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Abstract: This paper presents a low-frequency shadow sinusoidal oscillator using a bulk-driven
multiple-input operational transconductance amplifier (MI-OTA) with extremely low-voltage supply
and nano-power consumption. The proposed oscillator is composed using two-input single-output
biquad filter and amplifiers. The condition and the frequency of oscillation of the shadow oscillator
can be controlled electronically and independently using amplifiers. The circuit is designed in
Cadence program using 0.18 µm CMOS technology from TSMC. The voltage supply is 0.5 V and the
power consumption of the oscillator is 54 nW. The total harmonic distortion (THD) of the output
signals is around 0.3% for 202 Hz. The simulation results are in accordance with theory.

Keywords: shadow oscillator; shadow filter; analog circuit; operational transconductance amplifier

1. Introduction

Shadow filters (or agile filters) are techniques used to enhance the tuning flexibility of a
second-order filter by adding external amplifiers in the feedback part [1,2]. The natural fre-
quency and the quality factor of shadow filters can thus be controlled by external amplifiers.
There are many shadow filters using various active devices available in literature, such as
the current-feedback operational-amplifier (CFOA) in [3], current differencing transcon-
ductance amplifier (CDTA) in [4,5], operational floating current conveyor (OFCC) in [6],
differential difference current conveyor (DDCC) in [7], voltage differencing differential
difference amplifier (VDDDA) in [8], and voltage differencing transconductance amplifiers
(VDTAs) in [9–11].

Sinusoidal oscillators are widely used in telecommunications, electronics, instrumen-
tation, and control systems—for instance, providing a carrier signal for modulation in
telecommunications and control systems [12], or acting as a waveform generator in elec-
tronic and instrument systems [13]. Therefore, a number of sinusoidal oscillators have been
reported in literature that are based on various active devices such as the commercially-
available ICs in [14], second-generation current conveyor (CCII) in [15], CFOA in [16],
current differencing buffered amplifier (CDBA) in [17,18], current gain amplifier in [19,20],
and voltage differencing inverting buffered amplifier (VDIBA) in [21]. The sinusoidal
oscillators that enjoy electronic tuning capability are required because variant generated
frequencies can be obtained without changing circuit components, also or the frequency
error caused by temperature or process variations can be easily compensated. Usually,
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sinusoidal oscillators are realized by second-order filters based on two integrators. The
internal components used to realize the integrators, such as resistor R, transconductance gm,
and capacitor C, are used to adjust the frequency of oscillation. Unfortunately, adjusting
these components changes the magnitude of transfer function of the integrator and results
in changing the amplitude of the output signal.

Recently, a new technique to adjust the oscillation frequency without affecting the
amplitude of the output signal have been proposed—the so-called shadow oscillator [22].
It was based on shadow filters [1,2]. This technique uses external amplifiers to control the
condition and the frequency of oscillation without changing the internal components of the
oscillator, and thus the magnitude of the core network such as integrators is not disturbed.
As a result, the performances of shadow oscillators with constant output signal amplitude
have been reported in [22–24].

Low-frequency oscillators are a part of many biomedical and control instrumentation
systems—for examples, see [25–29]. However, these circuits do not employ the shadow
oscillator and are unsuitable for the extremely low-voltage and low-power applications
seen nowadays. Therefore, the shadow oscillator using multiple-input operational transcon-
ductance amplifiers (MI-OTAs) is proposed in this paper. It will be shown that a shadow
oscillator can be obtained easily using MI-OTAs. The MI-OTA will be used to realize
multiple-input biquad filter and amplifiers to compose the shadow oscillator with mini-
mum components. The condition and the frequency of oscillation of the shadow oscillator
can be controlled electronically and independently. It is worth noting here that the MI-OTA
has been used for many interesting applications in the literature [30–37] and that the low
transconductance offered by the proposed MI-OTA is also desired for biosignals processing
in order to achieve a very large time constant of the Gm–C filter; otherwise, a large chip
area will be occupied by the integrated capacitor [38–40].

2. Proposed Circuit
2.1. Proposed Low-Voltage MI-OTA

The electrical symbol of the MI-OTA is shown in Figure 1. In general, the circuit
possesses n differential inputs, denoted as V+i − V−i, i = 1, . . . n. In the particular version
discussed in this work, n = 2. For this case, the output current of an ideal MI-OTA can be
expressed as:

Iout = gm(V+1 + V+2 −V−1 −V−2) (1)
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version; however, in a modified version proposed in [30], the gate-driven transistors were 
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Figure 1. Electrical symbol of MI-OTA.

The CMOS structure of the bulk-driven (BD) MI-OTA is shown in Figure 2a. It was
first presented with a single current output in [30]. A simplified version of this OTA
was also verified experimentally in [31,32]. Its input stage exploits a source degenerative
linearization technique, first proposed for a gate-driven (GD) circuit operating in strong
inversion; however, in a modified version proposed in [30], the gate-driven transistors were
replaced by BD ones, that allows increasing both the linear and common-mode range of
the circuit. Like in its GD counterpart, the transistors M1 and M2 form a differential pair,
while transistors M15 and M16, operating in a triode region, introduce a negative feedback
that leads to better linearity of the structure. The multiple inputs of the differential pair
(MI-OTA) are realized by replacing the input transistors M1 and M2 with multiple-input
BD devices, as shown in Figure 2b. The multiple inputs of these devices were realized
using input capacitive dividers composed of the capacitors CB. Their values should be
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considerable larger than the parasitic capacitances of transistors M1 and M2. These CB
capacitors could be realized on chip in any CMOS technology. In this work, the high
reliability Metal-Insulator-Metal capacitors (MIM) offered by TSMC were used.
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Figure 2. CMOS implementation of proposed MI-OTA: (a) schematic, and (b) bulk-driven MI-MOST 
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technique.

In order to properly bias the bulk terminals of the input devices for DC, the anti-
parallel connections of the minimum-size transistors ML, operating in a cut-off region, with
VGS = 0, were used.

The optimum linearity of the structure is obtained for m = (W/L)15,16/(W/L)1,2 =
0.5 [30]. The rest of the structure can be considered as current mirror OTA, with current
mirrors M3S,D-M12S,D. In order to realize a second current output of the structure, required
in the considered application, the composite self-cascode transistors M8S,D and M11S,D
were doubled by M9S,D and M12S,D, respectively. In a single-output version, the additional
transistors should be removed. Due to the fact that the voltage gain of the overall structure
was lowered by the application of bulk-driven transistors with lower transconductance,
and an input capacitive divider, MOS transistors in current mirrors were replaced by
composite self-cascode transistors MiD-MiS, i = 3–14. This allows increasing of the output
resistance, and consequently the DC voltage gain, without sacrificing the output voltage
swing of the OTA. In addition, in order to further increase the overall voltage gain, a
partial positive feedback was applied at the load of the first stage. The partial positive
feedback is formed by the cross-coupled transistors M5S,D-M6SD, which create negative
conductances, applied to the drain terminals of the diode-connected self-cascode transistors
M3S,D and M4S,D, respectively. This lowers the resulting conductances at the drain terminals
of M3S,D and M4S,D, thus increasing the current gain of the current mirrors M3S,D-M8S,D
and M4S,D-M8S,D, and consequently the transconductance and voltage gain of the OTA.
Note that in order to maintain the circuit stability in any circumstances, including process,
voltage and temperature variations, as well as transistor mismatch, the transconductances
of the transistors M5S,D-M6SD should always be lower than the transconductances of M3S,D
and M4S,D. Additionally, since the circuit sensitivity increases as the difference of transcon-
ductances gm3,4SD-gm5,6SD decreases, this difference should not be too small, to maintain
both the circuit sensitivity to mismatch, as well as the voltage excursion at the drains of
M3,4SD, at an acceptable level. Thus, the relationship between transconductances of gm5,6SD
and gm3,4SD is a result of a tradeoff between the circuit sensitivity to transistor mismatch,
linear range and voltage gain. In the considered design it was assumed gm5,6SD = 0.3gm3,4SD,
which increases the overall voltage gain by around 3 dB. Assuming unity gain current
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mirrors, and neglecting second-order effects, the OTA transconductance, determined from
one differential input, can be expressed as follows:

gm = βiη·
4m

4m + 1
·BF· Iset

npUT
(2)

where np is the subthreshold slope factor for a p-channel MOS, UT is the thermal potential,
η = (1 − np) = gmb/gm is the ratio of the bulk to gate transconductances of a p-channel MOS
at the operating point, and the attenuation factor β, represents the signal attenuation from
the input capacitive divider. Assuming that the parasitic capacitances of the MOS transistors
are small in comparison with CB, and for the frequency of the signal the impedances of
capacitors CB are much smaller than the impedances of the biasing transistors ML, the
coefficient β can be expressed as:

βi =
CBi

∑2
i=1 CBi

= 0.5 (3)

The coefficient BF in (2) represents the transconductance boosting factor coming from
the partial positive feedback discussed above, which, neglecting the impact of output
resistances of MOS transistors, can be approximated as:

BF
gm7,8SD

gm3,4SD − gm5,6SD
(4)

where gmiSD represents a transconductance of a self-cascode composite transistor MiS-MiD.
Note that in a weak inversion region, the transconductances are proportional to the biasing
current flowing through corresponding devices. As can be concluded from (2), the overall
transconductance is proportional to the biasing current Iset, and can easily be regulated
using this current.

The low-frequency voltage gain of the OTA can be expressed by:

AVO ∼= gm[(gm9Drds9Drds9S)||(gm12rds12Drds12S)] (5)

Thanks to all the techniques discussed above, the value of this gain can exceed 30 dB,
despite the low voltage supply 0.5 V, lower transconductance of MOS transistors, and signal
attenuation introduced by the input capacitive divider. Further, it is worth noting here
that input noise of the MI-OTA will be increased due to the lower bulk transconductance,
being a result of an input capacitive divider combined with a BD technique. However, the
input range is extended in the same proportion, and hence, the dynamic range will not be
affected and will be the same as for the gate-driven counterpart of the proposed OTA [30].

2.2. Proposed Shadow Oscillator

Figure 3 shows the block diagram of the shadow oscillator [3]. The system consists of
a three-input single-output biquad filter and three amplifiers, A1, A2, and A3. Assume that
the output Vo of the biquad filter can be expressed by:

Vo =
s2εV1 + sβV2 + αV3

as2 + bs + 1
(6)

where ε, β, α are real numbers of numerator and a, b are real numbers of a denominator
which depends on the filter structure. The high-pass filter can be obtained if β = α = 0,
the band-pass filter can be obtained if ε = α = 0, and the low-pass filter can be obtained if
ε = β = 0.
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Considering the amplifiers, the outputs V1, V2, V3 of the amplifiers A1, A2, A3 can be
expressed respectively by:

V1 = A1Vo
V2 = A2Vo
V3 = A3Vo

 (7)

If voltages V1, V2, V3 are connected to the inputs of a biquad filter, the characteristic
equation of the shadow oscillator can be expressed by:

(a− εA1)s2 + (b− βA2)s + (1− αA3) = 0 (8)

The condition and the frequency of oscillation can be expressed, respectively, by:

b− βA2

a− εA1
= 0 (9)

ωo =

√
1− αA3

a− εA1
(10)

Thus, the condition and the frequency of oscillation can be controlled independently
by A2 and A3, respectively. The amplifier A1 can also be used to control the frequency of
oscillation. However, the amplifier A1 is not significant and it can be removed for obtaining
a minimum number of devices because amplifier A3 is already used to control the frequency
of oscillation and it is enough to behave as a shadow oscillator. Thus, the multiple-input
biquad filter that provides only low-pass and band-pass filters can be used.

Figure 4 shows the proposed shadow filters using MI-OTAs. Figure 4a shows the
proposed shadow oscillator employing two single-output MI-OTAs, one dual-output MI-
OTA, two grounded capacitors, and two grounded resistors. The gm1, gm2, C1, and C2 are
used to realize the biquad filter. Using (1) and nodal analysis, the output Vo of the biquad
filter can be given by:

Vo =
sC1gm2V2 − gm1gm2V1

s2C1C2 + sC1gm2 + gm1gm2
(11)
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It should be noted that if V1 = Vin and V2 = 0 (connected to ground) the low-pass filter
can be obtained; if V2 = Vin and V1 = 0 (connected to ground) the band-pass filter can be
obtained.

The gm3, R1, and R2 are used to realize the amplifiers; the transfer function of the
amplifiers can be expressed by:

A1 =
VA1

Vo
= gm3R1 (12)

A2 =
VA2

Vo
= gm3R2 (13)

Combining (11)–(13), the characteristic equation of the oscillator can be expressed by:

s2C1C2 + sC1gm2(1− gm3R2) + gm1gm2(1 + gm3R1) = 0 (14)

The condition and the frequency of oscillation can be given respectively by:

1− gm3R2 = 0 (15)

ωo =

√
gm1gm2

C1C2
(1 + gm3R1) (16)

The condition of oscillation can be controlled by A2 through adjusting R2, and the
frequency of oscillation can be controlled by A1 through adjusting R1 with constant gm3.
Thus, the condition and the frequency of oscillation of the proposed shadow oscillator in
Figure 4a can be independently controlled.

The shadow oscillator in Figure 4a is proposed for obtaining the minimum number
of active elements, but the frequency of oscillation can be controlled by amplifier A1
through adjusting R1. Figure 4b shows the proposed shadow oscillator for obtaining an
electronic tuning capability. It can be obtained by slightly modifying Figure 4a by adding
an additional gm4. Thus, four single-output MI-OTAs are required. Using (1) and nodal
analysis, the characteristic equation of the proposed oscillator in Figure 4b can be expressed
by:

s2C1C2 + sC1gm2(1− gm3R2) + gm1gm2(1 + gm4R1) = 0 (17)
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The condition and the frequency of oscillation can be given respectively by:

1− gm3R2 = 0 (18)

ωo =

√
gm1gm2

C1C2
(1 + gm4R1) (19)

The condition of oscillation can be controlled electronically by A2 through adjusting
gm3 and the frequency of oscillation can be controlled electronically by A1 through adjusting
gm4. Thus, the condition and the frequency of oscillation of the proposed shadow oscillator
in Figure 4b can be independently and electronically controlled.

The range for tuning the frequency of oscillation in (19) in terms of 1 + gm4R1 may be
limited because this term is in a square-rooting form. Due to the gm4 providing multiple-
input terminals, if the additional non-inverting terminal of gm4 is connected to Vo (red
dashed line in Figure 4b), the term 1 + gm4R1 of (19) will become 1 + 2gm4R1. The range for
tuning the frequency of the oscillator in this case will be increased compared with (19).

Considering the nodes Vo1 and Vo2 of the proposed shadow oscillators, the relationship
of Vo1 and Vo2 is given by:

Vo2 = − gm1

sC1
Vo1 (20)

where gm3R1 ≈ 1 (or gm4R1 ≈ 1 for Figure 4b). It can be expressed that the phase difference
of signals Vo1 and Vo2 are 90 (π/2) degree and the magnitude is |gm1/C1|. It should
be noted that the magnitude of Vo1 and Vo2 will be constant if the values of gm1 and
C1 are not used for varying the frequency of oscillation, like in conventional quadrature
oscillators [14,18–20].

As is well-known, sinusoidal oscillators require an amplitude stabilization mechanism,
which can exploit circuit nonlinearities, limiting large-signal loop gain for larger ampli-
tudes, or a special automatic gain control (AGC) circuit [14,18,21]. In the proposed solution,
the amplitude stabilization mechanism is based on circuit nonlinearities, which provides
sufficient quality for the generated waveforms, while it does not require an additional,
relatively complex, circuitry to realize the AGC loop. Note that, thanks to the shadow
principle, the frequency of oscillations and the condition of oscillations can be controlled
independently, which makes such a simple solution possible (frequency tuning does not
affect the nonlinear mechanism limiting the frequency of oscillations, resulting in their
constant amplitude). Note that similar solutions, based on exploiting the circuit nonlineari-
ties, were applied in some other shadow oscillators available in literature, such as [22,23].
However, in more demanding cases, a special AGC circuit could also be applied in the
proposed oscillator. In the version described in this work, the amplitude of oscillations is
approximately equal to the linear range of the used OTAs.

The effect of OTA parasitic elements on the performance of the shadow oscillator is
considered using the equivalent circuit that represents a non-ideal OTA with finite parasitic
resistances and capacitances in [41]. These finite parasitic resistance and capacitances
will appear if the OTA operates near the cut-off frequency. As the input terminal of the
proposed OTA in Figure 2 is connected to the parallel floating of high-resistance ML and
floating capacitance CB, the parasitic resistance and capacitance at the input terminal will
be neglected. Thus, only parasitic resistance and capacitance at the output terminal Ro
and Co will be considered. Letting Co1//Ro1, Co2//Ro2, and Co3//Ro3 are the parasitic
parameters of OTA1, OTA2, and OTA3, respectively. Consider Figure 4a: external capacitors
C1 and C2 are parallel connected at the node Vo1 and Vo2, thus the effects of parasitic
capacitances Co1 and Co2 can be neglected if C1 >> Co1 and C2 >> Co2, while the effects of
parasitic resistors Ro1 and Ro2 can be reduced if the operating frequency of the circuit is
ωo >> max[1/(C1 + Co1)Ro1, 1/(C2 + Co2)Ro2)] [42]. The voltage gains A1 and A2 in (12)
and (13) become gm3(R1//Ro3) and gm3(R2//Ro3), respectively. This parasitic resistance
Ro3 can be absorbed if R1 << Ro3 and R2<<Ro3 while the parasitic impedances at nodes VA1
and VA2 are (Ro3//Co3), respectively. The effects of parasitic impedances at nodes VA1 and
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VA2 will be alleviated if the frequency of operation is smaller than 1/(Ro3//Co3). However,
since the circuit operates at very low frequencies, the impact of parasitic elements on the
circuit operation is expected to be low.

3. Simulation Results

The CMOS structure of the MI-OTA and the shadow oscillator were designed and
simulated in Cadence program using 0.18 µm CMOS technology from TSMC. The transistor
aspect ratio is shown in Table 1. The MIM input capacitors CB = 0.5 pF. The voltage supply
is 0.5 V for nominal value of Iset = 10 nA, and the power consumption of the two- and
one-output OTA is 15.25 nW and 13.5 nW, respectively. The basic parameters of the MI-OTA
can be found in [30] as follows: the DC voltage gain is 31.17 dB, common mode rejection
ratio is 90.05, power supply rejection ratio is 37.26 dB and input offset is 0.224 mV with
20 pF load capacitance.

Table 1. Transistor aspect ratio of the MI-OTA.

Device Name W/L (µm/µm)

M1, M2 4 × 1.2/1.2
M3D, M4D, M7D, M8D, M9D 4/1.2
M3S, M4S, M7S, M8S, M9S 4/0.2
M5D, M6D 1.2/1.2
M5S, M6S 1.2/0.2
M10D, M11D, M12D 8/1.2
M10S, M11S, M12S 8/0.2
M13D, M14D 10/1.2
M13S, M14S 10/0.2
M17D 20/1.2
M17S 20/0.2
ML 5/4

Figure 5 shows the output current and the transconductance of the MI-OTA versus
the input voltage and various Iset = 10 nA, 20 nA and 30 nA. The high linearity with wide
input voltage range of ± 230 mV is notable. For instance, for this input voltage range
and for Iset = 10 nA (gm = 26.4 nS), the deviation of the transconductance value is below
5%. The high linearity under 0.5V supply voltage is obtained thanks to the bulk-driven
multiple-input technique and the negative feedback.
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Figure 5. The MI-OTA output current (a) and the transconductance (b) versus the input voltage with
various Iset.

The shadow oscillator was simulated with nominal Iset = Iset1,2,3,4 = 10 nA, the off-
chip passive elements C1 = C2 = 20 pF. The nominal power consumptions of the shadow
oscillators in Figure 4 (a) and (b) were 42.25 nW and 54 nW, respectively. From (15) and (16),
it can be concluded that the condition of oscillation can be controlled by gm3R2 (A2) and the
frequency of oscillation can be given by gm3R1 (A1), thus R2 = 42 MΩ was selected to satisfy
(15) (gm3 = 26.4 nS) and R1 = 100 kΩ was given the oscillating frequency in (16), whereas
the core parameters of oscillator, gm1 = gm2 = 26.4 nS and C1 = C2 = 20 pF are constant.
Figure 6a,b shows the running oscillation and steady state, respectively. The outputs Vo1
and Vo2 are in quadrature with frequency of 202 Hz. This result confirms that the condition
of oscillation can be controlled by amplifier A2 (gm3R2).
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The Fast Fourier Transform (FFT) of Vo1 and Vo2 is shown in Figure 7. The Total
Harmonic Distortions (THDs) for Vo1 and Vo2 were 0.397% and 0.35%, respectively.
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Figure 7. The FFT for Vo1 and Vo2.

Figure 8 shows the relation between Vo1 and Vo2 that can confirm the quadrature
relationship of output signals. It can be noticed that the amplitudes of Vo1 and Vo2 are
nearly equal at frequency of 202 Hz.
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Figure 8. The quadrature relationship between Vo1 and Vo2.

Table 2 shows the impact of the temperature and process corners on the performance
of the oscillator. The temperature corners were −20 ◦C, 27 ◦C and 50 ◦C; the process
corners were fast-fast (FF), fast-slow (FS), slow-fast (SF) and slow-slow (SS). The oscillator
is capable of oscillating under all temperature and process conditions thanks to the tuning
capability of the condition and frequency of oscillation. The required frequency can be
simply readjusted by the setting currents.

Table 2. Temperature and process corners analysis.

Temp. Proccess

−20 ◦C 27 ◦C 50 ◦C FF FS SF SS

Frequency (Hz) 216 202 195 212 211 180 192

Amplitude (mV) 181 181 173 179 189 168 174

Figure 9a shows the frequency tuning capability of the oscillator in Figure 4a with
Iset1,2,3 = 10 nA versus R1 = 0.1 MΩ, 1 MΩ and 5 MΩ. Figure 9b shows the extra freedom of
electronic tunability that was offered by the oscillator in Figure 4b with Iset1,2,3 = 10 nA and
various Iset4 = 10 nA, 20 nA, 30 nA. This result confirms that the frequency of the oscillator
can be controlled by the amplifier A1 (gm3R1 and gm4R1).
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Figure 9. Frequency tuning capability of the shadow oscillator: (a) Figure 4a, (b) Figure 4b (Vo2

dashed line).

Note that the electronically adjustable gm via Iset is used in this design for fine-tuning
of the oscillator frequency; hence, it enables readjusting of the required frequency in case
of its deviation after fabrication. If wider tuning range is needed then the Iset should be
increased, at the cost of increased power consumption of the application.

The amplitudes of Vo1 and Vo2 versus the oscillation frequencies from Figure 4a,b are
shown in Figure 10a,b, respectively. It can be noticed that, thanks to the shadow principle,
the amplitude of output signals is only slightly changed when the oscillation frequencies
are varied by amplifiers.
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Figure 10. The amplitudes of Vo1 and Vo2 versus the oscillation frequencies (a) varying by R1, and
(b) varying by gm4 via Iset4.

Figure 11 shows the amplitude versus oscillation frequency in case of tuning Iset1,2 = 10 nA,
20 nA and 25 nA. Here, due to the lack of the shadow principle, the decreasing amplitude
with increase of the frequency is notable. Comparing Figure 11 with Figure 10, it can be
concluded that the shadow oscillator that tunes the frequency by an amplifier offers less
amplitude change of the output signal.
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Figure 11. The amplitudes of Vo1 and Vo2 versus the oscillation frequencies when Iset1 and Iset2 are
varied.

Figure 12a shows the results of Monte Carlo (MC) process and mismatch analysis,
with 200 runs, for Vo1 (a) and Vo2 (b). The mean frequency value was 195 Hz and the
standard deviation was 15.27 Hz.

The proposed shadow oscillators have been compared in Table 3 with previous
works [14,21–23]. Both types of oscillators with amplitude stabilization based on AGC
circuits [14,21], as well as circuit nonlinearities [22,23], have been selected for comparison.
The proposed oscillator using an amplifier to vary the frequency has a simpler structure
compared with [14,21] that use AGC circuits to control the amplitude. Compared to [22],
the proposed oscillator enjoys an electronic control, and compared to [23], the proposed
oscillator enjoys independent control. Compared to all previous works [14,21–23], the
proposed structure consumes ultra-low levels of power, rendering it suitable for extremely
low-voltage and low-power applications such as biomedical systems.
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Table 3. Comparison of the proposed shadow oscillators with previous works.

Factor Proposed [14] [21] [22] [23]

Realization CMOS Commercial IC CMOS Commercial IC CMOS

No. of active elements 4-OTA 3-LT1228 1-CG-CFDOBA,
1-CG-BCVA

1-Op-Amp
2-CFOA 3-VDTA

No. of passive elements 2-R, 2-C 5-R, 2-C (Figure 5) 3-R, 2-C 7-R, 2 C 2-C

Oscillation frequency 209−235 Hz 0.08−1.1 MHz 0.25−8 MHz 1−14.25 kHz 0.265−0.323 kHz

Supply voltage 0.5 V ±5 V ±1 V ±10 V ±1 V

Power consumption 54 nW - - - -

Electronic control yes Yes Yes No Yes

Orthogonal control of
CO and FO yes Yes Yes Yes No

Technique to control
amplitude nonlinearities Using AGC Using AGC nonlinearities nonlinearities

Note: CFOA = Current Feedback Operational Amplifier; AGC = Amplitude-Automatic Gain Control; CG-
CFDOBA = Controlled Gain Current Follower Differential Output Buffered Amplifier; CG-BCVA = Controlled
Gain Buffered Current and Voltage Amplifier; VDTA = Voltage Differential Transconductance Amplifier.

4. Conclusions

This paper presents a low-voltage and nano-power shadow oscillator based on MI-
OTA for low-frequency applications. The proposed oscillator uses two-input single-output
biquad filter and amplifiers. The condition and the frequency of oscillation of the shadow
oscillator can be controlled electronically and independently using amplifiers. The oscillator
can be tuned by resistor, capacitor and by the setting current Iset. The simulated results
show low THD (around 0.39%) for both output signals and acceptable tuning range. The
0.5 V supply voltage and the 54 nW power consumption of the oscillator is another benefit
of the proposed circuit.
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