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Abstract: Parkinson’s disease (PD) has become widespread these days all over the world. PD affects
the nervous system of the human and also affects a lot of human body parts that are connected via
nerves. In order to make a classification for people who suffer from PD and who do not suffer from
the disease, an advanced model called Bayesian Optimization-Support Vector Machine (BO-SVM)
is presented in this paper for making the classification process. Bayesian Optimization (BO) is a
hyperparameter tuning technique for optimizing the hyperparameters of machine learning models
in order to obtain better accuracy. In this paper, BO is used to optimize the hyperparameters for six
machine learning models, namely, Support Vector Machine (SVM), Random Forest (RF), Logistic
Regression (LR), Naive Bayes (NB), Ridge Classifier (RC), and Decision Tree (DT). The dataset used
in this study consists of 23 features and 195 instances. The class label of the target feature is 1 and 0,
where 1 refers to the person suffering from PD and 0 refers to the person who does not suffer from PD.
Four evaluation metrics, namely, accuracy, F1-score, recall, and precision were computed to evaluate
the performance of the classification models used in this paper. The performance of the six machine
learning models was tested on the dataset before and after the process of hyperparameter tuning. The
experimental results demonstrated that the SVM model achieved the best results when compared
with other machine learning models before and after the process of hyperparameter tuning, with an
accuracy of 92.3% obtained using BO.

Keywords: Parkinson’s disease; Bayesian Optimization; support vector machine; hyperparameter
tuning; classification; evaluation metrics

1. Introduction

Parkinson’s disease (PD) is a recognized clinical illness with a variety of etiologies
and clinical manifestations. According to current definitions, PD is defined as the presence
of bradykinesia together with either rest tremor, stiffness, or both. In the majority of
populations, genetic factors connected to known PD genes account for 3–5% of PD, which
is referred to as monogenic PD. In contrast, 90 genetic risk variations account for 16–36%
of the heritable risk of non-monogenic PD. Constipation, being a non-smoker, having a
relative with PD or tremor, and the additional causative factors all at least double the chance
of PD. There is currently no treatment that can slow or stop the course of PD, however new
knowledge about its genetic origins and processes of neuronal death is being developed [1].

1.1. Problem Statement

The use of machine learning (ML) algorithms is becoming increasingly common in the
medical industry. As its name indicates, ML enables software to train data and develop

Sensors 2023, 23, 2085. https://doi.org/10.3390/s23042085 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042085
https://doi.org/10.3390/s23042085
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3048-1920
https://orcid.org/0000-0003-3021-5902
https://orcid.org/0000-0001-8177-9439
https://orcid.org/0000-0003-2837-850X
https://orcid.org/0000-0002-2832-6171
https://orcid.org/0000-0001-9389-2850
https://doi.org/10.3390/s23042085
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042085?type=check_update&version=1


Sensors 2023, 23, 2085 2 of 21

outstanding representations in a semi-automatic manner. For the purpose of diagnosing
Parkinson’s disease (PD), several data formats have been applied to ML approaches. ML
also makes it possible to combine data from many imaging systems in order to identify
Parkinson’s disease. In order to rely on these different measures for diagnosing Parkinson’s
disease in preclinical phases or atypical structures, relevant characteristics that are not
typically utilized in the diagnosing of Parkinson’s disease are discovered through the
application of ML algorithms. This allows for the diagnosis of Parkinson’s disease in earlier
stages. In recent years, there has been an increase in the number of publications published
that discuss the use of ML to diagnose PD. Earlier studies did investigate the use of ML in
the diagnosis and assessment of Parkinson’s disease, but they were only able to evaluate
inputs from sensing devices and motor and kinematics symptoms [2]. Computer-based
statistical methods known as machine learning algorithms may be trained to look for
recurring patterns in large volumes of data. Clinicians can use machine learning techniques
to identify patients based on several criteria at once [3].

1.2. Objectives

It is possible to use model-based and model-free strategies to predict certain medical
outcomes or diagnostic characteristics. Generalized linear models are an illustration of
model-based techniques. One of the most often used model-based techniques is logistic
regression, which is useful when the output parameters are assessed on a binary scale (e.g.,
failure/success) and follow the distribution of Bernoulli. Therefore, using the predicted
probabilities as a basis, categorization may be performed. The model assumptions must
be thoroughly examined, verified, and the right connection functions must be chosen by
the investigators. Because the statistical principles may not always apply in real-world
circumstances, particularly for significant volumes of incongruent data, the model-based
procedures may not be applicable or may provide biased conclusions. This is especially
the case if there are massive quantities of incongruent data. Model-free approaches, on
the other hand, make less assumptions and accommodate the underlying characteristics
of the data without having to build any models in advance. Model-free approaches, such
as Random Forest, Support Vector Machines, AdaBoost, Neural Networks, XGBoost, and
SuperLearner are capable of building non-parametric interpretations, which are also known
as (non-parametric) techniques, from difficult data without simplifying the issue. Since
these algorithms do not provide ideal classification/regression outcomes, they benefit from
ongoing learning or retraining. Nevertheless, model-free ML algorithms offer significant
promise for tackling real-world issues when properly maintained, as well as trained and
reinforced effectively [4]. The accurate and early identification of PD is critical because it
can reveal valuable information that can be used to slow down the course of the disease [5].

Classification has a purpose in PD identification to reduce time and improve treatment
effectiveness. The challenge is to find the classification method that is most effective for
PD detection; however, a study of the relevant knowledge reveals that various different
classification techniques have been employed to provide superior outcomes. The difficulty
in choosing the best classification method is that it must be applied to a local dataset.

1.3. Paper Contribution

In this study, Bayesian Optimization is used to optimize the hyperparameters for six
machine learning models, namely, Random Forest (RF), Support Vector Machine (SVM),
Naive Bayes (NB), Logistic Regression (LR), Ridge Classifier (RC), and Decision Tree
(DT) to determine the categorization method that is both the most effective and precise
for PD. The dataset used consists of 23 features and 195 instances. The experimental
results demonstrated that the SVM model achieved the best outcomes when compared
with various ML models before and after the process of hyperparameter tuning, with an
accuracy 92.3% obtained using BO.
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1.4. Paper Organization

The remaining sections of paper are arranged in the following order. Section 2 de-
scribes a comprehensively summary of some studies published that used machine learning
techniques in the diagnosis and classification of PD to provide a comprehensive overview of
data source, sample size, ML techniques, associated outcomes, and benefits and limitations.
Section 3 presents the proposed BO for ML models in PD categorization. Section 4 shows
the evaluation of the proposed approach and comparison with various ML approaches in
the classification of Parkinson’s disease. Section 5 discusses the conclusions of this study.

2. Related Work

Parkinson’s disease is considered the second neurodegenerative condition, which is
characterized by low dopamine levels in the brain, following Alzheimer’s disease (AD) [1,6].
The early diagnosis of PD contributes to saving and improving a patient’s quality of
life [7]. However, most of the literature emphasized that identifying PD at an early stage
considers a challenge. PD has mainly characterized by four symptoms, including postural
instability, rigidity, bradykinesia, and tremor [8]. PD diagnosis is traditionally based on
motor symptoms, as it is the most obvious symptom and most of the rating scales utilized
them for PD evaluation. Despite the importance of the non-motor symptoms (i.e., olfactory
dysfunction, sleep disorder, voice change) in early prediction, their complexity yields
variability among patients. Therefore, these symptoms are not used for PD diagnosis [9].
In the last decades, several studies have utilized machine learning and deep learning
in several diagnosis and prediction problems in the healthcare domain [10,11]. For PD
diagnosis and prediction, ML has been applied to different data modalities, including
movement [12], handwriting [13], patients’ neuro images [14,15], cardiac scintigraphy [16],
magnetic resonance imaging (MRI) [17], and optical coherence tomography (OCT) [18].

Das [19] utilized several ML models based on movement data with a neural network
classifier (NN) and obtained promising results according to several evaluation metrics.
Åström and Koker [20] utilized parallel NN to improve the classification performance. The
developed model was evaluated using a rule-based system for the parallel NN to improve
the total performance by about 8.2%. Another study presented by Bhattacharya and
Bhatia [21] applied support vector machine (SVM) with different kernels after applying data
preprocessing, evaluating results with the receiver operation curve (ROC). Chen et al. [22]
provided a diagnosis model based on a fuzzy k-nearest neighbor model. They compared
the performance of FKNN with SVM after applying a principal component analysis for
data compression. Their proposed model achieved 92% in terms of classification accuracy.
ML also allows studies to combine more than data modalities to make a prediction. For
example, Li et al. [23] provide a fuzzy-based system to make a nonlinear transformation,
then the transformed data is reduced to another dimension based on PCA, then SVM is
utilized for PD prediction. Eskidere et al. [24], compare the performance of SVM, least
square SVM, and Multilayer perceptron. The results show that the least square SVM gives
the best performance among all classifiers. Nilashi et al. [25] took advantage of clustering
and classification for PD prediction. They first used EM and PCA for multi-collinearity then
applied a neuro-fuzzy inference system and SVR. Guo et al. improved the performance by
developing learning feature functions based on a genetic algorithm (GA) and expectation
maximization (EM).

Peterek et al. [26] examined the performance of random forest (RF) for the diagnosis
and tracking of PD disease. With the advancement in PD medical diagnosis, several
studies [27,28] affirmed that PD symptoms vary in degree and combination among PD
patients. However, more than 90% of PD patients suffer from vocal impairment. Therefore,
several recent studies in PD diagnosis contexts pay attention to patients’ voices and the
change in their phenotypes. Consequently, this is utilized as an early symptom in PD
prediction in various studies as shown in Table 1. In [29], the accuracy shows that the
leave-one-out cross validation (LOOCV) was 63.20% when PD patients were compared
to healthy control patients, with a particular number of patients gathered and analyzed
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using the C4.5 decision tree (DT). In [30], a dataset of 42 participants from Parkinson’s
disease patients is obtained using the Least Absolute Shrinkage and Selection Operator
(LASSO) and the smallest absolute error is 8.38. Shahid and Singh [31] proposes a deep
learning strategy for ten Parkinson’s disease patients with a determination coefficient
(R2) of 0.956. Fernandes et al. [32] provided a dataset of wearable sensors positioned on
both feet from 15 IPD, 15 VaP, and 15 healthy participants. The accuracy of multi-layer
perceptron and deep belief neural networks was 94.50% and 93.50%, respectively. The
authors in [33] presented an algorithm based on SVM for 13 PD patients and they achieved
83.00% accuracy. The fuzzy system and neural networks are combined to diagnose PD, as
presented by [34]. They reach an accuracy of 81.03 percent using two hidden layers and
a small sample of 31 people, 23 of whom are classified as having Parkinson’s disease. A
multi-task learning approach for predicting Parkinson’s disease using medical imaging
data was presented by [35] and the model achieved an accuracy between 80.00% and
92.00%. A feature selection approach based on iterative canonical correlation analysis
(ICCA) was used to study the involvement of various brain areas in PD using T1-weighted
MR images presents by [36]. Drotár et al. [37] leveraged the fact that movement during
text handwriting comprises not only on-surface hand motions, but also in-air trajectories
conducted as the hand moves in the air between one stroke to the next. In 37 PD patients
on medication and 38 age- and gender-matched healthy controls, they utilized a digitizing
tablet to analyze both in-air and on-surface kinematic factors while scribbling a text.

Table 1. Comparison between PD diagnosis techniques.

Ref Objective Data Source &
Sample Size Techniques Outcome Benefits Limitations

[29]
Diagnosis and
classification of

PD from HC

Private dataset
from 38

individuals
20 PD and 18

Health Control
(HC)

C4.5 Decision
Tree the

extracted
features using

PCA

LOOCV =
63.20%

The fundamental issue
in clinical practice is

not so much
distinguishing

individuals with
Parkinsonian disorders
from healthy controls

A huge amount
of patient data

must be collected
at various stages

of illness
development

[30]
Diagnosis and
classification of
PD from MCI

Private dataset
42 subjects from

PD patients

Feature
selection based

on LASSO
MAE = 8.38

Because the new
probability

distributions span a
wider normalized

range, log-transformed
measures

outperformed their
linear counterparts

Depending on
linear regression

which
underperforms
with non-linear

decision
boundaries

[31]
Diagnosis and
classification of

PD from HC

Private dataset
from 10 medical
centers of 10 PD

patients

Deep Learning R2 = 0.956
Using DL help in
identifying more

insights in the dataset

Small datasets
affect model and

robustness
increase the

training time

[32]
Diagnosis and
classification of
PD from MCI

Gait data from
15 IPD, 15 VaP,
and 15 healthy

participants
were collected
using wearable
sensors placed

on both feet

MLP
DBN

ACC = 94.50%
ACC = 93.50%

They utilized a
classification approach
based on two different

classifiers MLP and
DBN with a better

performance such that
the problem is the

differentiation between
VaP and IPD

In balance,
dataset affects

model
generalization

ability
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Table 1. Cont.

Ref Objective Data Source &
Sample Size Techniques Outcome Benefits Limitations

[33]

Classification of
patients with

essential tremor
(ET) from

tremor-
dominant
Parkinson

disease (PD)

13 PD patients
(tremor

dominant
forms) and 11

ET patients

SVM
ACC of SVM

with
RBF = 83.00%

Classification of
patients with essential

tremor (ET) from
tremor-dominant

Parkinson disease (PD)

13 PD patients
(tremor dominant
forms) and 11 ET

patients

[34] Classification of
PD from HC

UCI data
include
voice

measurements
of 31 people

DNN
SVM

And Fuzzy
neural system

ACC = 81.03%
Use hybrid model

between NN and fuzzy
system

Very small
dataset with

trained samples

[35] Classification of
PD from HC

55 patients with
Parkinson’s and
23 subjects with

Parkinson’s
related

syndromes

(DNNs) with
shared hidden

layers.
ACC = 92.00%

Predicting Parkinson’s
illness with multitask

learning

Data on disease
duration and
treatment (i.e.,

treatment
duration and

dose)

[36]

Classification
between PD
and normal

control

(56 PD, and 56
Normal
Control)

Linear classifier
ACC = 89.00%
F-Measure =

87.00%

Using iterative
canonical correlation
analysis for feature

selection

The model needs
to be tested with
different train test

splits

[37]
Classification
between PD

and HC

Handwriting of
a sentence in

37 PD patients
SVM ACC =

−84.00%

Choosing optimal
features based on

sequential forward
feature selection (SFFS)

Handwriting may
overlap with

other diseases

3. Materials and Methods

These days, Parkinson’s disease (PD) is very prevalent all over the world. The human
nervous system and numerous bodily components that are linked by nerves are impacted
by PD. The ML models development that can aid in disease prediction can be extremely
important for early prediction. In this study, we use a common dataset and a few machine
learning techniques to classify Parkinson’s patients. Before assessing a performance of a
model, hyper-parameter optimization enables fine-tuning. The Bayesian Optimization (BO)
approach is utilized to generate samples of hyper-parameter values in order to discover the
optimum values. Classification approaches are trained using a training set for optimization
and tested using a test set for each hyper-parameter configuration. The ideal parameter
setup is the one that provides the highest overall accuracy. The following phase involves
training each model using the original training set’s optimums, and the accuracy is assessed
by classifiers on the test set. In this study, the hyperparameters for six machine learning
models, namely, SVM, RF, LR, NB, RC, and DT, are optimized using Bayesian optimization
(BO). Twenty-three features and 195 instances make up the dataset used in this study.
Accuracy, recall, F1-score, and precision were computed as evaluation measures to assess
the effectiveness of the supposed categorization models. Using the dataset, the six machine
learning models’ performance was evaluated both before and after the hyperparameter
tuning procedure, and the experiments showed that support vector machine is the optimal
classifier among the utilized classifiers. Figure 1 shows the proposed Bayesian Optimization
for various machine learning (ML) models in Parkinson’s disease categorization.
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In this research, we use a real-world dataset to develop a hybrid BO-SVM model
for classifying patients with Parkinson’s disease. Separate portions of the entire dataset
are used for training and testing purposes. Models of classifiers may be built using
training data. Later, the created models are scored by how well they categorize the test
data. In order to construct an effective classification model for Parkinson’s disease, SVM
is supposed with Bayesian Optimization for tuning hyperparameters. Identifying the
variables you want to use as predictors and the result you want to obtain are the initial
steps in developing a classification model of SVM. The next step is to run searches to
fine-tune the SVM’s hyperparameters.

Finally, the tuned hyperparameters of SVM are used in classification, and the model’s
performance is evaluated using test data. According to experimental results, SVM achieved
89.6% before hyperparameter tuning compared to 80.9%, 82.1%, 85.7%, 85.3%, and 87.2%
for RC, NB, DT, LR, and RF, respectively. After applying hyperparameter tuning, there
were two hyperparameters of SVM: Kernel = rbf, and regularization parameter (C) = 0.4.
The SVM with BO achieved 92.3% compared to 83.3%, 84.6%, 88.5%, 87.2%, and 89.7% for
BO with NB, DT, LR, and RF, respectively. Therefore, it is worth utilizing the SVM method
for Parkinson’s disease classification in conjunction with other ML algorithms.

3.1. Min-Max Normalization

A crucial step in any analysis that compares data from multiple domains is normaliza-
tion. Normalization moves information from a given domain to a range, such as between
(0, 1). Numerous techniques exist for normalizing data, such as decimal scaling, min-max,
Z-score, median-mad, mean-mad, and norm normalization techniques [38]. The min-max
normalization approach rescales the property from its domain to a new set of values, such
as between (0, 1). The basis of this approach is as follows:

f (n) =
n−min(n)

max(n)−min(n)
(1)
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where f(n) is the normalized features, and n is the input feature value. The max(n) and
min(n) are the highest and lowest sets of the input feature.

3.2. Bayesian Optimization

Hyperparameters are a group of factors used in testing and training to support the
learning process. The learning rate, iterations number, batch size, hidden layers, mo-
mentum, regularization, and activation functions are examples of hyperparameters. The
parameters might be an integer or categorical or continuous variable with values ranging
from the lower to higher bounds. Hyperparameters are stable throughout the training
process, which improves model accuracy while simultaneously reducing memory usage
and training time. Based on the problem description, different models use different hyper-
parameters. There is no optimum hyperparameters that apply to all models [39].

The term “Bayesian Optimization (BO)” refers to a method that may be used in a
sequential fashion to optimize the parameters of any black-box function f(x). BO integrates
prior belief for the purpose of evaluating a response surface function fˆ(x), utilizing fˆ(x)
to choose the configuration xn to try, evaluates f(xn) by using true f(x), specifies posterior
belief through assessed performance f(xn), and continues the procedure in sequential
manner until a stop criteria is arrived at to tune the test sample for achieving enhanced
parameters that collaborate for better classification [40]. The framework of BO is shown in
Figure 2.
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The Bayesian theorem forms the basis of BO [41,42]. In order to update the optimiza-
tion function posterior, it establishes a prior over the optimization function and collects
information from the previous sample set [43]. Equation (2), which asserts for a model
A and observation B, is the foundation for the optimization process that based on Bayes’
Theorem [44].

P(A|B) = (P(B|A)P(A))/P(B) (2)
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where P(A|B) denotes the likelihood of A given B, P(B|A) represents the likelihood of B
given A, P(A) indicates the prior probability of A, and P(B) signifies the marginal probability
of B. Bayesian Optimization is utilized to determine the minimal value of a function on a
limited set [39].

3.3. Machine Learning Models Using Bayesian Hyperparameter Optimization

We present some ML models for Parkinson’s disease categorization. The Bayesian
Optimization approach is used to fine-tune hyperparameters for six popular ML models:
SVM, RF, LR, NB, RK, and DT. The Machine Learning Repository (UCI) dataset [45]
was used to assess the classifiers’ efficiency. BO is a hyperparameter tuning method for
improving the accuracy of machine learning models. BO seeks to collect observations
that disclose as much information as possible about the function and the position of its
optimal value With Bayesian Optimization, the ideal value might be discovered using
relatively few samples. It does not need the explicit formulation of the function, in contrast
to conventional optimization techniques. Therefore, Bayesian Optimization is ideal for
hyperparameter tuning. Therefore, initially, BO is applied to tune hyperparameters for
the Support Vector Machine (SVM) algorithm [46], Random Forest (RF) [47], Logistic
Regression (LR) [48], Naive Bayes (NB) [49], Ridge Classifier (RC) [50], and Decision Tree
(DT) [51].

SVM is a popular supervised machine learning technique used for both classification
and regression tasks; it is based on the kernel method [52]. Because of this, we set out
to optimize the SVM hyperparameters in search of the kernel function and parameters
that would provide the most reliable model [53,54]. Using a random starting point in the
hyperparameter space, the Bayesian technique iteratively assesses prospective hyperpa-
rameter configurations in light of the existing model to see if any of them enhance the
model. Based on the experimental results presented in this work, the suggested Bayesian
Optimization-Support Vector Machine (BO-SVM) achieves the greatest accuracy for the
classification process. The pseudocode of proposed approach is presented in Algorithm 1.

Algorithm 1. Bayesian Optimization-Support Vector Machine (BO-SVM)

Input: Dataset D, hyper-parameter space Θ, Target score function T(θ), max n
◦

of evaluation nmax.
Split randomly the D into N folds; one for train set and the other for test set.
Build a model m on the train dataset using SVM approach.
Choose a starting configuration θ0 ε Θ.
Assess the original score y0 = T(θ0).
Initialize S0 = {θ0, y0}
While t < maximum number of iterations do
For m = 1, . . . , mmax do
Choose a new hyperparameter arrangement θm ε Θ by enhancing function Um
Θm = argθ ε Θ max Um (θ, St),
Analyze H in θm to get a new numerical score ym = T(θm).
Strengthen the data Sm = Sm−1 ∪ {θm, ym}.
Update the surrogate model.
m = m + 1
End for
End while
Extract optimized hyperparameters.
Build SVM model using these tuned hyperparameters from the test data set.
Solve the optimization problem, evaluate the accuracy and save it in array.
Output: Mean accuracy of classification.

4. Experimental Results
4.1. Dataset Description

The dataset used in this paper is available at [45]. The dataset consists of 23 features
and 195 instances. The data were first created in a collaboration between Oxford University
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and the National Centre for Voice and Speech by Max Little. They include 195 sustained
vowels aggregated from 31 females and males, 23 of them diagnosed with PD. All patients
ranged from 46 to 85 (65.8 ± 9.8). The duration from diagnosis was 0 to 28 years. For
each subject, a range of biomedical phonetics was recorded which ranged from one to
36 s. The data were recorded using IAC sound with an AKG C420 Microphone that was
positioned about 8 cm from the patient’s lips. Then, the voice signals were transferred
directly to a computer based on CSL 4300B kay. All voice signals were sampled at 44.2 kHz
with 16-bit resolution. Despite amplitude normalization, which affects the calibration, the
study mainly focused on changes in the absolute change pressure level. The data were in
the ASCII CSV format. Each column represents a specific voice measure, while each row
represents one recording from patients. For each patient, there are roughly six recordings
with different specific voice measures. The first column in the dataset refers to the patient’s
name. Table 2 details the dataset features information. The statistical analysis for the
dataset is illustrated in Table 3.

Table 2. Dataset features description.

Column Name Description

Name/ASCII Patient’s name/Record Num
MDVP-Fo (Hz) Vocal fundamental (mean frequency)
MDVP Fhi (Hz) Vocal fundamental (Max frequency)
MDVP Flo (Hz) Vocal fundamental (Min frequency)

MDVP jitter (%) Several measurements differ in fundamental frequency (i.e., RAP, MDVP,
APQ, etc.)

MDVP Fhi (Hz) Several measurements differ in amplitude (i.e., APQ5, MDVP: APQ, etc.)
NHR, HNR The ratio of noise with regard to total components in voice
RPDE, D2 Nonlinear complexity measurements

DFA Fractal scaling exponent
PPE, spread1,

spread2 Three nonlinear methods for calculating fundamental frequency variation

Table 3. Statistical analysis for the dataset.

Count Mean Std Min 50% Max

MDVP:Fo (Hz) 195.0 154.2286 41.390065 88.33300 148.7900 260.1050
MDVP:Fhi (Hz) 195.0 197.1049 91.491548 102.1450 175.8290 592.0300
MDVP:Flo (Hz) 195.0 116.3246 43.521413 65.47600 104.3150 239.1700
MDVP:Jitter (%) 195.0 0.006220 0.004848 0.001680 0.004940 0.033160

MDVP:Jitter (Abs) 195.0 0.000044 0.000035 0.000007 0.000030 0.000260
MDVP:RAP 195.0 0.003306 0.002968 0.000680 0.002500 0.021440
MDVP:PPQ 195.0 0.003446 0.002759 0.000920 0.002690 0.019580
Jitter:DDP 195.0 0.009920 0.008903 0.002040 0.007490 0.064330

MDVP:Shimmer 195.0 0.029709 0.018857 0.009540 0.022970 0.119080
MDVP:Shimmer (dB) 195.0 0.282251 0.194877 0.085000 0.221000 1.302000

Shimmer:APQ3 195.0 0.015664 0.010153 0.004550 0.012790 0.056470
Shimmer:APQ5 195.0 0.017878 0.012024 0.005700 0.013470 0.079400

MDVP:APQ 195.0 0.024081 0.016947 0.007190 0.018260 0.137780
Shimmer:DDA 195.0 0.046993 0.030459 0.013640 0.038360 0.169420

NHR 195.0 0.024847 0.040418 0.000650 0.011660 0.314820
HNR 195.0 21.88597 4.425764 8.441000 22.085000 33.04700
RPDE 195.0 0.498536 0.103942 0.256570 0.495954 0.685151
DFA 195.0 0.718099 0.055336 0.574282 0.722254 0.825288

spread1 195.0 −5.684397 1.090208 −7.964984 −5.720868 −2.434031
spread2 195.0 0.226510 0.083406 0.006274 0.218885 0.450493

D2 195.0 2.381826 0.382799 1.423287 2.361532 3.671155
PPE 195.0 0.206552 0.090119 0.044539 0.194052 0.527367

Status 195.0 0.753846 0.431878 0.000000 1.000000 1.000000
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The heatmap analysis for the dataset features is shown in Figure 3. Heatmap analysis is
a commonly used technique in data analysis to visualize the relationship between variables
in a dataset. It is used to identify strong and weak relationships between features, and
to understand how features are correlated with one another. In this figure, the vertical
and horizontal bars are the numerical data of the applied features. The numerical data in
the heat map are normalized from 0 to 1, the brightness indicates that the value is 1 and
the dark color indicates that the value is 0. The diagonal values are 1, which means that
the features are totally corelated and when the values decreased, it means the correlation
between features is decreased. This statistically helps us to diagnose and prognose the PD
in terms of the heatmap figure. Figure 4 shows the Box plot visualization per category label
analysis for the dataset characteristics.
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Figure 5 demonstrates a box plot for distribution analysis of the features. It is a useful
tool for visualizing the distribution of numerical data. When analyzing the distribution of
features in a dataset, a box plot can be used to display the distribution of each feature. This
type of visualization is called a box plot for distribution analysis of features. In this figure,
we visualize the enrolled features which are the most significant 23 features of the applied
PD dataset. Box plots split data into portions that each include around 25% of the data in
that set. Box plots are valuable because they give a visual overview of the data, allowing us
to easily determine mean values, dataset dispersion, and skewness.
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Figure 6 demonstrates the histogram for distribution analysis of the features, which
is a graphical representation of the distribution of a dataset, showing the frequency of
data points within different intervals. It is a useful tool for visualizing the distribution of
numerical data. We explored the histogram of the characteristics in this figure, which is
a standard graphing tool used to incorporate discrete and continuous data recorded on
an interval scale. It is frequently used to depict the key aspects of data distribution in a
convenient format.
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4.2. Evaluation Metrics

The experimental results were executed using jupyter notebook version (6.4.6). Jupyter
Notebook is a popular tool for data analysis and visualization in Python. It allows you to
write and run code, display visualizations, and document your findings all in one place. It
runs on a web browser and supports many programming languages, including Python 3.8.
The experiment was run using a computer with an Intel Core i5 processor and 16 GB RAM,
using the Microsoft Windows 10 operating system. In this paper Bayesian Optimization
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is used to optimize the hyperparameters for six machine learning classification models,
namely, Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR),
Naive Bayes (NB), Ridge Classifier (RC), and Decision Tree (DT). The performance of
BO-SVM model was compared with several machine learning models. The performance of
the classification models utilized in this article was measured using four different metrics:
accuracy, recall, precision and F1 score. Accuracy is calculated using Equation (3):

Accuracy =
TP + TN

TP + FP + FN + TN
(3)

where TP if true positive, TN is true negative, FP is false positive, and FN is false negative.
Recall is calculated using Equation (4):

Recall =
TP

TP + FN
(4)

Precision is calculated using Equation (5):

Precision =
TP

TP + FP
(5)

F1 score is computed using Equation (6):

F1 score =
2 ∗Recall ∗ Precision

Recall + Precision
(6)

The hyperparameters for the classification models in the experimental were optimized
using a Bayesian Optimization approach. The best hyperparameters for each model are
listed in the Table 4, where:

• Random Forest (RF): The best number of estimators was 10, using the “gini” criterion.
• Ridge Classifier (RC): The best alpha was 0.4, with “copy_X” set to false, “fit_intercept”

set to true, “normalize” set to false, and using the “lsqr” solver with a tolerance of 0.01.
• Decision Tree (DT): The best criterion was “entropy” and the best splitter was “random”.
• Naive Bayes (NB): The best alpha was 0.1 and the best value for “var_smoothing”

was 0.00001.
• Logistic Regression (LR): The best penalty was “l2” and the best solver was “lbfgs”.
• Support Vector Machine (SVM): The best kernel was “rbf” and the best value for the

regularization parameter (C) was 0.4.

Table 4. Hyperparameters tuning for the classification models using the Bayesian Optimization
approach.

Models Best Hyperparameters

RF N_estimators = 10,
criterion = gini.

RC Alpha = 0.4, copy_X = false, fit_intercept = true,
normalize = false, solver = lsqr, tol = 0.01.

DT Criterion = entropy, splitter = random.

NB Alpha = 0.1, var_smoothing = 0.00001.

LR Penalty = l2,
solver = lbfgs.

SVM Kernel = rbf,
regularization parameter (C) = 0.4.

Table 5 show the performance of each model using the Bayesian Optimization ap-
proach in terms of accuracy, F1 score, recall, and precision. The model with the highest
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accuracy, F1 score, recall, and precision is BO-SVM, with an accuracy of 92.3%, F1 score of
92.1%, recall of 92.3%, and precision of 92.1%. The lowest results among the models are
seen in BO-RC, with an accuracy of 83.3%, F1 score of 82.2%, recall of 83.3%, and precision
of 82%. Figure 7 represents the accuracy of the classification models using the Bayesian
Optimization approach.

Table 5. Performance of the classification models using the Bayesian Optimization approach.

Models Accuracy F1 Score Recall Precision

BO-RC 83.3% 82.2% 83.3% 82.0%
BO-NB 84.6% 84.4% 86.6% 84.5%
BO-DT 88.5% 87.7% 88.5% 88.0%
BO-LR 87.2% 86.5% 87.2% 86.5%
BO-RF 89.7% 88.9% 89.7% 89.8%

BO-SVM 92.3% 92.1% 92.3% 92.1%
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Figure 7. Representation of the models in the term of accuracy using the Bayesian Optimization
approach.

Table 6 shows the performance of the classification models in terms of accuracy, using
default parameters. The use of default values can simplify the modeling process, as it
eliminates the need for manual tuning of hyperparameters. The default values specified by
the scikit-learn library are chosen based on general best practices and have been found to
work well in a variety of situations. From the results in Table 6, it can be seen that the SVM
model has the highest accuracy among the models, with 89.6%. The Random Forest model
comes in second with an accuracy of 87.2%. On the other hand, the Ridge Classifier model
has the lowest accuracy among the models with 80.9%. It is important to note that these
results are based on the default parameters of each model and may be improved through
hyperparameter tuning, as demonstrated in Table 5.

Table 6. Performance of the classification models in the term of accuracy using the default parameters.

Models Accuracy

RC 80.9%
NB 82.1%
DT 85.7%
LR 85.3%
RF 87.2%

SVM 89.6%
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It can be concluded that hyperparameter tuning through Bayesian Optimization
significantly improves the performance of the models compared to their default parameters.
The Bayesian Optimization approach helps to optimize the hyperparameters and results in
better accuracy for each of the models. Figure 8 represents the accuracy of the classification
models using the default hyperparameters.
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The results of the study were further evaluated using confusion matrices, which
were presented in Figure 9. These matrices helped to more effectively evaluate the perfor-
mance of each classifier. The results indicated that the BO-SVM had the best performance,
outperforming the other classifiers.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 22 
 

 

in better accuracy for each of the models. Figure 8 represents the accuracy of the classifi-
cation models using the default hyperparameters. 

 
Figure 8. Representation of the models in the term of accuracy using the default parameters. 

The results of the study were further evaluated using confusion matrices, which were 
presented in Figure 9. These matrices helped to more effectively evaluate the performance 
of each classifier. The results indicated that the BO-SVM had the best performance, out-
performing the other classifiers. 

  
(a) Confusion matrix for BO-SVM model.  (b) Confusion matrix for BO-RF model. 

75%

77%

79%

81%

83%

85%

87%

89%

91%

93%

95%

RC NB DT LR RF SVM

A
cc

ur
ac

y

Models

Figure 9. Cont.



Sensors 2023, 23, 2085 16 of 21Sensors 2023, 23, x FOR PEER REVIEW 17 of 22 
 

 

  
(c) Confusion matrix for BO-LR model.  (d) Confusion matrix for BO-DT model. 

  
(e) Confusion matrix for BO-NB model. (f) Confusion matrix for BO-RC model.  

Figure 9. Confusion matrix for classifiers (a) BO-SVM, (b) BO-RF, (c) BO-LR, (d) BO-DT, (e) BO-NB, 
and (f) BO-RC. 

4.3. Discussion  
This paper proposes a novel method for distinguishing between those who have Par-

kinson’s disease (PD) and those who do not, based on Bayesian Optimization-Support 
Vector Machine (BO-SVM). Bayesian Optimization (BO) with a hyperparameter tuning 
technique is used to optimize the hyperparameters for six distinct machine learning mod-
els, namely, Support Vector Machine (SVM), Random Forest (RF), Logistic Regression 
(LR), Naive Bayes (NB), Ridge Classifier (RC), and Decision Tree (DT). The dataset uti-
lized in this study has 23 characteristics and 195 occurrences, and the models’ perfor-
mance was measured using four metrics: accuracy, F1-score, recall, and precision. 

The findings revealed that the SVM model performed the best among all models, 
both before and after hyperparameter tuning, with an accuracy of 92.3 percent reached 
using BO. The paper presented an essential contribution to the subject of machine learning 
and its applications in healthcare. For diagnosing speech deficits in patients at the early 
stages of central nervous system illnesses, Lauraitis et al. [55] used a Bidirectional Long 
Short-Term Memory (BiLSTM) neural network and a Wavelet Scattering Transform with 
Support Vector Machine (WST-SVM) classifier (CNSD). The study included 339 voice 
samples obtained from 15 participants: 7 with early stage CNSD (3 Huntington, 1 Parkin-
son, 1 cerebral palsy, 1 post stroke, 1 early dementia), and 8 healthy subjects. Their speech 
data are collected using a voice recorder from the Neural Impairment Test Suite (NITS) 

Figure 9. Confusion matrix for classifiers (a) BO-SVM, (b) BO-RF, (c) BO-LR, (d) BO-DT, (e) BO-NB,
and (f) BO-RC.

4.3. Discussion

This paper proposes a novel method for distinguishing between those who have
Parkinson’s disease (PD) and those who do not, based on Bayesian Optimization-Support
Vector Machine (BO-SVM). Bayesian Optimization (BO) with a hyperparameter tuning
technique is used to optimize the hyperparameters for six distinct machine learning models,
namely, Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR),
Naive Bayes (NB), Ridge Classifier (RC), and Decision Tree (DT). The dataset utilized in
this study has 23 characteristics and 195 occurrences, and the models’ performance was
measured using four metrics: accuracy, F1-score, recall, and precision.

The findings revealed that the SVM model performed the best among all models, both
before and after hyperparameter tuning, with an accuracy of 92.3 percent reached using BO.
The paper presented an essential contribution to the subject of machine learning and its
applications in healthcare. For diagnosing speech deficits in patients at the early stages of
central nervous system illnesses, Lauraitis et al. [55] used a Bidirectional Long Short-Term
Memory (BiLSTM) neural network and a Wavelet Scattering Transform with Support Vector
Machine (WST-SVM) classifier (CNSD). The study included 339 voice samples obtained
from 15 participants: 7 with early stage CNSD (3 Huntington, 1 Parkinson, 1 cerebral palsy,
1 post stroke, 1 early dementia), and 8 healthy subjects. Their speech data are collected
using a voice recorder from the Neural Impairment Test Suite (NITS) mobile application.
Features are extracted from pitch contours, mel-frequency cepstral coefficients (MFCC),
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gammatone cepstral coefficients (GTCC), Gabor (analytic Morlet) wavelets, and auditory
spectrograms. Ultimately, 94.50% (BiLSTM) and 96.3% (WST-SVM) accuracy is achieved
for solving the healthy vs. impaired classification problem. The developed method can be
applied for automated CNSD patient health state monitoring and clinical decision support
systems, and as a part of the Internet of Medical Things (IoMT). In this work, we utilized
BO with SVM. Therefore, the questions here are: although there are several hyperparameter
optimization (HPO) tools, why the choice of BO? Does BO carry any distinct advantages
when compared with other HPO methods. Will the ML algorithms give better results when
optimized using other methods? In answer to these questions, BO has several advantages
compared to other hyperparameter optimization (HPO) methods.

1. Model-based approach: BO uses a probabilistic model to represent the relationship
between the hyperparameters and the performance of the model. This allows BO
to make informed decisions about which hyperparameters to try next based on the
results of previous trials.

2. Handling of noisy objectives: BO can handle noisy or stochastic objective functions,
such as those that may be encountered in real-world machine learning applications.

3. Incorporation of prior knowledge: BO allows for the incorporation of prior knowledge about
the objective function through the use of a prior distribution over the hyperparameters.

4. Efficient exploration–exploitation trade-off: BO balances exploration (trying new, poten-
tially better hyperparameters) and exploitation (using the current best hyperparameters)
in an efficient manner, allowing for faster convergence to the optimal hyperparameters.

A single observation from the original dataset is utilized as the validation set, also
known as the test set, in leave-one-out cross validation (LOOCV), and the remaining
observations constitute the training set. This technique is performed N times, with each
observation serving as a validation set once. The LOOCV approach was used to measure
classifier performance on unseen instances in separate and pooled datasets. The proportion
of correct classifications over the N repetitions is used to define performance here. To
ensure that the training set’s attributes, and thus the trained classifier’s, are not influenced
by the validation sample, the test subject was removed from the initial dataset before
applying the training set (with N1 samples), in order to obtain the subject scores required to
train the classifier. The classifier was then utilized to determine the test subject’s label [29].
In this work, we do not need to use LOOCV cross validation because we utilized BO
optimization, and the achieved results are promising compared with other results, as
shown in Algorithm 1 and Figure 2.

We conducted a comparison study using the same standard dataset published in the
UCI repository in [45] to compare the proposed model with the latest technique. Li et al. [56]
showed NB, 3-NN, SVM-linear, and SVM-poly, with respective accuracies of 66.31%, 67.73%,
53.91%, and 55.41%. Sajal et al. [57] provided a method based on KNN, SVM, and NB,
with accuracies of 90.50%, 87.00%, and 81.00% for five levels of classification in tremor
analysis. Furthermore, Haritha et al. [58] obtained 76.20%, 86.71%, 91.83%, 82.90%, and
87.03% accuracy utilizing NB, DT, RF, MLP, and LR, respectively. Abayomi-Alli et al. [59]
demonstrated a Bidirectional Long Short-Term Memory (BiLSTM) for the UCI PD dataset,
and their model achieved an accuracy of 82.86% with the original data. Fang and Liang [60]
presented the UCI dataset for Parkinson’s disease and optimization algorithms such as
Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Grasshopper
Optimization Algorithm (GOA), Binary PSO (BPSO), and Binary GOA (BGOA) compared
to the Nonlinear Binary Grasshopper Whale Optimization Algorithm (NL-BGWOA), and
the results showed that the NL-BGWOA achieved 91.30% higher than other optimization
algorithms. Figure 10 demonstrates the comparative study of the proposed method based
on BO-SVM with the mentioned methods based on the same applied PD standard dataset.
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5. Conclusions and Future Work

A Bayesian Optimization-Support Vector Machine (BO-SVM) model was proposed for
classifying Parkinson’s disease (PD) patients and non-patients in this study. The dataset
used consisted of 195 instances with 23 features and the target feature was binary, with 1
indicating PD and 0 indicating no PD. Six machine learning models (SVM, Random Forest,
Logistic Regression, Naive Bayes, Ridge Classifier, and Decision Tree) were evaluated using
four metrics (accuracy, F1-score, recall, and precision) both before and after hyperparameter
tuning using BO. The results showed that SVM outperformed the other models, achieving
an accuracy of 92.3% after BO tuning. Future work for this study could include expanding
the dataset used to classify Parkinson’s disease to include more diverse and representative
sample populations. Additionally, incorporating more advanced machine learning tech-
niques, such as deep learning, could lead to even better results in terms of accuracy and
performance. Another area for improvement could be exploring different types of feature
selection methods to identify the most important features for the classification task. Finally,
validating the results on a separate independent dataset could provide further confidence
in the robustness and generalizability of the proposed BO-SVM model. The future direction
of this study could be generalization to a larger population and hence potential integration
into a larger healthcare system using the Internet of Medical Things and fog computing.
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