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Abstract: Early hepatocellular carcinoma (HCC) diagnosis is challenging. Moreover, for patients
with alpha-fetoprotein (AFP)-negative HCC, this challenge is augmented. MicroRNAs (miRs) profiles
may serve as potential HCC molecular markers. We aimed to assess plasma homo sapiens—(hsa)-
miR-21-5p, hsa-miR-155-5p, hsa-miR-192-5p, and hsa-miR-199a-5p—expression levels as a panel of
biomarkers for HCC in chronic hepatitis C virus (CHCV) patients with liver cirrhosis (LC), especially
AFP-negative HCC cases, as a step toward non-protein coding (nc) RNA precision medicine. Subjects
and methods: 79 patients enrolled with CHCV infection with LC, subclassified into an LC group
without HCC (n = 40) and LC with HCC (n = 39). Real-time quantitative PCR was used to measure
plasma hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-192-5p, and hsa-miR-199a-5p. Results: Plasma
hsa-miR-21-5p and hsa-miR-155-5p demonstrated significant upregulation, while hsa-miR-199a-
5p demonstrated significant downregulation in the HCC group (n = 39) when compared to the
LC group (n = 40). hsa-miR-21-5p expression was positively correlated with serum AFP, insulin,
and insulin resistance (r = 0.5, p < 0.001, r = 0.334, p = 0.01, and r = 0.303, p = 0.02, respectively).
According to the ROC curves, for differentiating HCC from LC, combining AFP with each of hsa-
miR-21-5p, hsa-miR-155-5p, and miR199a-5p improved the diagnostic sensitivity to 87%, 82%, and
84%, respectively, vs. 69% for AFP alone, with acceptable specificities of 77.5%, 77.5%, and 80%,
respectively, and AUC = 0.89, 0.85, and 0.90, respectively vs. 0.85 for AFP alone. hsa-miR-21-
5p/hsa-miR-199a-5p and hsa-miR-155-5p/hsa-miR-199a-5p ratios discriminated HCC from LC at
AUC = 0.76 and 0.71, respectively, with sensitivities = 94% and 92% and specificities = 48% and
53%, respectively. Upregulation of plasma hsa-miR-21-5p was considered as an independent risk
factor for HCC development [OR = 1.198(1.063–1.329), p = 0.002]. Conclusions: Combining each of
hsa-miR-21-5p, hsa-miR-155-5p, and hsa-miR-199a-5p with AFP made it possible to identify HCC
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development in the LC patients’ cohort with higher sensitivity than using AFP alone. hsa-miR-
21-5p/hsa-miR-199a-5p and hsa-miR-155-5p/hsa-miR-199a-5p ratios are potential HCC molecular
markers for AFP-negative HCC patients. hsa-miR-21-5p was linked, clinically and via in silico proof,
to insulin metabolism, inflammation, dyslipidemia, and tumorigenesis in the HCC patients’ group
as well as for an upregulated independent risk factor for the emergence of HCC from LC in the
CHCV patients.

Keywords: HCC; hsa-miR-21-5p; hsa-miR-155-5p; hsa-miR-192-5p; hsa-miR-199a-5p; liver cirrhosis;
HCV; AFP-negative HCC; bioinformatics/in silico analysis

1. Introduction

Globally, hepatocellular carcinoma (HCC) has the third-highest fatality rate from a highly
spreading disease, and when symptomatically diagnosed, the tumor is in an advanced
stage [1]. Serum alpha-fetoprotein (AFP) measurement helps in the detection of HCC.
However, one-third of HCC patients are AFP-negative HCC, presenting a difficult obstacle
to overcome in the clinical practice setting [2]. AFP-negative HCC cases are defined as
those with AFP levels lower than 20 ng/mL despite the presence of pathology-confirmed
HCC [3]. Hence, finding a more sensitive and reliable biomarker to forecast HCC develop-
ment is mandatory. Hence, intensive ongoing research is focusing on identifying potential
molecular markers for early HCC detection, disease prediction, and/or prognosis. Tumor
epigenetics is one of the potential molecular markers that might characterize HCC [4].
Hence, elaborating on the HCC tumor biology is of great value for HCC patients [5],
namely for diagnosis or identifying possible treatment targets. Moreover, epigenetic molec-
ular markers can be easily detected and quantified in peripheral blood liquid biopsy,
which is a minimally invasive tool that can identify cancer at an early stage as well as
monitor disease progression [6]. Micro-RNAs (miRs) are a group of epigenetic small non-
protein coding RNA (ncRNA) with 18–22 nucleotide length [7]. According to miRBase
https://www.mirbase.org/ (accessed on 28 October 2022), which is one of the microRNA
databases (Release 22.1), the miR count is 38,589 entries. MiRs bind to messenger RNAs
(mRNA), sponging them to control their intended protein production [8], a mechanism
linked to carcinogenesis for one of the different cancer hallmarks [9]. In addition, miRs
profiles may serve as potential HCC diagnostic and/or prognostic molecular markers
with non-invasive and sensitive properties [10]. Accordingly, if miRs can detect HCC
cases, this idea would be a potential step toward the use of ncRNA. For precision health,
especially in AFP-negative HCC conditions, AFP cannot be used as an HCC screening
marker. One of the most frequently dysregulated microRNAs in cancer is hsa-miR-21-5p.
Tissue hsa-miR-21-5p’s diagnostic and prognostic utility has been proven [5]. Altered liver
tissue hsa-miR-21-5p can cause altered lipid metabolism, inflammation, and fibrosis with
activation of the intracellular oncogenic signaling pathways phosphatidylinositol 3 kinases
(PI3K) to protein kinase B (PKB:Akt), transforming growth factor beta (TGF-ß) to the signal
transducers suppressor of mothers against decapentaplegic 2 (SMAD2) and to the tran-
scription factor signal transducer and activator of transcription 3 (STAT3), leading to HCC
initiation [11]. However, the diagnostic significance of circulating hsa-miR-21-5p in liver
cirrhosis or AFP-negative HCC cases has not yet been studied. Monitoring hsa-miR-155-5p
expression levels may be helpful in HCV cases, each of which develops cirrhosis and HCC,
as described earlier by Mohamed et al. [12]. Per hsa-miR-155-5p is a regulator of the pro-
inflammatory precursor mediators nuclear factor kappa-B cell (NF-KB), epidermal growth
factor (EGF), and others, so hsa-miR-155-5p would be connected to both HCC and CHCV
infection [13]. On the other hand, hsa-miR-192-5p was found to be downregulated in some
tumor tissues [14]. However, hsa-miR-192-5p expression level in HCC tissue related to HBV
infection was associated with a faster progression of HCC [15]. Therefore, exploration of
the CHCV-associated plasma hsa-miR-192-5p expression levels in HCC remains to be con-
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ducted. Huang et al. [16] found that hsa-miR-199a-5p expression was lower in HCC tissues
than in nearby non-tumor tissues. Recently, hsa-miR-199a-5p mimics achieved less HCC
cell line survival or colony formation via decreasing the expression of hypoxia-induced
factor-1 (HIF-1) [17]. Nevertheless, the effect of blood hsa-miR-199a-5p was similar to that
of the now-mentioned miRs (hsa-miR-21-5p, hsa-miR-155-5p, and hsa-miR-192-5p) together
as a unit/panel; HCC must be explored in Egyptian patients with cirrhosis associated with
CHCV infection. Hence, in order to improve the sensitivity of HCC diagnosis, we thought
to elucidate the diagnostic utility of circulating plasma hsa-miR-21-5p, hsa-miR-155-5p,
hsa-miR-192-5p, and hsa-miR-199a-5p expression levels, given non-invasive molecular
markers, as a panel or as ratios, for HCC in CHCV-infected Egyptian patients with liver
cirrhosis. Considering the diagnostic utility of these miR groups or ratios for AFP-negative
HCC cases is a novel potential outcome of this study.

2. Results
2.1. Bioinformatics Databases Analysis

Bioinformatics identification of the investigated miRs panel (Table 1) (accessed on
28 April 2022) retrieved from miRDB https://mirdb.org/mirdb/index.html and human
ncRNA gene database GeneCaRNA https://www.genecards.org/genecarna as well as the
miRPathDB v2.0 https://mpd.bioinf.uni-sb.de/overview.html.

Table 1. Investigated hsa-miR information retrieved from different micro-RNA databases.

Mature miR hsa-miR-21-5p hsa-miR-155-5p hsa-miR-192-5p hsa-miR-199a-5p

Sequence (5′-3′) uagcuuaucagacugauguuga uuaaugcuaaucgugauagggguu cugaccuaugaauugacagcc cccaguguucagacuaccuguuc

Length 22 24 21 23

miRBase ID MIMAT0000076 MIMAT0000646 MIMAT0000222 MIMAT0000231

Similar miRNAs hsa-miR-590-5p - hsa-miR-215-5p hsa-miR-199b-5p

Clustered miRNAs # - - hsa-miR-194-2
hsa-miR-6750

hsa-miR-3120
has-miR-214

Genomic location chr17:59841266-59841337
(+)

chr21:25573980-25574044
(+)

chr11:64891137-64891246
(-)

chr1:172144535-172144644
chr19:10817426-10817496

(-)

Accessed on 28 April 2022, retrieved from miRDB https://mirdb.org/mirdb/index.html and human ncRNA
gene database GeneCaRNA https://www.genecards.org/genecarna as well as the miRPathDB v2.0 https://mpd.
bioinf.uni-sb.de/overview.html. # clustered miRNAs are within 10kb in genome.

2.2. Study Data Analysis

Demographic and biochemical, clinical data snd characteristics analysis of study
participants are shown in Table 2. No difference between gender and age, BMI or diabetes
status, liver and kideny function tests between the two studied groups.

Table 2. Demographic and clinical data/characteristics (unit) of the HCC group (n = 39), liver
cirrhosis group (n = 40) participants compared to each other.

Group (n)

Data/Characteristics (Unit) HCC (39) LC (40) p Value

Gender (M/F) 27/12 28/12 NS

Age (years) 61.0 (56.0–67.0) 58.5 (54.25–65.0) NS

BMI (kg/m2) 29.0 (27.0–31.0) 29.9 (27.55–33.2) NS

D.M (Yes/No) 15/24 24/16 NS

s. Insulin (mIU/L) 25.0 (15.7–42.5) 13.5 (5.98–20.37) 0.001 *

Insulin resistance (Yes/No) 28/11 25/15 0.001 *

https://mirdb.org/mirdb/index.html
https://www.genecards.org/genecarna
https://mpd.bioinf.uni-sb.de/overview.html
https://mirdb.org/mirdb/index.html
https://www.genecards.org/genecarna
https://mpd.bioinf.uni-sb.de/overview.html
https://mpd.bioinf.uni-sb.de/overview.html
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Table 2. Cont.

Group (n)

Data/Characteristics (Unit) HCC (39) LC (40) p Value

AST (U/L) 77.0 (62–105.0) 72.0 (62.0–78.0) NS

ALT (U/L) 51.0 (42.0–65.0) 57.0 (50.0–63.7) NS

Total Bilirubin (mg/dL) 1.2 (0.9–2.0) 1.5 (1.0–3.07) NS

Direct Bilirubin (mg/dL) 0.70 (0.40–1.2) 0.8 (0.4–1.95) NS

ALP (U/L) 110 (82.0–155.0) 120 (99.8–132.8) NS

GGT (U/L) 60 (53.0–77.0) 67 (55.3–83.5) NS

TC (mg/dL) 162 (122.0–220) 147 (112-181) NS

TAG (mg/dL) 133 (94.0–193.0) 115 (76.8–147) NS

HDL-C (mg/dL) 34 (26.0–40.0) 36.5 (30.5–41.75) NS

TAG/HDL-C ratio 4.1 (2.6–6.7) 3.3 (2.34–4.59) NS

INR 1.2 (1.1–1.37) 1.5 (1.30–2.06) <0.001 *
Data are median (inter quartile range (1st–3rd quartile)), statistics were computed using SPSS software, Mann–
Whitney test was used (for non-parametric data). p indicates comparison between HCC and liver cirrhosis
groups; * statistical significance p-value < 0.05; NS, non-significant. ALT, alanine aminotransferase; AST, aspartate
aminotransferase; AFP, alpha fetoprotein; BMI, body mass index; DM, diabetes mellitus; HCC, hepatocellular
carcinoma; HDL, high-density lipoprotein; GGT, gamma glutamyl transferase; LC, liver cirrhosis; s. albumin,
serum albumin; s. insulin, serum insulin, TC, total cholesterol; TAG, triacylglycerol.

2.3. Pathological Characteristics of the HCC Cases Are Shown in Table 3

Table 3 represents the pathologic characteristics of the studied HCC cases (n = 39) and
liver cirrhosis cases (n = 40), revealing that 24 cases of the HCC group had no ascites, while
15 patients had ascites graded (8 patients had minor ascites, 5 patients were moderately
ascitic, and 2 patients were markedly ascetic). In the cirrhotic group, 16 patients had no
ascites and 24 patients had ascites graded, as 6 patients were minimally ascetic, 16 patients
were moderately ascetic, and 2 patients were markedly ascetic. Ascites in both groups were
explained by the presence of portal hypertension and hypoalbuminemia. All cirrhotic group
patients had no LN enlargement, and their portal veins were patent. In total, 5 patients
of the HCC group had LN enlargement (metastatic), and 11 HCC patients had portal
vein thrombosis; 9 of them were totally thrombosed, and 2 patients exhibited partially
thrombosed portal vein (malignant invasion of the portal vein). Child–Pugh score, which
estimates the severity of liver disease, was calculated for all patients. The HCC group
had 24 patients with the least severe liver disease (Child A), 10 patients had a moderately
severe liver disease (Child B), and 5 patients had the most severe liver disease (Child C).
In the cirrhotic group, 12 patients were Child A, 14 patients were Child B, and 14 patients
were Child C. HCC patients were classified according to the Barcelona Clinic Liver Cancer
(BCLC) classification based on Child scores, number and size of focal lesions, performance
status, vascular invasion, and distant metastases. In total, 12 HCC patients were in the
early stage (A), 10 patients were in an intermediate stage (B), 12 patients exhibited an
advanced stage (C), and finally, 5 patients were in the terminal stage (D). Fortunately, this
classification is highly significant in clarifying the best modality of treatment for each stage
and also predicts the expected survival.

As depicted in Table 4, the HCC group showed significant up-regulation of plasma hsa-
miR-21-5p expression compared to the LC group (median = 27.66-fold change vs. 8.61-fold
change from average expression, p < 0.001). In addition, hsa-miR-155-5p expression was sig-
nificantly elevated in HCC patients in comparison to the cirrhotic patients (median = 3.18-fold
change vs. 1.81-fold change, p = 0.001). On the other hand, no significant difference was
detected between groups regarding hsa-miR-192-5p expression. However, the HCC group
showed significant down-regulation of plasma hsa-miR-199a-5p in comparison to the LC
group as well as the control group (p < 0.05).
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Table 3. Pathological characteristics of the studied HCC cases (n = 39) and liver cirrhosis cases (n = 40).

Groups, n (%) HCC, 39 (100%) Liver Cirrhosis, 40 (100%) Statistics Test, p-Value

Parameters Ascites X2 = 7.63, 0.05 *

No. 24 (61.5%) 16 (40.0%)

Minimal 8 (20.5%) 6 (15.0%)

Moderate 5 (12.8%) 16 (40.0%)

Marked or Massive 2 (5.1%) 2 (5.0%)

LN involvement X2 = 5.475, 0.019 *

No. 34 (87.2%) 40 (100.0%)

Yes 5 (12.8%) 0 (0.0%)

Largest liver mass size N.A.

≤3.00 cm 8 (20.5%) —-

>3.00 cm 31 (79.5%) —-

Portal vein patency N.A.

Patent 28 (71.8%) 40 (100.0%)

Partially occluded 2 (5.1%) 0 (0.0%)

Thrombosed 9 (23.1%) 0 (0.0%)

Subclassification of liver cirrhosis and HCC if found

Child score X2 = 8.9, 0.012 *

A = Least severe 24 (61.5%) 12 (30.0%)

B = Moderately severe 10 (25.6%) 14 (35.0%)

C = Most severe 5 (12.8%) 14 (35.0%)

BCLC classification N.A.

A = Early stage 12 (30.8%) -

B = Intermediate stage 10 (25.6%) -

C = Advanced stage 12 (30.8%) -

D = Terminal stage 5 (12.8%) -

Total 39 (100%) -
Data are median (inter quartile range (1st–3rd quartile)), or as number (%), statistics were computed using SPSS
software. * Statistical significance p-value < 0.05; NS, non-significant; N.A., not applicable. LC, liver cirrhosis;
HCC, hepatocellular carcinoma; LN, lymph node; BCLC, Barcelona Clinic Liver Cancer.

Table 4. Study participants’ hsa-miRs in HCC group (n = 39), liver cirrhosis group (n = 40) compared
to each other.

Group, n

Parameter (Unit) HCC, 39 LC, 40 p Value

AFP (ng/mL) 80 (13–305) 7.4 (4.5–10.37) <0.001 *

hsa-miR-21-5p-fold changes 27.6 (6.9–69.5) 8.6 (3.9–11.3) <0.001 *

hsa-miR-155-5p-fold changes 3.1 (1.7–8.12) 1.8 (0.76–2.2) 0.001 *

hsa-miR-192-5p-fold changes 0.90 (0.4–1.52) 1.5 (0.55–5.04) NS

hsa-miR-199a-5p fold changes 0.16 (0.04–0.4) 0.37 (0.08–5.64) 0.046 *

hsa-miR-21-5p/hsa-miR-199a-5p 85.6 (27–2759.1) 20.3 (1.1–66.7) <0.001 *

hsa-miR-155-5p/hsa-miR-199a-5p 16.5 (4.4–119.4) 2.7 (0.48–19.1) 0.002 *
Data are median (interquartile range (1st–3rd quartile)), statistics were computed using SPSS software, Mann–
Whitney test was used (non-parametric data). p indicates comparison between HCC and liver cirrhosis groups.
* statistical significance p-value <0.05; NS, non-significant. AFP, alpha fetoprotein; HCC, hepatocellular carcinoma;
LC, liver cirrhosis.
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When HCC patients were further sub-classified based on AFP detection (cutoff = 20 ng/mL)
into AFP-negative HCC patients (n = 12/39) and AFP-positive HCC patients (n = 27/39),
significant downregulation of plasma hsa-miR-21-5p levels in AFP-negative HCC patients
(p = 0.039) was evident, as presented in Table 5.

Table 5. Investigated hsa-miRs expression level in HCC study participants’ (n = 39) according to
AFP-positivity or negativity.

AFP −/+ HCC, n

Characteristics (Unit) AFP − ve HCC, 12 AFP + ve HCC, 27 p Value

hsa-miR-21-5p-fold changes
Min–Max

median (inter-quartiles)
1.92–69.5

14.8 (3.0–34.8)
3.29–407.31

32.6 (21.3–116.9)
0.015 *

hsa-miR-155-5p-fold changes
Min–Max

median (inter-quartiles)
0.17–247.3

1.7 (0.46–6.6)
0.80–324.03

3.8 (1.9–11.2)
NS

hsa-miR-192-5p-fold changes
Min–Max

median (inter-quartiles)
0.14–23.2

0.97 (0.45–3.5)
0.09–3.86

0.90 (0.36–1.4)
NS

hsa-miR-199a-5p fold changes
Min–Max

median (inter-quartiles)
0.01–2.38

0.16 (0.035–0.38)
0.00–5.39

0.23 (0.04 –0.63)
NS

hsa-miR-21-5p/hsa-miR-199a-5p
Min–Max

median (inter-quartiles)
12.13–8364.1

52.7 (16.8–311.3)
1.06–121,449.75

87.4 (32.2–3468.3)
NS

hsa-miR-155-5p/hsa-miR-199a-5p
Min–Max

median (inter-quartiles)
2.7–29,737.5

12.3 (3.8–29.9)
0.15–41,764.80
17.4 (6.9–207.9)

NS

Data are median (inter quartile range (1st–3rd quartile)), statistics were computed using SPSS software. * Statistical
significance p-value < 0.05; NS, non-significant for comparison of AFP–HCC and AFP+HCC sub-classification.
HCC, hepatocellular carcinoma; LC, liver cirrhosis; AFP, alpha fetoprotein.

2.4. Correlation Coefficients

Correlation coefficients between studied miRs and various biomarkers in all cases
(n = 79): Table 6 highlights that hsa-miR-21-5p expression is positively correlated with
AFP, serum insulin and insulin resistance status (r = 0.5, p < 0.001, r = 0.334, p = 0.01 and
r = 0.303, p = 0.02). Furthermore, a positive correlation was observed between AFP and
hsa-miR-155-5p levels (r = 0.371, p = 0.001). In addition, hsa-miR-21-5p was positively
correlated with dyslipidemia, manifested as high TC and TAG (r = 0.241, p = 0.033 and
r = 0.235, p = 0.037, respectively).

Table 6. Spearman’s correlation coefficient (r) among the investigated hsa-miRs’ expression levels’
fold changes in all CHCV-G4 patients (liver cirrhosis patients post-HCV) (n = 79).

CHCV-G4 Patients (n = 79) miRs-Fold Change

hsa-miR-21-5p hsa-miR-155-5p hsa-miR-192-5p hsa-miR-199a-5p

Data/Characteristics (Unit) r p-Value r p-Value r p-Value r p-Value

Age (Years) 0.004 NS −0.004 NS −0.060 NS −0.054 NS

BMI (kg/m2) 0.103 NS 0.059 NS −0.124 NS −0.222 0.050 *

s. Insulin (mIU/L) 0.334 0.01 * 0.203 NS −0.001 NS −0.125 NS

AFP (ng/mL) 0.534 <0.001 * 0.371 0.001 * −0.092 NS −0.023 NS

AST (U/L) 0.104 NS −0.001 NS 0.070 NS 0.03 NS
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Table 6. Cont.

CHCV-G4 Patients (n = 79) miRs-Fold Change

hsa-miR-21-5p hsa-miR-155-5p hsa-miR-192-5p hsa-miR-199a-5p

Data/Characteristics (Unit) r p-Value r p-Value r p-Value r p-Value

ALT (U/L) −0.172 NS −0.138 NS 0.114 NS −0.068 NS

ALP (U/L) −0.263 0.019 * −0.163 NS −0.043 NS 0.069 NS

GGT (U/L) −0.144 NS −0.120 NS 0.106 NS 0.145 NS

TAG (mg/dL) 0.241 0.033 * 0.180 NS −0.144 NS 0.133 NS

TC (mg/dL) 0.235 0.037 * 0.120 NS −0.230 0.042 * 0.075 NS

HDL-C (mg/dL) −0.110 NS −0.064 NS −0.062 NS −0.064 NS

TAG/HDL-C 0.195 NS 0.115 NS −0.085 NS 0.111 NS

PLR −0.045 NS 0.137 NS −0.119 NS 0.298 0.008 *

Number of liver masses −0.027 NS −0.038 NS 0.010 NS −0.018 NS

Insulin resistance 0.303 0.02 * 0.103 NS 0.140 NS −0.090 NS

Spearman correlation coefficient (r) was calculated using SPSS software. * Significant correlation at p < 0.05 level
(2-tailed); NS, non-significant; LC, liver cirrhosis; ALT, alanine aminotransferase; AST, aspartate aminotransferase;
AFP, alpha-fetoprotein; BMI, body mass index; DM, diabetes mellitus; HCC, hepatocellular carcinoma; HDL,
high-density lipoprotein; GGT, gamma-glutamyl transferase; LC, liver cirrhosis; PLR, platelet lymphocyte ratio;
NLR, neutrophil–lymphocyte ratio; s. insulin, serum insulin; TC, total cholesterol; TAG, triacylglycerol.

2.5. ROC Curve Analysi

Table 7 and Figure 1 show that hsa-miR-21-5p upregulation distinguished HCC from
LC groups at AUC = 0.8 with 74% sensitivity and 45% specificity at cutoff >7.3-fold in-
crease from average expression, whereas hsa-miR-155-5p distinguished the two groups at
AUC = 0.7, 72% sensitivity, and 48% specificity at cutoff >1.8-fold change. hsa-miR-199a-5p
distinguished the HCC group from the LC group at AUC = 0.68, 87% sensitivity, and
48% specificity at cutoff <0.45-fold change. Moreover, the hsa-miR-21-5p/hsa-miR-199a-5p
ratio could discriminate the HCC from the LC group at AUC = 0.76, 94% sensitivity, and
48% specificity at cutoff >11.45. hsa-miR-155-5p/hsa-miR-199a-5p ratio distinguished the
two groups at AUC = 0.71, 92% sensitivity, and 53% specificity at cut-off >2.89.

Table 7. ROC curve for the discriminative ability of the studied hsa-miRs to differentiate HCC from
liver cirrhosis either individually or hsa-miRs added to AFP or hsa-miR ratios.

%

Variables (Unit) Cut-Off Point AUC Sensitivity Specificity p-Value *

AFP (ng/mL) >23.3 0.85 69 100 <0.001

hsa-miR-21-5p-fold changes >7.3 0.8 74 45 <0.001

hsa-miR-155-5p-fold changes >1.8 0.7 72 48 <0.01

hsa-miR-199a-5p fold changes <0.44 0.63 79 45 <0.05

hsa-miR-21-5p-fold changes & AFP - 0.888 87 77.5 <0.001

hsa-miR-155-5p-fold changes & AFP - 0.847 82 77.5 <0.001

hsa-miR-199a-5p fold changes & AFP - 0.904 84 80 <0.001

hsa-miR-21-5p/hsa-miR-199a-5p 11.45 0.76 95 48 <0.001

hsa-miR-155-5p/hsa-miR-199a-5p 2.89 0.71 92 53 <0.01

* Significance at p < 0.05 level (2-tailed). AFP, alpha feto protein; AUC, area under the curve.
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Figure 1. ROC curve for the discriminative ability of the investigated hsa-miRs expression levels to detect
CHCV-G4-mediated HCC development from liver cirrhosis; (A) hsa-miR-21-5p and hsa-miR-155-5p,
(B) hsa-miR-199a-5p, (C) hsa-miR-21-5p/hsa-miR-199a-5p and hsa-miR-155-5p/hsa-miR-199a-5p.

2.6. Logistic Regression Analysis

In order to evaluate if the altered expression panel of hsa-miR-21-5p, hsa-miR-155-
5p, hsa-miR-192-5p, and hsa-miR-199a-5p can act as an independent risk factor for HCC
progression from liver cirrhosis, a logistic regression analysis was conducted with the
adjustment of co-founders (age, BMI, RBS, TAG/HDL), as shown in Table 8. Now, we can
say that hsa-miR-21-5p can be considered an independent risk factor for the development
of HCC (OR = 1.198 (1.063–1.329, p = 0.002)).
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Table 8. Logistic regression analysis using hsa-miR-21-5p, has-miR-155-5p, hsa-miR-192-5p, and
hsa-miR199a-5p expression level fold change and their ratios as predictors of HCV-mediated HCC
development from liver cirrhosis (n = 79) after adjustment for confounders (age, BMI, RBS, lipids).

95% C.I.

Variables (Unit) p Value OR Lower Upper

hsa-miR-21-5p 0.002 * 1.189 1.063 1.329

hsa-miR-155-5p NS 0.984 0.881 1.100

hsa-miR-192-5p NS 1.009 0.851 1.196

hsa-miR-199a-5p NS 0.836 0.594 1.177

hsa-miR-21-5p/hsa-miR-199a-5p NS 1.0 1.0 1.0

hsa-miR-155-5p/hsa-miR-199a-5p NS 1.0 0.99 1.0

Age (years) 0.027 * 1.132 1.014 1.263

BMI (kg/m2) 0.02 * 0.746 0.583 0.955

TAG/HDL-C NS 1.180 0.927 1.501

TAG NS 1.002 0.988 1.016

TC NS 1.004 0.992 1.015

RBS NS 0.993 0.981 1.005
* Significant p-value < 0.05. BMI, body mass index; C.I., confidence interval; HCC, hepatocellular carcinoma; HDL,
high-density lipoprotein; OR, odds ratio; RBS, random blood sugar; TAG, triacyl glycerol; TC, total cholesterol.

2.7. Potential Target Genes of Individual miRs and hsa-miRs Panel Predicition In Silico Using the
Online Algorithm
2.7.1. Gene–Gene and Pathways Interactions

Gene–Gene Interactions and Pathways from Curated Databases and Text-mining (Figure 2)
Via gene-interaction on University of California Santa Cruiz (UCSC) Genomics Institute
(accessed on 28 October 2022). The pathways of the studied miR genes were completed. miR21
is directly affected by phosphatase and tensin homolog tumor suppressor (PTEN) (PTEN
→ miR21), meaning PTEN directly decreases miR-21 gene as well as the ribosomal protein
S7 (RPS7) (http://genome.ucsc.edu/cgi-bin/hgGeneGraph?gene=MIR21&supportLevel=
ppi&geneCount=25&geneCount=25&geneAnnot=gnf2&1=OK&lastGene=MIR21). For miR-
155, top interacting genes that have known inhibitor drugs are calcium-binding pro-
tein P calmodulin (S100P), which is targeted by cromoglicic acid (from DrugBank); an-
giotensin II receptor type 1 G-protein coupled receptor (AGTR1), targeted by the Sartan
drug group; chemokine (C-C motif) ligand 2 (CCL2), targeted by Danazol; and mimo-
sine (http://genome.ucsc.edu/cgi-bin/hgGeneGraph?gene=MIR155&supportLevel=text&
hideIndirect=on&geneCount=25&geneAnnot=none&1=OK&geneCount=25).

However, hsa-miR-192-5p and hsa-miR-199a-5p genes (miR192 or miR199a) are not
present in this current gene interaction database.

2.7.2. hsa-miRs Target(s) Analysis

Through the analysis of hundreds of miRNA–target interactions from high-throughput
sequencing experiments, the bioinformatics tool MirTarget was able to create miR database
(miRDB), an online library for miR target predictions and functional annotations (https:
//mirdb.org/custom.html). For hsa-miR-199a-5p target expression analysis, the expression
levels of predicted hsa-miR targets retrieved in miRDB (accessed on 28 October 2022)
are epidermal growth factor (EGF), mitogen-activated protein 3 kinase 11 (MAP3K11),
cell-division-cycle-associated 7-like, and zinc finger proteins.

http://genome.ucsc.edu/cgi-bin/hgGeneGraph?gene=MIR21&supportLevel=ppi&geneCount=25&geneCount=25&geneAnnot=gnf2&1=OK&lastGene=MIR21
http://genome.ucsc.edu/cgi-bin/hgGeneGraph?gene=MIR21&supportLevel=ppi&geneCount=25&geneCount=25&geneAnnot=gnf2&1=OK&lastGene=MIR21
http://genome.ucsc.edu/cgi-bin/hgGeneGraph?gene=MIR155&supportLevel=text&hideIndirect=on&geneCount=25&geneAnnot=none&1=OK&geneCount=25
http://genome.ucsc.edu/cgi-bin/hgGeneGraph?gene=MIR155&supportLevel=text&hideIndirect=on&geneCount=25&geneAnnot=none&1=OK&geneCount=25
https://mirdb.org/custom.html
https://mirdb.org/custom.html
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Figure 2. Gene interactions and pathways from curated databases and text-mining for miR21 and
miR155 genes (in yellow). Black-colored genes are treatment hits by DrugBank. PTEN; phosphatase
and tension homolog tumor suppressor; RPS7, ribosomal protein S7; S100P, calcium-binding protein
P calmodulin; AGTR1, angiotensin II receptor type 1 G-protein-coupled receptor; CCL2, chemokine
(C-C motif) ligand 2.

2.7.3. KEGG Targeted Pathways, Clusters/Heatmap Using DIANA

Mirpath uses reverse search to identify miRs involved in KEGG pathways using the
DIANA-TarBase v7.0 method and by searching clusters/heatmap results for KEGG targeted
pathways. The investigated miRs are shown in Figure 3 (https://dianalab.e-ce.uth.gr/
html/universe/index.php?r=mirpath#mirnas=hsa-miR-21-5p;hsa-miR-155-5p;hsa-miR-19
2-5p;hsa-miR-199a-5p&methods=Tarbase;Tarbase;Tarbase;Tarbase&selection=2). p value
threshold is set at 0.05, and microT threshold is set at 0.8. Results are visualized as KEGG
pathway unions or as intersected. Intersection of the four KEGG-pathway-investigated miRs
are those for chronic myeloid leukemia and several types of cancer. For HCV, two miRs, hsa-
miR-21-5p and hsa-miR-155-5p, are involved. However, KEGG pathway unions involving
the three miRs—hsa-miR-21-5p, hsa-miR-155-5p, and hsa-miR-192-5p—are those for cancer,
cell cycle, HBV, TGF-B, Wnt signaling pathway, and p53 signaling. For mTOR signaling
pathway—hsa-miR-21-5p, hsa-miR-155-5p, and hsa-miR-199a-5p—are involved.

2.7.4. Genes That Share Domain with the Investigated MIR Genes

Determined via GenesLikeMe v5.12 https://glm.genecards.org/#results by LifeMap
sciences (Barranca Ave, Covina, CA, USA) (accessed on 15 November 2022). The best
inferred functional partners found for miR155 are NF-KB, TP53, STAT3, IL6, TNF, miR199a,
VEGFA, miR21, MAPK8, and TLR4. However, the best inferred functional partners found
for miR192 are as follows, in descending order: IL-6, TP53, INS, PPARG, STAT3, TLR4,
VEGFA, BCL2, EGFR, ADIPQ, HIF1A, KRAS, miR21, IGF1, and PTEN. Interestingly, the
best inferred functional partners found for miR199A1 were miR21 and miR155.

https://dianalab.e-ce.uth.gr/html/universe/index.php?r=mirpath#mirnas=hsa-miR-21-5p;hsa-miR-155-5p;hsa-miR-192-5p;hsa-miR-199a-5p&methods=Tarbase;Tarbase;Tarbase;Tarbase&selection=2
https://dianalab.e-ce.uth.gr/html/universe/index.php?r=mirpath#mirnas=hsa-miR-21-5p;hsa-miR-155-5p;hsa-miR-192-5p;hsa-miR-199a-5p&methods=Tarbase;Tarbase;Tarbase;Tarbase&selection=2
https://dianalab.e-ce.uth.gr/html/universe/index.php?r=mirpath#mirnas=hsa-miR-21-5p;hsa-miR-155-5p;hsa-miR-192-5p;hsa-miR-199a-5p&methods=Tarbase;Tarbase;Tarbase;Tarbase&selection=2
https://glm.genecards.org/#results
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3. Discussion

In the current study, comparison studies revealed that insulin resistance was signifi-
cantly present in cases of HCC when compared to liver cirrhosis. This finding agrees with
many previous studies according to Fujii et al. [18]. The existence of hereditary variables,
hepatic fat buildup, changes in energy metabolism, and inflammatory signals originat-
ing from immune cells all play a role in how chronic hepatic disease progresses to HCC.
Kim et al. [19] stated that diabetes contributes to the biologic processes driving chronic
liver diseases to HCC. For lipid metabolism, no significant differences were detected when
TC, TAG, and HDL were compared between HCC cases and liver cirrhosis cases. These
findings disagree with Sangineto et al.’s [20] findings stating that metabolic reprogramming
plays a crucial role in the emergence and spread of cancer. In particular, the role of lipid
metabolism in neoplastic cells’ energy production, environmental adaptation, and cell sig-
naling has been studied. This discrepancy could be explained by the multifactorial nature
of the pathway driving HCC pathology, which highlights the role of epigenetic factors as
miRs in HCC development. AFP expression was significantly upregulated in HCC patients
compared to cirrhotic patients. AFP is the most widely used serum biomarker to detect
HCC worldwide. This issue agrees with Park et al. [21], who proposed AFP as the best
performance biomarker for HCC diagnosis when secreted. However, even if a low-level
cutoff is utilized (i.e., 10–20 ng/mL), the sensitivity value of AFP to detect HCC is around
60–70%. In addition, serum AFP levels are normal in 15–30% of HCC cases [22], which
justifies the need for the discovery of new HCC markers. In the current study, plasma
hsa-miR-21-5p expression was significantly upregulated in HCC patients compared to
cirrhotic patients. These findings are in line with the findings of Tian et al. [23], who
reported that the exosomal hsa-miR-21-5p is upregulated in HCC due to the acidic mi-
croenvironment and that hsa-miR-21-5p activates HIF-1 and HIF-2, promoting the growth
and spread of HCC cells. Beyond that, Cao et al. [24] found that hsa-miR-21-5p stimulates
HCC development via controlling the expression of tumor suppressor gene PTEN, which
prevents tumor cell apoptosis [25]. This fact is witnessed via the bioinformatics analysis
in Figure 2, which points to the straight relation of miR-21 to PTEN. Additionally, the
HCC group (n = 39) demonstrated significant up-regulation of plasma hsa-miR-155-5p
expression level. This event is consistent with the findings of Matsuura et al. [26], in which
hsa-miR-155-5p significantly increased angiogenesis in the hypoxic condition generated by
HCC. Hsa-miR-155-5p was proved to promote HCC cells’ invasion and migration, being
a moderator for epithelial–mesenchymal transition (EMT) [27]. The RefSeq MIR155HG
gene is a miR host gene, where the long RNA transcribed from this gene is expressed
at high levels in lymphoma and may function as an oncogene, as provided by RefSeq,
Dec 2017 http://genome.ucsc.edu/cgi-bin/hgGene?db=hg19&hgg_gene=MIR155. On
the other hand, the HCC group demonstrated a significant down-regulation of plasma
hsa-miR-199a-5p expression level. This finding was in-line with the finding of a recent
publication by Chen et al. [28], who observed that miR-199a-5p was significantly downreg-
ulated in tumor samples from HCC patients. According to Liu et al. [29], hsa-miR-199a-5p
downregulation plays a crucial role in the growth and the development of HCC, and they
added that the protective role of hsa-miR-199a-5p is played through its ability to inhibit
HCC cell migration and invasion by targeting the metastasis promoter MAP4K3. Addi-
tionally, Huang et al. [16] found that hsa-miR-199a-5p functions as a tumor suppressor in
HCC, which explains its frequent downregulation in HCC cases. No significant change
was detected for hsa-miR-192-5p when compared between all groups. This finding dis-
agrees with Yin et al. [30], who found that hsa-miR-192-5p loss initiates HCC malignancy.
Additionally, Gu et al. [31] reported that has-miR-192-5p silencing by genetic aberrations
is a key event in hepatocellular carcinoma development. Discrepancy of findings can be
due to different methods of miR detection, as we tested the miRs in patients’ plasma rather
than in HCC tissue. Moreover, we thought to investigate miR fold change ratios so as to
take advantage of our findings of the two upregulated hsa-miR-21-5p and hsa-miR-155-5p
with downregulated hsa-miR-199a-5p. We performed a panel of ratios between studied

http://genome.ucsc.edu/cgi-bin/hgGene?db=hg19&hgg_gene=MIR155
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miRs using hsa-miR-21-5p/hsa-miR-199a-5p ratio and hsa-miR-155-5p/hsa-miR-199a-5p
ratio. When compared to the liver cirrhosis group and the control group, the HCC group
demonstrated a significant up-regulation of hsa-miR-21-5p/hsa-miR-199a-5p ratio and
hsa-miR-155-5p/hsa-miR-199a-5p ratio. Comparing miR expression levels and ratios in
subclassified groups of HCC study participants according to AFP positivity revealed only
a significant up-regulation of hsa-miR-121-5p expression level in AFP positive HCC cases.
When detectable, AFP was found to be positively correlated with both hsa-miR-21-5p and
hsa-miR-155-5p levels, pointing to the importance of both miRs as molecular markers
in the context of HCC diagnosis [32] being related, as a panel, in part to HCC develop-
ment and progression. No significant difference in hsa-miR-192-5p levels was detected
between the HCC group and the other studied groups. However, Fründt et al. [14] claimed
hsa-miR-192-5p might distinguish patients with HCC and those who have LC from the
healthy subjects, being downregulated in tumor tissues and thought to have an anti-cancer
effect. Yin et al. [30] found that hsa-miR-192-5p has an anti-HCC effect, with the ability
to induce HCC cell apoptosis and autophagy via the axis hsa-miR-192-5p/CYR61/Akt
signaling pathway. On the other hand, our study showed significant downregulation in
plasma hsa-miR-199a-5p expression level in the HCC group only. Lou et al. [33] studied
the relationship between hsa-miR-199a-5p and the X-box binding protein 1 (XBP1) and
cyclin D axes. They reported hsa-miR-199a-5p to be decreased in HCC tissue, resulting in
an increased expression of XBP1 and cyclin D, impacting the cell cycle regulation, suggest-
ing that hsa-miR-199a-5p has an antitumor effect. Moreover, the current bioinformatics
analysis for “hsa-miR-199a-5p target expression analysis” retrieved in miRDB, is EGF,
MAP3K11, and zinc finger proteins, which are all related to tumorigenesis, thus, hsa-miR-
199a-5p would have an antitumor effect a downregulation in its plasma ex-pression level
will affect its target protein expression (involved in tumor development). That is why
its expression level decrease is considered as a potential good HCC diagnostic molecular
marker. Correlation studies in all patients (n = 79) revealed that plasma hsa-miR-21-5p,
expression level was positively correlated with serum insulin and the presence of insulin
resistance and dyslipidemia (increased TC and TAG). Lin et al. [34] suggested that altered
plasma miRs might reflect liver lipid metabolism and said that hepatic miR expression
contributes to the development of insulin resistance. This response is per both hsa-miR-
21-5p and hsa-miR-155-5p would control the expression of genes involved in hepatic TAG
and cholesterol metabolism, evidenced by silencing hepatic miR21 genes, where reduced
hepatic inflammation and enhanced fibrosis were achieved [35,36]. This was also evidenced
by our bioinformatics analysis in Figure 2 showing the KEGG pathways’ heatmap, in which
the investigated miRs are involved in the inflammatory processes, diseases, adipogenesis,
and fibrotic diseases. At an AUC = 0.85, AFP was able to distinguish between the HCC
and LC groups with only 69% SN and 100% SP (cutoff >23.3). Despite the high SP, the low
SN threatens AFP usefulness as the sole HCC screening biomarker. Moreover, AFP would
be sometimes high in liver cirrhosis. AFP measurements, if combined with ultrasound for
HCC screening, offer additional detection to 6%–8% of cases not previously identified by
Ultrasound alone [37].

Blood hsa-miRs are of interest for the research of illness prognosis and the detection
of cancer due to their great stability in blood and other liquid biopsy samples [38]. In the
current study, combining each of the investigated miRs individually to AFP ROC curve
analysis yielded an improved AUC each time compared to either alone. Combination
of hsa-miR-21-5p or hsa-miR-155-5p or hsa-miR-199a-5p with AFP yielded an improved
AUC compared to AFP alone (0.89, 0.85, and 0.90, respectively, vs. 0.85 for AFP alone).
Additionally, an improved sensitivities (87%, 82%, and 84%, respectively, vs. 69% SN for
AFP alone) with accepted specificities (77.5%, 77.5%, and 80%, respectively) were obtained
from such combinations. During the ROC curve analysis, we decided to increase AFP
cutoff to 23.3 ng/mL to ensure the inclusion of AFP-negative HCC cases (12/39) [32]. How-
ever, Malik et al. [38] stated that hsa-miR-21-5p alone or in combination with AFP did not
improve the diagnostic performance of the protein biomarkers. Moreover, we thought to
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investigate miRs’ fold change ratios. hsa-miR-21-5p/hsa-miR-199a-5p ratio would detect
early HCC development at cutoff >11.45, while hsa-miR-155-5p/hsa-miR-199a-5p ratio dis-
tinguished the two groups at cut-off >2.89. Both ratios provided a higher SN for early HCC
detection, reaching 95% and 92%, respectively. However, SPs did not improve much. Using
these suggested ratio cutoffs revealed a 100% detection rate of HCC in AFP-negative HCC
patients (12/39) if using hsa-miR-21-5p/hsa-miR-199a-5p or a 91.6% detection rate of HCC
in AFP-negative HCC cases if using hsa-miR-155-5p/hsa-miR-199a-5p ratio as screening
molecular markers, which was confirmed with CT scan. This point addresses one of our
initial objectives in the current research well: to find sensitive detection biomarkers for HCC
development in AFP-negative HCC patients. Logistic regression was performed to ensure
the utility of using hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-192-5p, and hsa-miR199a-5p
expression level fold change, as panels or ratios, as predictors of CHCV-mediated HCC
development from liver cirrhosis after adjustment for confounders (age, BMI, blood sugar,
lipids). Logistic regression revealed that hsa-miR-21-5p (p = 0.002, OR = 1.18, 95% CI
1.063–1.329) is a significant predictor of CHCV-mediated HCC development from liver cir-
rhosis. This fact agrees with Sorop et al. [39] who identified hsa-miR-21-5p using a logistic
regression equation as a predictor for HCC diagnosis. Additionally, age of patients was
a significant predictor of CHCV-mediated HCC development from liver cirrhosis (p = 0.027,
OR = 1.132, 95% CI 1.014–1.263). Via bioinformatics analysis using DIANA TOOLS mirPath
for multiple microRNA analysis, the web-based miR pathway analysis application is now
compiling the pivotal role of miRs. hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-192-5p, and
hsa-miR-199a-5p panels from KEGG pathway intersection of the four investigated miRs
for cancer are shown in Figure 3. Hence, during HCC development and progression from
CHCV-G4 infection, cell cycle and signaling pathways, apoptosis, TGF-B, Wnt signaling,
and p53 signaling and mTOR signaling pathways—“all miRs”—are involved as clusters.
Moreover, via GenesLikeMe RELATED GENES, inferred functional partners for miR155
gene are those involved in the tumorigenesis process: NF-kB, TP53, STAT3, IL-6, TNF,
VEGFA, miR21, MAPK8, and TLR4. Moreover, the following genes—IL-6, TP53, INS,
PPARG, STAT3, TLR4, VEGFA, BCL2, EGFR, ADIPQ, HIF1A, KRAS, miR21, IGF1, and
PTEN—share a domain with miR192. Interestingly, the miR199A1 gene shares a domain
with both the miR21 and miR155 genes, supporting the miR cluster dendrogram on the
left side of Figure 3, confirming the use of ncRNA panel as a step toward precision health.
DrugBank http://genome.ucsc.edu/cgi-bin/hgGeneGraph?gene=MIR155&supportLevel=
text&hideIndirect=on&geneCount=25&geneAnnot=none&1=OK&geneCount=25 targeted
miR155 top interacting genes included the anti-inflammatory drugs for S100P—or Sartans—or
targeted the synthetic steroid derivatives to inhibit chemokines and drugs that will arrest
the cell cycle in the G(1) phase before entry into the S phase. All these drugs will affect
miR155 and miR21, and therefore, the investigated panel step-wise as cluster.

Limitations. The current study did not include the predictive survival role of the
investigated miRs panel—hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-192-5p, or hsa-miR-
199a-5p—in patients with CHCV-G4 linked to HCC (a prospective study to be).

Strengths related to the current research. As far as we know, this study is the first to
describe the diagnostic utility of hsa-miR-21-5p/hsa-miR-199a-5p and hsa-miR-155-5p/hsa-
miR-199a-5p ratios in combination with AFP for an enhanced early diagnosis of clinical
CHCV-G4-related HCC and liver cirrhosis. These ratios—hsa-miR-21-5p/hsa-miR-199a-5p
and hsa-miR-155-5p/hsa-miR-199a-5p—showed great diagnostic utility in AFP-negative
HCC cases.

Recommendations. Considering hsa-miR-21-5p and/or hsa-miR-155-5p as potential
precision therapeutic target(s) for CHCV-G4-related HCC and liver cirrhosis treatment. This
will consider sub-classification examination and testing repurposing drugs (potentially
targets to be obtained via miRDB), relying on targeting miR21 and miR155 genes, and
proofing the mechanism experimentally.

Sustainability Plan. Blocking—hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-192-5p, and
hsa-miR-199a-5p—target genes based on the findings from gene–gene interaction networks

http://genome.ucsc.edu/cgi-bin/hgGeneGraph?gene=MIR155&supportLevel=text&hideIndirect=on&geneCount=25&geneAnnot=none&1=OK&geneCount=25
http://genome.ucsc.edu/cgi-bin/hgGeneGraph?gene=MIR155&supportLevel=text&hideIndirect=on&geneCount=25&geneAnnot=none&1=OK&geneCount=25
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and KEGG curated databases pathways and text-mining, as potential treatment options
based on ncRNA, a step toward precision health.

4. Patients and Methods
4.1. miRs Selection

Based on literature search, some miRs were examined by our research group and
based on bioinformatics identification of the investigated miR panel, retrieved from
miRDB [40] (https://mirdb.org/mirdb/index.html) and the human ncRNA gene database,
GeneCaRNA [41] (https://www.genecards.org/genecarna; Version 5.13, updated 9 Novem-
ber 2022) as well as the miRTarget [42] Link 2.0 (Released 11 December 2020) (https:
//ccb-compute.cs.uni-saarland.de/mirtargetlink2) (miRPathDB v2.0 https://mpd.bioinf.
uni-sb.de/overview.html).

4.2. Study Design

Cross-sectional, controlled, retrospective study.

4.3. Sample Size and the Study Power

Based on the previous study by Hammad et al. [43], sample size estimation was per-
formed using the G power* sample size online calculator (https://riskcalc.org/samplesize/
#) depending on a two-sided significance level of 0.05 and power (1-beta) of 0.95.

4.4. Study Participants

This study enrolled 79 Egyptian patients with chronic hepatitis C virus (CHCV)
genotype 4 (G4) (serology confirmed) infection with liver cirrhosis (LC) divided into
Group 1—LC patients with early HCC (n = 39)—and Group 2—LC without HCC (n = 40).
Patients were recruited from the National Liver Institute, Menoufia University and Al-
Zahraa University Hospital. Patient inclusion criteria: imaging criteria in accordance
with the recent published recommendations’ guidelines [44] were used to confirm HCC
diagnosis at the Pathology Unit. A blind abdominal computed tomography (CT) scan
was performed using Siemens 128, Germany, using the following logged information:
ascites severity, presence of lymph node (LN) enlargement, cirrhosis or growth pattern,
and portal vein (PV) patency. The Child–Pugh score was used to classify patients with
cirrhosis [45]. The Barcelona Clinic Liver Cancer (BCLC) classification system was used
to staging HCC patients [46] into 0 = very early stage, A = early stage, B = intermediate
stage, C = advanced stage, and D = terminal stage. Patient exclusion criteria: patients with
a history of alcoholism or autoimmune disease; acute or chronic HBV (as determined by
serology); HCC not mediated by CHCV; and patients who were undergoing any type of
radiation or chemotherapy for a malignancy other than HCC.

4.5. Patients’ Data

Demographic data, including age, gender, and patients’ full histories, were retrieved
from the hospital medical records. All patients were asked about family cancer history
for recording as well as general clinical examination. For calculating body mass index
(BMI) (in kg/m2), calculation was performed according to (https://www.nhlbi.nih.gov/
health/educational/lose_wt/BMI/bmicalc.htm), with normal weight = 18.5–24.9 kg/m2,
overweight = 25–29.9 kg/m2, obesity = BMI of 30 kg/m2.

4.6. Blood Sampling

Peripheral venous blood (6 mL) was withdrawn from each participant under strict
sterile conditions following standard biosecurity and international safety procedures. Fresh
1 mL of each blood sample was placed into an EDTA tube for CBC. Two mLs blood placed in
another EDTA tube centrifuged for 10 min at 1900× g, after which the plasma was carefully
withdrawn and centrifuged again for 10 min at 16,000× g at 4 ◦C to remove additional
cellular nucleic acids attached to cell debris. The supernatant was then transferred to

https://mirdb.org/mirdb/index.html
https://www.genecards.org/genecarna
https://ccb-compute.cs.uni-saarland.de/mirtargetlink2
https://ccb-compute.cs.uni-saarland.de/mirtargetlink2
https://mpd.bioinf.uni-sb.de/overview.html
https://mpd.bioinf.uni-sb.de/overview.html
https://riskcalc.org/samplesize/#
https://riskcalc.org/samplesize/#
https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmicalc.htm
https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmicalc.htm
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microcentrifuge vials and stored at −80 ◦C for RNA extraction and quantitative real-time
PCR (qRT-PCR) for hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-192-5p, and hsa-miR-199a-5p.
The rest of the blood (3 mL) was transferred into a polymer serum gel separator tube with
a clot activator (Kremsmünster, Upper Austria, Greiner Bio-One GmbH, Australia) and
left for 15 min at room temperature (24 ◦C) to clot, followed by 10 min of centrifugation at
10,000× g at 4 ◦C. Sera obtained were aliquoted into Eppendorf tubes and stored at −80 ◦C
until biochemical assessment.

4.6.1. RNA Extraction and qRT-PCR

Plasma miRs were extracted from 200 µL plasma using an miRNeasy commercial kit
(Cat. NO. 217004, Qiagen, Germany) according to the manufacturer’s protocol. Purity
of the extracted RNA was tested spectrophotometrically at 260/280 nm NanoDrop 2000,
(Thermo Fisher Scientific, Altrincham, Cheshire, UK). Synthesis of complementary DNA
(cDNA) was carried out using a miRCURY LNA RT Kit (Cat. No. 339340, Qiagen, GmbH,
Germany) according to the manufacturer’s instructions. hsa-miR-21-5p, hsa-miR-155-5p,
hsa-miR-192-5p, and hsa-miR-199a-5p expression was determined using a miRCURY LNA
SYBR® Green PCR Kit (Cat. No. 339345, Qiagen, Germany), following the manufacturer’s
protocol, using a RT-PCR Quant Studio 5 system (Applied Biosystems, Waltham, MA, USA).
The levels of miRs were normalized using a reference internal housekeeping endogenous
control, miR SNORD68. qRT-PCR analyses of the miRs were carried out in triplicate.

The miR-21-5p forward primer sequence (5′-3′) is 5′-ACG TGT TAG CTT ATC AGA
CTG-3′, 5′-CCG TTA ATG CTA ATC GTG-3′ for miR-155-5p, 5′-CTG ACC TAT GAA TTG
ACA GCC GT-3′ for miR-192-5p, and 5′-GGG CCC AGT GTT CAG ACT AC-3′ for miR-
199a-5p. However, the SNORD68 forward primer sequence was 5′-ATC ACT GTA AAA
CCG TTC CA-3′.

The qRT-PCR cycling conditions were as follows: 95 ◦C for two min, then 40 cycles,
each of 10 s at 95 ◦C, 60 s at 56 ◦C, and 30 s at 70 ◦C. The delta cycle threshold (Ct) was
calculated by subtracting the Ct value of SNORD68 from the Ct values of the target miRs in
all samples. Fold changes were calculated using 2-∆∆Ct for relative quantification.

4.6.2. Laboratory Testing

A fully automated hematology analyzer (KX21N, Sysmex corporation, Wakinohama-
Kaigandori, Chuo-Ku, and Kobe, Japan) was used to perform a complete blood count (CBC)
using fresh EDTA blood samples, in accordance with the manufacturer’s recommenda-
tions. INR coagulation assays were performed using an automated coagulation analyzer
(Diagnostica Stago STA Compact®and Stago STA Compact, Asnières sur Seine Cedex,
France). Routine biochemical tests were conducted using a chemistry autoanalyzer device
(Cobas Integra 400 Plus, Roche Diagnostics, GmbH, Mannheim, Germany), following
the manufacturer’s instructions. Biochemical analysis included blood albumin, aspartate
aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, direct bilirubin, alkaline
phosphatase (ALP), gamma GT (GGT), total cholesterol (TC), triacylglycerol (TAG), and
high-density lipoprotein (HDL). The electro-chemiluminescence immunoassay (ECLIA)
was used to measure the serum alpha-fetoprotein (AFP) using a Cobas 6000 e601 module
(Roche Diagnostics, Germany). Insulin was detected in test samples by an enzyme-linked
immunosorbent test (ELISA) in solid phase using a HyPrep automated ELISA system with
plate reader (Hyperion Inc., Miami, FL, USA), where the color intensity formed is related
to its insulin concentration. The normal adult insulin range level is 0–25 mU/L.

4.6.3. Ratios: Indices

Platelets-to-lymphocytes ratio (PLR) is a biomarker for systemic inflammation and is
considered indicative to immune-related responses. For CHCV infection, PLR was consid-
ered superior to NLR and was used to correlate with disease severity in HCC cases [47].

TAG/HDL-C ratio with a cutoff value of more than the apparently healthy control
group is set diagnostic for insulin resistance (IR) [48].
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Insulin resistance is considered positive in obese, diabetic, and dyslipidemic pa-
tients and in those with insulin levels of 18 mU/mL or more after glucose/meal with
disturbed PLR [49,50].

4.7. Target Genes, Targeted Pathways Clusters/Heatmap of miRs Predicted In Silico Using
Online Algorithms

Genome Browser for target genes using University of California Santa Cruiz (UCSC) [51]
Genomics institute (http://genome.ucsc.edu/index.html) and Targeted Pathways Clus-
ters/Heatmap prediction algorithms using DIANA TOOLS [52] Mirpath using reverse
search to identify miRs involved in KEGG Pathways; microT v4 and microT-CDS or
DIANA-TarBase v7.0 and LncBase (https://dianalab.e-ce.uth.gr/html/universe/index.
php?r=mirpath/reverse).

KEGG-targeted pathways [53] (Release 104.1, 1 November 2022, https://www.kegg.
jp/kegg/kegg2.html) and clusters/heatmaps of the investigated miRs. Finally, genes
sharing domains with the studied miR genes were identified using GenesLikeMe [54] v5.12
(https://glm.genecards.org/#results).

4.8. Statistical Analysis

Data collected were coded and analyzed using the Statistical Package for Social Science
software (SPSS, Version 17, Chicago, IL, USA). Qualitative data are presented as frequencies
(n) and percentages (%).

Data were tested for normality using a Shapiro–Wilk calculator (https://www.statskingdom.
com/shapiro-wilk-test-calculator.htmL).

Normally, distributed, variables are presented as mean + S.D. and analyzed using
two samples’ independent Students’ t-tests for comparison. For non-normally distributed
variables, data are presented as median (interquartile range as 1st–3rd quartiles or 25th–75th
quartiles), then Mann–Whitney (U) was conducted to compare between any two indepen-
dent groups. Student’s t-test and the Chi-square χ2 test were used to compare quantitative
and qualitative normally distributed variables between the patients and control groups,
respectively. Spearman’s rho correlation test was used to assess the association between
quantitative non-parametric variables. Receiver operating characteristic (ROC) curve was
performed to detect the best cutoff, sensitivities (SNs), and specificities (SPs) with a calcu-
lated area under the curve (AUC) range from 0 to 1. The higher the AUC, the better the
parameter in classifying the outcomes correctly. ROC curve analysis was used to determine
the discriminative potential of the studied miRs to differentiate HCC cases from liver
cirrhosis cases. A logistic regression analysis was performed to determine the independent
factors association of the altered expression of the studied miRs with HCC progression.
The level of significance was set at p-value < 0.05, confidence level or interval (C.II) as 95%
and 5%, respectively.

5. Conclusions

Blood hsa-miR-21-5p and hsa-miR-155-5p demonstrated significant upregulation,
while hsa-miR-199a-5p was significantly downregulated in the HCC CHCV-G4-infection-
related group (n = 39) when compared to the LC group (n = 40) with no HCC.

Combining each of hsa-miR-21-5p, hsa-miR-155-5p, and hsa-miR-199a-5p to AFP as
HCC diagnostic markers yielded an improved SN compared to using AFP alone.

Regarding AFP-negative HCC cases, hsa-miR-21-5p/hsa-miR-199a-5p and has-miR-
155-5p/hsa-miR-199a-5p ratios can be used to better identify HCC development in LC
patients with CHCV-G4 infection, with higher sensitivities. hsa-miR-21-5p plays a role
in lipid and insulin metabolism in HCC associated with CHCV-G4 infection cases. hsa-
miR-21-5p upregulation is an independent risk factor for the emergence of HCC from liver
cirrhosis in the CHCV-G4 patient cohort.

In the current study, hsa-miR-192-5p was not shown to have any clinical significance
per HCC development in LC patients.

http://genome.ucsc.edu/index.html
https://dianalab.e-ce.uth.gr/html/universe/index.php?r=mirpath/reverse
https://dianalab.e-ce.uth.gr/html/universe/index.php?r=mirpath/reverse
https://www.kegg.jp/kegg/kegg2.html
https://www.kegg.jp/kegg/kegg2.html
https://glm.genecards.org/#results
https://www.statskingdom.com/shapiro-wilk-test-calculator.htmL
https://www.statskingdom.com/shapiro-wilk-test-calculator.htmL
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These findings might encourage the use of the aforementioned epigenetic ncRNA
markers in panels or ratios as prospective blood-based molecular markers of benefit, during
liver cirrhosis early identification and/or CHCV-G4 infection follow-up, for possible HCC
development as well as for ensuring all AFP-negative HCC cases’ identification.
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