Skip to main content
. 2023 Feb 13;23(4):2085. doi: 10.3390/s23042085

Table 4.

Hyperparameters tuning for the classification models using the Bayesian Optimization approach.

Models Best Hyperparameters
RF N_estimators = 10,
criterion = gini.
RC Alpha = 0.4, copy_X = false, fit_intercept = true,
normalize = false, solver = lsqr, tol = 0.01.
DT Criterion = entropy, splitter = random.
NB Alpha = 0.1, var_smoothing = 0.00001.
LR Penalty = l2,
solver = lbfgs.
SVM Kernel = rbf,
regularization parameter (C) = 0.4.