized
by intense immunostaining with an antibody against MLKL. Necroptosis or programmed
necrosis is dependent on the formation of the necrosome, which includes RIP1, RIP3, and
MLKL [25–27]. MLKL phosphorylation in the necrosome induces the activation of genes
that cause cell death. Given that necrosis is a classical mechanism of YFV-induced cell
death, it will be critical to investigate the mechanisms of necroptosis related to MLKL,
which may modulate endosomal traffic and phagolysosome formation. We cannot rule
out necroptosis-mediated TNF-α responses downstream of TRADD and iNOS activation
and reactive oxygen species (ROS) generation [25–27], especially at 6 dpi when the liver
parenchymal damage was the most intense.

We found immunostaining of innate and adaptive immune cells in the acini and PT
through the acute-phase infection, particularly at 6 dpi. Interestingly, S100, a classical
marker of APCs, was most highly expressed in the PT, predominantly in bile duct cells. We
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have also observed intense immunostaining of hepatic cells with the anti-YFV antibody in
the PT. Previous study [28] with human tissues have reported the expression of S100 in the
hepatic parenchyma, especially in the PT and Z2, marking APCs that along with Kupffer
cells, play important roles in the processing and presentation of antigens to T lymphocytes
during in situ immune responses after YFV infection. Although it has not been previously
reported, the expression of S100 in the bile duct may indicate the involvement of endothelial
cells in the duct, a local place for processing and presenting of YFV antigens. Classically,
in certain conditions, endothelial cells may act as APCs, thereby enhancing the adaptive
immune response by activating T lymphocytes [28].

We also investigated the role of Kupffer cells and perivascular macrophages in PT.
CD11b labeling showed that these cells display an M1 phenotype in Z2 and the PT, as
confirmed by their labeling for lysozyme and iNOS, enzymes responsible for generating
nitric oxide and ROS that cause cellular damage. Kupffer cells are fundamental to the
pathogenesis of YFV and other flavivirus infections, since the deleterious effects of YFV and
the antiviral response are dependent on M1 macrophages and the cytokines that activate
these cells, such as TNF-α, IFN-α, and IFN-γ [18,29,30].

The NK cell marker CD57+ was more highly expressed throughout the experiment in
Z3 and, predominantly Z2 than in Z1, indicating the development of a pro-inflammatory
innate antiviral response against the virus. Our findings are consistent with previous reports
that YFV and other flavivirus-induced activation of NK cells increases the production of
TNF-α and IFN-γ, thereby potentiating the Th1 response [31,32].

We observed CD4+ T cells with Th1, Th2, Th17, and regulatory T cell (Treg) pheno-
types in the PT and hepatic acini. Notably, the expression of the cytokines that characterize
the responses mediated by these cells was higher in Z2 than in the PT. Several studies have
demonstrated that Th1 cytokines such as TNF-α, IFN-γ, and IFN-β contribute directly
to trigger antiviral M1 macrophages and the development of a cellular stress environ-
ment [33–35]. The expression of these cytokines peaked at 6 dpi, when the lesions in the
hepatic parenchyma were the most intense.

The cytokine TNF-α participates in the development of necroptosis and apoptosis; it
is strongly associated with the regulation and activation of TRADD and the production
of RIP1, RIP3, and caspase 3 [36,37]. In our study, NK cells appeared to be one of the
main cell types involved in the inhibition of viral replication and development of the
proinflammatory response through the production of type 1 IFN, TNF-α, and IFN-γ [5,6,12].
We also investigated the role of IL-8, which had an irregular expression pattern throughout
the experiment; it was predominantly found in Z2. IL-8 may act as a chemotactic factor for
the recruitment of immune cells. In fatal YF, IL-8 has the potential to improve the response
of TNF-α and IL-6 [6]. It also acts as a regulatory factor for RANTES and promotes the
infiltration of NK cells, T lymphocytes, and B cells [38–40].

The responses mediated by Th17 lymphocytes are often related to Th1 responses.
During the experiment, IL-17 expression increased and peaked at 6 dpi mainly in Z2.
There have been few in situ studies on the role of IL-17 in YF pathogenesis. However,
analyses of infections by other flaviviruses have demonstrated that TNF-α and IL-6 intensify
tissue damage and promote the recruitment of neutrophils to infectious foci in the hepatic
parenchyma [41,42].

Importantly, the endothelium plays a central role in the immunopathogenesis of
viral hemorrhagic fevers, including YF [43]. Beyond being a tissue that undergoes in-
tense changes during YF infection, especially during hemorrhagic infections, the endothe-
lium also constitutes the gateway through which immune cells migrate into the hepatic
parenchyma to mount and trigger the antiviral response. Thus, to investigate the relation-
ship between the migration of immune cells and the expression of adhesion molecules, we
observed the expression of VCAM-1, ICAM-1, and VLA-4 during the study. They were pre-
dominantly expressed in Z2 and the PT. We propose that the activation of endothelial cells
may be directly related to the adhesion and transmigration of leukocytes to the infectious
focus. Previous studies on DENV hepatic tropism have also shown elevated expression
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of VCAM-1, ICAM-1, and VLA-4 in infected compared to healthy tissues [44,45]. Other
studies have linked midzonal lesions to alterations in the hepatic vascular bed and low-flow
hypoxia, which would imply the development of characteristic, more intense lesions in
Z2. In the YFV study, the roles of direct viral cytopathic and cellular immune effects in the
induction of this lesion pattern were demonstrated by high expression of the YFV antigen
in Z2 and the induction of an injury of the immune system in this region [15,16,43].

Th2 and Treg responses antagonize Th1 and Th17 responses. We found that Th2 and
Treg responses contribute to the regulation of the antiviral inflammatory response and the
consequent preservation of the liver parenchyma. Indeed, the expression kinetics of IL-4,
IL-10, TGF-β, and IL-35 were similar to those of the Th1 cytokines; they were predominantly
expressed in Z2 and peaked at 6 dpi. Among these cytokines, IL-4 is classically incriminated
as an inhibitor of Th1 responses and potentiates of the CD20+ B cell-mediated humoral
responses that are fundamental to plasma cell activation and the production of protective
anti-YFV neutralizing antibodies.

IL-10 and IL-35 have important regulatory roles for effective antiviral responses. These
cytokines maintain the appropriate response intensity to clear the viral agent and prevent
the development of an immune response that may lead to secondary tissue involvement,
especially in hepatic and endothelial tissues, which could induce hemorrhage [46–48].
IL-35 was expressed in all zones with peak expression also in Z2 at 6 dpi. Studies of other
flaviviruses have shown that Treg and Th2 responses synergize in the hepatic parenchyma
to control the deleterious effects mediated by Th1 lymphocytes and M1 macrophages that
are responsible for the antiviral immune response during infection [49–51]. In this study, we
found that TGF-β seemed to inhibit the activity of M1 macrophages and Th1 lymphocytes
and helps to promote an environment that favors cell death by apoptosis, especially the
YFV infected cells. Previous studies of livers from humans that died of yellow fever [5,6]
and dengue [52] showed that TGF-β acts as a potent inducer of apoptosis in the hepatic
parenchyma. It is also responsible for the characteristic disproportionality between the
intensity of the inflammatory infiltrate and the degree of hepatic impairment, as the cy-
tokine is able to inhibit cellular immune responses and strongly induce apoptosis [5,52–55]
(Figure 7).
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Figure 7. Integrated network and possible mechanism of in situ immune response in the hepatic
parenchyma of non-human primates (Saimiri spp.) infected with the yellow fever virus. After the
infection, YFV is recognized by dendritic cells (DC), initiating the immune response by triggering
immune cells that will produce the mechanisms to activate different local cells in liver and the
production of cytokines and chemokines to drive the organism defenses. Both innate and adaptive
immune cells have an important role in triggering the adequate response and the Treg cells are
directly involved in the regulation of an equilibrated immunologic response in efforts to control the
damage caused by YFV in the hepatic tissue.
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The limited number of NHP did not allow comparative analyzes between infected
animals and the NC. It was not possible to collect samples from NHP livers before infection.
This made it impossible to compare the expression of the studied markers before and after
infection. Due to these limitations, we suggest that the results be interpreted with caution. The
use of a single NHP per day of kinetics was due to the difficulty in obtaining the NHP studied,
as well as the recommendation of the rational use of animals by the Ethics Committees.

5. Conclusions

In conclusion, this is the first experimental study in recent years to show that neotrop-
ical squirrel monkeys (Saimiri spp.) are susceptible to YFV infection, during which they
develop an exquisite immune response and liver lesions that resemble those associated with
human YFV and DENV infections. In this context, the present model can reliably reproduce
the previously described responses in the livers of humans with YF and, thus, constitutes
an excellent model for controlled experimental immunologic studies on YFV. The limited
number of NHP was a limitation of the study. The data must be interpreted with caution.
However, its relevance must be considered as it reproduces findings reported in humans.
In summary, the results obtained in this experimental study contribute considerable new
information to further our better understanding of yellow fever pathogenesis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
v15020551/s1, Table S1: Relation of primary antibodies used in immunohistochemical reactions. Table S2:
Quantitative analysis of immunologically labeled cells. Figure S1: Immunohistochemistry for the various
markers in the hepatic parenchyma of the negative control (Saimiri spp.) for (A) S100; (B) CD57; (C) CD11b;
(D) CD4; (E) CD20; (F) Lysozyme; (G) INOS; (H) Caspase 3; (I) MLKL; (J) IL-4; (K) IL-10; (L) IL-35; (M)
TGF-β; (N) IFN-γ; (O) IFN-β; (P) TNF-α; (Q) IL-8; (R) IL-17; (S) ICAM-1; (T) VCAM-1; (U) VLA-4. Table S3:
Immunohistochemistry for the markers in the hepatic parenchyma of the negative control (Saimiri spp.).
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