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Abstract: Gene therapy has attracted much attention because of its unique mechanism of action,
non-toxicity, and good tolerance, which can kill cancer cells without damaging healthy tissues.
siRNA-based gene therapy can downregulate, enhance, or correct gene expression by introducing
some nucleic acid into patient tissues. Routine treatment of hemophilia requires frequent intravenous
injections of missing clotting protein. The high cost of combined therapy causes most patients to lack
the best treatment resources. siRNA therapy has the potential of lasting treatment and even curing
diseases. Compared with traditional surgery and chemotherapy, siRNA has fewer side effects and
less damage to normal cells. The available therapies for degenerative diseases can only alleviate the
symptoms of patients, while siRNA therapy drugs can upregulate gene expression, modify epigenetic
changes, and stop the disease. In addition, siRNA also plays an important role in cardiovascular
diseases, gastrointestinal diseases, and hepatitis B. However, free siRNA is easily degraded by
nuclease and has a short half-life in the blood. Research has found that siRNA can be delivered to
specific cells through appropriate vector selection and design to improve the therapeutic effect. The
application of viral vectors is limited because of their high immunogenicity and low capacity, while
non-viral vectors are widely used because of their low immunogenicity, low production cost, and
high safety. This paper reviews the common non-viral vectors in recent years and introduces their
advantages and disadvantages, as well as the latest application examples.

Keywords: gene therapy; non-viral vectors; siRNA delivery; biomedical application

1. Introduction

Traditional methods of treating diseases include drug treatment. The bioavailability
of the drug is reduced because the drug has experienced metabolic disorders and incom-
plete drug absorption [1]. In addition, the reverse effect and sudden release of drugs on
healthy cells also lead to various side effects. Gene therapy is a promising therapeutic
strategy [2], which can be operated at the gene level to address the occurrence of diseases
fundamentally [3] and provide more possibilities and flexibility than drug therapy [4].
Gene therapy will make great achievements in areas where there is no treatment or poor
efficacy at present [5], especially in neurodegenerative diseases [6,7], congenital genetic dis-
eases [8,9], and malignant tumors [10,11]. Among the reported methods for gene delivery,
RNA interference (RNAi) has been studied and developed extensively [6]. RNAi refers
to the phenomenon that small double-stranded RNA can specifically degrade or inhibit
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the expression of homologous mRNA, thus inhibiting or shutting down the expression
of specific genes [12–15]. Double-stranded RNA is cleaved by enzymes to form many
small fragments called siRNA. By revealing the pathogenic gene of a particular disease,
siRNA can be designed to target the mRNA of the gene and lyse it to achieve the purpose
of curing the disease [16,17]. Molecular therapy by siRNA has attracted widespread at-
tention because of its great potential in the treatment of various cancers, viral infections,
genetic diseases, and pain management [18]. Undoubtedly, it is one of the most popular
research fields in life science at present [19] and one of the most promising areas for drug
development in the future.

In 1998, Mello et al. injected the mRNA-encoding muscle proteins into C. elegans,
where the mRNA carrying the genetic code is called the “justice mRNA,” and the mRNA
carrying the antigenetic code information is called the “antisense mRNA.” They found that
the double-stranded RNA (dsRNA), originally added as a control, had significantly higher
expression of the suppressor gene than the other groups [20]. They demonstrated that
dsRNA could effectively reduce the expression activity of the target genes. When dsRNA
enters the cell, it is cleaved by a ribozyme and degraded into small RNA fragments with a
length of 21–23 nt, called siRNA. Subsequent siRNA binds to an RNA-induced silencing
complex (RISC) in the cytoplasm and unbinds to a single strand. As the justice strand
is degraded, the remaining antisense strand guides RISC to bind to the complementary
mRNA, causing RISC to cut off and degrade the mRNA. It laid the foundation for the
development of siRNA [21].

However, intravenous free siRNA cannot readily be absorbed into cells and can be
degraded by nucleases in plasma or tissues at any time [22]. Renal clearance and uptake by
phagocytes will lead to a lower content of siRNA in vivo, and free siRNA cannot penetrate
the lipid membrane of cells, so the therapeutic effect is not significant [23]. In recent
years, it has been demonstrated that using nanoparticles as gene delivery carriers may
effectively silence genes while protecting siRNA and having high biocompatibility and
biodegradability [24]. BNT162b2 vaccine is an RNA vaccine targeting the coronavirus in
2019. BNT162b2 is a lipid nanoparticle–formulated, nucleoside-modified RNA vaccine
that encodes a prefusion stabilized, membrane-anchored SARS-CoV-2 full-length spike
protein. The study shows that the two-dose injection scheme of BNT162b2 has a 95%
protective effect against COVID-19 in people aged 16 years or over. Safety over a median
of 2 months was similar to that of other viral vaccines [25–27]. Clinical delivery systems
currently in use can be divided into two categories: viral and non-viral vectors. Although
viral vectors have high gene transfection efficiency, they still face inevitable limitations
and risks. Compared with non-viral vectors, the production process of viral vectors is
complex, and the production cost is high, which is not suitable for mass production [28,29].
The potential mutagenicity and adverse immune characteristics of viral vectors limit their
application in gene therapy and inhibit the potential of gene therapy [30,31]. People have
been committed to developing non-viral vectors with better security and effectiveness.
Carriers based on liposomes [32,33], inorganic [34], and polymer nanoparticles have been
considered and studied for delivering siRNA [35,36]. At present, three siRNA drugs
have been approved by FDA for marketing, including Paisiran (trade name: Onpattro),
Givosiran (trade name: Givlaari), and Lumasiran (trade name: Oxlumo); the names,
company information, and treatment diseases of siRNA drugs that have been approved for
marketing and are undergoing phase III clinical trials are shown in Table 1 [37].

The siRNA therapeutics also present significant challenges, including safety and
stability in vivo as well as the delivery of siRNA to the required cells and organs [38–40],
which makes nanomaterial design more challenging. Therefore, the design of the vector
should not only minimize harm to the human body but also facilitate the delivery of siRNA
while overcoming the delivery challenges [41]. Figure 1 shows the transmission process
of non-viral vector-loaded siRNA in vivo. The delivery of siRNA nanocarriers to specific
therapeutic cells can be accomplished in two ways: passive targeting and active targeting.
The enhanced permeability and retention (EPR) effect of solid tumors refers to the tendency
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of molecules or particles of certain sizes to gather in tumor tissues as compared to normal
tissues [42,43]. The reason for this is that the microvascular endothelial gaps have large
densities and complete structures in normal tissues. As a result, macromolecular and lipid
particles cannot easily pass through the blood vessel walls. Furthermore, in solid tumor
tissues, there are many blood vessels, a wide gap in the hemal wall, poor structural integrity,
and a lack of lymphatic circumfluence; therefore, the macromolecular material and lipid
particles are highly selectively permeabilized and retained [44–50]. Most tumor cells exhibit
the EPR effect, making it a crucial breakthrough for nano-drugs targeting tumors [51].
Additionally, siRNA’s active targeting depends on the nanocarrier’s modification [52]. In
contrast to normal cells, tumors’ surfaces have receptors or targets that can be targeted
by nanocarriers vis drug delivery through the interaction between specific receptors and
ligands, thus improving the therapeutic effect of drugs [53].

Table 1. A summary of the development of siRNA-based drugs with either FDA approval or in late
phase 3 clinical trials. Reproduced with permission from [37].

Drug/Alternative Name Company Disease Updated Status

Patisiran
(ONPATTRO) Alnylam

Hereditary
transthyretin-mediated

amyloidosis

FDA approval on
8 October 2018

Givosiran (GIVLAARI) Alnylam Acute hepatic porphyria FDA approval on
20 November 2019

Lumasiran (ALN-GO1) Alnylam Primary hyperoxaluria
type 1(PH1)

FDA approval on
23 November 2020

Vutrisiran (ALN-TTRsc02) Alnylam
Hereditary

transthyretin-mediated
amyloidosis

Phase 3 trial

Nedosiran (DCR-PHXC) Dicerna, Alnylam Primary hyperoxaluria Phase 3 trial
Inclisiran (ALN-PCSSC) Alnyla, Novartis Hypercholesterolemia Phase 3 trial
Fitusiran (ALN-AT3sc

ALN-APC
SAR439774)

Alnylam, Sanofi Genzyme Hemophilia A and B Phase 3 trial

Teprasiran (AKli-5
DGFi
I-5NP

QP1-1002)

Quark,
Novartis

Acute kidney injury
Delayed graft

function
Phase 3 trial

Cosdosiran (QP1-1007) Quark
Non-arteritic anterior

ischemic optic
Neuropathy (NAION)

Phase 2/3 trial

Tivanisiran (SYL-1001) Sylentis Dry eyes
Ocular pain Phase 3 trial

Once it reaches the targeted tissue, the most critical three processes are penetrating the
cell membrane [54], escaping from the endosome or lysosome [55], and releasing siRNA
into the cytoplasm [56]. Typically, the macromolecules and granular substances enter cells
mainly through endocytosis [57] and membrane fusion [58]. Once these substances attach
to the cell membrane, they are enclosed within the vesicles as the membrane invaginates
to form vesicles. After that, vesicles are separated from the cell membrane and enter the
cell interior [59–62]. If it fails to get out of the endosome in time, it gets broken down
inside the cell. Therefore, endosomal or lysosomal escape is also critical to siRNA-mediated
gene silencing [63]. Some carriers, such as cationic liposome trimethyl-2 bromide, and
3-dioleoxypropyl ammonium (DOTAP), enter the endosome through endocytosis. It is
known that the accumulated ion pairs can destroy the stability of the endosomal membrane
and cationic lipid-coated carriers [64] after the formation of ion pairs mediated between the
positively charged group of DOTAP and the negatively charged group of the endosomal
membrane. Moreover, some cationic nanocarriers can facilitate the escape of siRNA from
endosomes or lysosomes through the proton sponge effect [65]. The unsaturated amino
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chelate on the particles is provided by the proton pump, which keeps the proton pump
open, and each proton causes chloride ions and water molecules to remain in the lysosome,
which eventually causes the lysosome to swell and break, releasing the particles into the
cytoplasm [66–72]. The specific concentration of ATP in the cytoplasm contributes to the
release of siRNA.
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Figure 1. Extracellular and intracellular barriers for in vivo delivery of RNAs using non-viral vectors.
(a) protection of RNAs from nuclease-based degradation; (b) prolong circulation of RNA-loaded
nanocarriers by avoiding phagocytosis by the mononuclear phagocytic system and rapid kidney
clearance; (c) enhance tissue/organ-selective accumulation of RNAs; (d) enhance cellular internal-
ization; (e) avoid intracellular lysosomal degradation; (f) enhance the intracellular release of RNAs.
Reprinted with permission from Ref. [34]. 2022, Elsevier.

As an emerging gene therapy tool, siRNA has gained wide research interest due to
its high gene silencing efficiency and low toxicity. However, the clinical application of
siRNA faces critical challenges, such as low delivery efficiency of siRNA, susceptibility
to degradation, and inability to target tumor tissues. In this context, carriers that can
efficiently deliver siRNA are needed. The high immunogenicity of viral vectors and the high
production cost limit their application. Delivery techniques based on liposomes, inorganic,
and polymeric nanoparticles in nonviral vectors are gradually being developed. This review
introduces the development of non-viral vector systems used for siRNA delivery, focuses
on the advantages and disadvantages of different non-viral vector systems, summarizes
the results and effects of the latest application of different non-viral vector systems loaded
with siRNA in a wide range of diseases, and discusses its research prospects.
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2. siRNA Nanocarriers

To maximize the effect of gene silencing [73,74], siRNA vectors should be selected
discreetly to ensure that they can integrate siRNA and combine with other substances. In
this section, we mainly introduce several common carriers, such as liposomes, inorganic,
and polymeric nanoparticle material platforms.

2.1. Liposomes

Liposomes are a new therapeutic formulation capable of targeted drug delivery [75–77].
One of the main chemical components of liposomes is a phospholipid, among which the
most representative phospholipid is lecithin. It is a kind of neutral phospholipid, and it
has the advantages of low preparation cost and high stability. Liposomes are primarily
made up of phosphatidylcholine, which can also be found in liposomes as the main raw
material [78]. Cholesterol (CHO) is another key component of liposomes. As the main com-
ponent of many natural biofilms, CHO does not form the membrane structure itself but can
be incorporated to stabilize the phospholipid bilayer membrane because it can change the
permeability and fluidity of the membrane when added [79]. As the siRNA is transported
through the body, the lipid bilayer protects it from being broken down [80]. Due to the
similarity of membrane structures between liposomes and cells, liposomes are also highly
biocompatible and biodegradable [81] and can store a variety of substances, making them
suitable carriers for drug delivery in vivo. In the following section, two commonly used
liposomes, traditional liposomes and cationic liposomes, will be briefly introduced.

2.1.1. Conventional Liposome

The first US FDA-approved siRNA vector for siRNA therapy was liposome, thanks
to its low toxicity and biodegradability. Conventional liposomes use phospholipids and
cholesterol as membrane materials. It is prepared by traditional methods (such as injection,
film dispersion, freeze-drying, reverse phase evaporation, and hydration methods) [82].
The liposome prepared by the above method comprises multilayer vesicles and monolayer
vesicles. Multi-layer vesicles are like onions with a diameter of 100–800 nm. When the
phase change temperature is above, ultrasound is applied to the multilayered vesicles
to form a single-layer vesicle with a diameter of 30–60 nm and a wall thickness of about
5 nm. When the particle size of liposomes is less than 50 nm, they can generally target
spleen tissue; it can target liver tissue at 50–100 nm; 0.1–0.2 µm can target lysosomes of
liver macrophages in liver tissue; Between 7–12 µm can be absorbed by lung tissue cells.
When the particle size is 12 µm can be absorbed by capillary epithelial cells and then reach
the tumor-bearing tissues; when the particle size is greater than 15 µm, it can be absorbed
by vascular epithelial cells such as mesenteric artery [83].

Patel et al. developed a lipophilic preparation of lopinavir. The average particle size
is 659.7 ± 23.1 nm. The drug encapsulation efficiency of the liposome reached about 89%.
The oral bioavailability of lopinavir was increased by 2.2 times by the precursor lipid
preparation [84].

Ghassemi et al. prepared carvedilol liposomes enriched with surfactants by membrane
hydration technology. The drug encapsulation rate reached 79.8%. The results showed that
the oral bioavailability and therapeutic effect of hydrophobic drugs with extensive systemic
pre-metabolism could be greatly improved by preparing liposomes rich in surfactants. It
showed a 2.3-fold increase in bioavailability [85].

Kim et al. synthesized lyophilized Eudragit-coated liposomal docetaxel (DTX) by
freeze-drying. The half-life of oral liposome preparation was longer (t1/2), and the oral
bioavailability was increased by three times. Therefore, freeze-dried Eudragit-coated
liposome DTX may be a promising method for the treatment of various solid tumors [86].

Liposomes can be used as antibodies, aptamers or other receptor ligands. The surface
modification strategies and classification methods of liposomes are shown in Figure 2 [87].
Conventional liposomes can be used to treat diseases that are associated with mono-
macrophage system cells. Despite the wide use of phospholipids, their derivatives, e.g., di-
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oleylphosphatidyl ethanolamine (DOPE), can promote the release of siRNA [88]. Moreover,
CHO derivatives, such as metform in CHO derivatives, utilize the fusion activity of the
part of the Formin and its inherent ability to induce tumor apoptosis to achieve the com-
bined anti-carcinogenic effect [89]. However, a major problem with this kind of strategy is
that siRNA-containing liposomes are easily degraded by lysosomal enzymes, including
phospholipases after endocytosis, where liposomes bind to lysosomes. This means that
siRNA release must be achieved before the liposomes are destroyed by lysosomes [90].
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carriers can contain active components, such as drugs, small molecules, proteins, and/or targeting
moieties, such as antibodies, peptides, aptamers, etc., conjugated on the surface of the vehicles
through different linkers, non-covalent or covalent bonds, and electrostatic interactions. Abbre-
viation: PL-phospholipid. Reprinted with permission from Ref. [87]. 2022, Molecular Diversity
Preservation International.

For this, Fuita et al. investigated the effect of curcumin on the content released by
liposomes for the first time. In their work, DOPC/DOPE, DOPC, and DOPC/Cholesterol
liposomes were used, and DOPC/DOPE liposomes were selected because they have been
proven to be capable of carrying polynucleic acid. The properties of DOPC/DOPE, DOPC,
and DOPC/Cholesterol liposomes are shown in Table 2. According to the report, DOPE
will increase the permeability and fusion of the DOPC bilayer, while cholesterol will reduce
these characteristics. The corresponding siRNA release capacity is DOPC/DOPE > DOPC
> DOPC/Cholesterol liposomes. Curcumin promotes the release of siRNA from liposomes
because it helps to regulate the permeability of liposomes and further release siRNA. In
addition, the effect of temperature on curcumin promoting the release of siRNA from
liposomes was further explored [91].

Table 2. Properties of DOPC/DOPE, DOPC, and DOPC/Cholesterol liposomes. Reproduced with
permission from [91].

Liposomes a Diameter (nm) b Zeta Potential
(mV) b Lipid (mg/mL) siRNA (µm) siRNA/Lipids

(%, w/w)

DOPC/DOPE 167 −14.1 0.23 3.24 16.2
DOPC 139 −6.7 0.56 3.91 8.5

DOPC/Cholesterol 100 −7.9 0.56 1.63 2.3

(a) Liposomes were suspended in PBS. (b) Diameter and zeta potentials were determined with Zetasizer Nano ZSP.
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2.1.2. Cationic Lipid (CL)

To maximize the loading rate of siRNA and improve the stability of blood circulation,
positively charged cationic liposomes were developed [92,93]. It has been proven that cationic
liposomes are the most promising siRNA carriers with high load rates, biocompatibility,
and biodegradability. Commonly used cationic lipids include DOTAP [94], trimethyl-2
chloride, 3-dioleoxypropyl ammonium (DOTMA) [95], 3β-[N- (N′, N′-dimethylaminoethyl)
aminoformyl] CHO (DC-CHOl) [96], etc. However, the stability, membrane fusion, and
transfection efficiency of liposomes alone are poor, so auxiliary lipids are often necessary.
The most commonly used adjuvant lipid is DOPE [97]. Its fusion and transfection efficiency
are higher than dioleoylphosphatidylcholine (DOPC) and CHO liposomes [98]. Due to its
negatively charged property, siRNA is absorbed by CL through electrostatic interaction [99].
Co-loading chemotherapy drugs and siRNA into cationic liposomes has shown significant
advantages in cancer treatment. MCF-7 cells co-loaded with paclitaxel (PTX), crizotinib (CRI),
and Bcl-XLsiRNA in cationic liposomes showed a significant EPR effect in breast cancer [100].
Using cationic liposomes to encapsulate antibiotics can reduce the half-life of antibiotics and
reduce their side effects. The encapsulation rate of cefepime can be greatly improved by
adding a cationic surfactant. Additionally, cefepime exhibits high antibacterial activity when
loaded into cationic liposomes, especially against E. coli, which is also conducive to the release
of antibiotics [101]. Despite the above-mentioned advantages, there is also concern over the
clinical application of CL. They may cause toxicity and immunogenicity. These issues can be
solved by the functionalization of cationic polymers.

2.2. Polymers

As an important non-viral carrier, cationic polymers have the characteristics of easy
synthesis and flexibility [102,103]. More and more studies have shown the effectiveness of
using polymers as siRNA vectors for gene therapy. They can be synthetically or chemically
modified to improve gene transfection efficiency and reduce cytotoxicity [104]. Com-
pared with neutral polymers, cationic polymers have better targeting capability [105,106].
Moreover, cationic polymers are positively charged, caused by the amine group in their
structures. The electrostatic interaction between the positively charged cationic polymer
and negatively charged siRNA led to the formation of polyelectrolyte complexes [107].

2.2.1. Biopolymers

Biopolymers and synthetic polymers are currently used in gene therapy [108]. Biopoly-
mers as gene therapy vectors have the advantages of good biocompatibility, biodegradabil-
ity, and low toxicity. The most widely used natural biodegradable polymers are natural
polysaccharides [109,110], nanocarriers based on peptides or proteins [111], and DNA [112].

Natural polysaccharides are biocompatible, biodegradable, and non-toxic, making
them great candidates for drug delivery. Among them, chitosan (CS) and cyclodextrin
(CDs) are commonly used [113–115] and have demonstrated excellent efficacy in siRNA-
mediated gene silencing. Alternatively, polysaccharides can also be combined with other
vectors to reduce toxicity.

The primary amine group of the main chain of CS is easily protonated under acidic
conditions and combined with siRNA electrostatically [116], which plays an important role
in tumor treatment [117]. In recent years, CS has been widely used in gene therapy [112];
however, unmodified CS, due to the low proton-buffering capacity and poor endosomal
escape of this material, has limited its use in clinical practice [118]. The reduced charge of
CS will cause it to lose stability when loaded with siRNA in blood. To solve this problem,
CS derivatives, such as alkyl chain [119], PEI (Figure 3) [120], and CS modified by PEG [121],
are proposed as solutions [122]. Mobarakeh et al. designed CS-PEG-carboxymethyl dextran
to deliver siRNA, which was proven to effectively knock out part of HIV genes and prevent
drug resistance [123].
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As a natural polymer with a loose and porous structure and biocompatibility, CDs
are another good option for siRNA delivery [124,125]. While it should be noted that
natural CDs create unstable compounds with nucleic acids, as a result, they are not efficient
agents by themselves for gene delivery. However, CDs have several unique features:
(1) hydrophilic outer surfaces, (2) hydrophobic cavities, and (3) a significant number
of hydroxyl groups on the ring surface that can be modified with different functional
groups [126], forming cationic, amphiphilic, or pegylated CDs, which provides an effective
way for nucleic acid transmission. Modified CDs are widely used to produce gene vectors
with high loading rates and high targeting rates [127–129].

Evans et al. developed an amphiphilic vector targeting prostate cancer cells using
DSPE-PEG5000-folic acid-modified CD. The vector can effectively protect siRNA from
degradation. A component of the vector, GALA is a 30 amino acid endosomal escape
peptide derived from viral proteins that enhance endosomal release following its uptake.
The findings of this study demonstrated that the transcription factors and protein levels
of ZEB1 and NRP1 were significantly reduced, which offers a broad range of potential
applications in the treatment of prostate cancer [130].

Huntington’s disease is a dominant neurodegenerative disease. Like most neurological
diseases, Huntington’s disease lacks specific treatment methods. There is currently no
effective drug to delay the onset of Huntington’s disease symptoms. Mendonca et al.
designed a novel delivery method, which is based on modified CD nanoparticles loaded
with siRNA targeting huntingtin (HTT) gene and combined with rabies virus glycoprotein
(RVG is a BBB shuttle peptide). The in vitro model showed that the CD platform could
successfully penetrate brain endothelial cells and release siRNA into the cytoplasm of
neuronal cells, further mediating the downregulation of HTT. The platform has a wide
range of therapeutic potentials in other diseases, with gene validation targets in the central
nervous system [131].

Alarcón et al. synthesized amphiphilic CDs (ModCBHD) and DNA-DOX complexes
as supramolecular anticancer drug carriers. ModCBHD vesicles have a positively charged
surface and can be used for encapsulating the negatively charged DNA-DOX. This system
showed great stability over a long period, small particle size, excellent drug loading
capability, and strong, controlled release ability. These facts could be exploited to take
advantage of EPR effects and decrease the side effects of DOX [132].

During the process of targeted drug delivery of siRNA, biopolymer materials can
protect siRNA from degradation, extending blood circulation time and achieving targeted
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drug delivery to tissues or organs. Biopolymers can also reduce immunogenicity while
maintaining efficient siRNA and drug delivery. Biopolymers degradation products are
not only non-toxic to the human body but also can be absorbed and metabolized by the
human body.

2.2.2. Synthetic Polymers

By utilizing various polymer groups, synthetic polymers have been developed as
carriers with high transfection efficiency and minimal toxicity [133,134], great stability, high
loading rate for siRNA, and small particle size, leading to their great potential in drug de-
livery. The vectors commonly used in gene therapy include polyethylene imine (PEI) [135],
poly-lysine (PLL) [136], polylactic acid hydroxyacetic acid copolymer (PLGA) [137], and
polyamide-amine dendritic polymers (PAMAM) [138], poly(amine-co-ester) (PACE), etc.

PEI was first developed in 1995. There are two forms of PEI: linear (lPEI) and branched
(bPEI), which later became the most common cationic polymer due to its low cost, high
transfection efficiency, and high intracellular body escape efficiency [139]. Due to the
presence of amine groups in PEI, the extra amine matrix in the endosome will be ionized.
When PEI is electrified, PEI can cause a “proton sponge effect” conducive to the escape
of the endosome [140]. The molecular weight of PEI is positively correlated with its
gene transfection efficiency, and PEI with high molecular weight shows high transfection
efficiency [141]. In particular, PEI with a high molecular weight of 25 kDa is the “gold
standard” for determining the transfection efficiency of non-viral vectors [142]. However,
high cation density results in severe toxicity due to the inherent non-degradability [143].
Although low molecular weight PEI is less harmful, low molecular weight PEI produces
poor gene transfection efficiency. To solve this problem, many approaches have been
adopted to reduce the cytotoxicity of PEI in the practical application of gene delivery.

To construct amphiphilic PEI coupling, either biodegradable or synthetic materials
were cut off into PEI, or hydrophobic fragments were introduced into PEI [144,145]. Ansari
et al. proposed that the substitution of hydrophobic groups had a great influence on the
properties of polymers. Low-molecular-weight PEI was modified with CHO and yielded
water-insoluble polymers. Characterization results revealed that CHO-modified PEI had a
significantly smaller size and an enhanced siRNA loading capacity compared with pure
PEI. The good therapeutic effect of increased cell uptake was observed in the treatment of
chronic myeloid leukemia [146]. By modifying PEI with tyrosine, Karimov et al. were able
to significantly enhance the transfection efficiency of siRNA, reduce PEI-induced toxicity,
improve biocompatibility, and also show positive therapeutic effects in a mice tumor model.
It has also been demonstrated that fluorination is a successful means of lowering the toxicity
of PEI [147]. Xue et al. introduced two series of fluorinated PEI via amidation with ethyl
trifluoroacetate and perfluorobutyryl chloride, and Fluorination substantially improved
the performance of PEI for siRNA delivery by reducing the cytotoxicity to MDA-MB-231
cells. (Figure 4) [143].

The FDA-approved biodegradable functional organic compound known as Polylactic
acid-glycolic acid copolymer (PLGA) is synthesized by polymerizing lactic acid and glycolic
acid [148]. It will be broken down into lactic acid and glycolic acid in the human body
for absorption and metabolism, and finally, it will form carbon dioxide and water and
be discharged out of the body. It has been widely used because of its non-toxicity, good
transfection efficiency, and biocompatibility, which enable it to protect genetic material
from degradation [149].

As PLGA is easily cleared by the immune system and lacks a specific targeting effect, it
has limited its clinical application. PEG has been shown to protect PLGA from degradation,
increasing drug permeability and thus enhancing gene transfection efficiency [150]. At the
same time, chemotherapy drugs, siRNA, and PLGA can be used in combination to treat
cancer [151]. Wu et al. reported that PLGA-cationic lipids nanocomposites deliver siRNA
to treat severe lung diseases. In addition to preventing siRNA from degradation during
delivery, PLGA also lessens toxicity caused by the positive charges of cationic lipids [152].
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To improve the targeting and uptake rate of PLGA, Ghareghomi et al. designed folic
acid functionalized PLGA and loaded Wortmannin and hTERT siRNA into PLGA-FANPs,
loading MNPs for magnetic resonance imaging. A new strategy for the treatment of ovarian
cancer has been made possible by studies demonstrating that the combination of drugs
and siRNA can promote the apoptosis of cancer cells [153]. Miele et al. used PLGA as the
core surface coated CS oleic acid as the carrier; the interaction between negatively charged
oligonucleotide and positively charged amine on the surface of CS protected siRNA from
degradation and contributed to endocytosis and endosomal escape [154].
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PAMAM, which has a large number of primary and tertiary amine groups in its
structure and a favorable proton sponge effect, is the first reported dendritic macro-
molecule [155,156]. PAMAM is considered to be an effective gene therapy vector due
to its cationic properties and surface functional groups. Therefore, the use of PAMAM as a
vector to treat cancer and overcome multidrug resistance of tumors has received increasing
attention [157]. Compared with PEI, PAMAM has gradually gained popularity in various
fields because of its notable biocompatibility and size flexibility [156]. PAMAM can be used
as a siRNA carrier mainly because PAMAM protonation is easy to combine with negatively
charged siRNA through electrostatic interaction to form a complex [158]. Secondly, the
amines in the structure have a high proton buffering capacity that enables the polymers to
escape from the lysosome [159].

PAMAM has high transfection efficiency. However, its toxicity, lack of targeting, and
low capacity for siRNA release are all important factors that need a solution [160,161].
To address this issue, PAMAM is usually modified by introducing PEG, folic acid, and
polypeptides [162]. Following the modification of the cyclic arginine-glycine-aspartic acid
(cRGD) peptide, PAMAM exhibits lower cytotoxicity and is more concentrated in cancer
cells [163].

Pan et al. used PAMAM and PEG-phospholipid polymers as carriers and treated
multidrug resistance with DOX in ovarian and breast cancer cells. They showed that
the nanocarriers reduced P-GP in MDR cancer cells and enhanced DOX [164]. Using
a pH-sensitive LP shell and dendritic macromolecule PAMAM, Hu et al. designed a
multifunctional liposomal nanocarrier that delivered DOX and PD-L1-targeting siRNA
simultaneously. The results illustrated that siPD-L1@PM/DOX/LPs had suitable Zeta
potential and particle size and showed stability in blood circulation. In vitro, experimental
results demonstrated that DOX could be effectively released into the cytoplasm. According
to in vivo findings, siPD-L1@PM/DOX/LPs had a high concentration at the tumor site and
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significantly inhibited tumor growth compared with other controls. The nano-carrier is
expected to be used in the clinical treatment of tumors in the future [165].

Diabetic foot ulcers are a serious chronic complication in diabetic patients. The study
showed that the high expression of MMP-9 in the wound damaged the balance between
extracellular matrix (ECM) synthesis and degradation, resulting in delayed wound healing.
However, the current MMP-9 inhibitors have shortcomings, such as poor specificity and
high price. Luo et al. made a polyaminoamine-conjugated dextran conjugated with
poly(amidoamine) (Dextran-PAMAM) to deliver siRNA targeting MMP-9 (siMMP9). The
rat wound model showed that the compound could effectively inhibit the expression of
MMP-9 and accelerate wound healing. It provides a new direction for developing new
therapeutic dressings to promote diabetes wound healing [166].

PLL is far less hazardous than high molecular weight or high charge polymers, but it
also has less ability to bind to siRNA [167]. Studies have shown that natural polyphenols
enhance their ability to bind with nucleic acids. Fan et al. grafted synthesized cationic
polycatechin onto PLL to increase siRNA loading. Subsequent tests showed that it success-
fully silenced macrophage tumor necrosis factor and achieved a positive therapeutic effect
on ulcerative colitis without causing various adverse reactions (Figure 5) [168]. Yang et al.
combined melanin with PLL to form stable polymers. PLL binds to siRNA through electro-
static interaction. Melanin acts as a photothermal sensitizer, inducing endosome escape
and promoting siRNA to enter the cytoplasm. Polymers loaded with anti-survivin siRNA
significantly slow down tumor growth both in vitro and in vivo [169].
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Figure 5. (a) Structures of the designed polymers and the proposed gene silencing mechanism
in intracellular siRNA delivery. (b) A DSS-induced intestinal injury model was established to
evaluate the gene knockdown efficiency of the lead radical polymer (P1)/siTNF-α complexes. The
knockdown of TNF-α reduces DSS-induced intestinal epithelial damage. Reprinted with permission
from Ref. [168]. 2021, John Wiley and Sons.

Biodegradable poly (amine copolyester) (PACE) nanoparticles have great prospects
in the transmission of siRNA. PACE was synthesized by enzymatic copolymerization of
15-pentanelactone (PDL), diethyl sebacate (DES), and N-methyldiethanolamine (MDEA).
The advantage of PACE series polymers is that the density of cations is lower than that of
most cationic polymers, resulting in lower toxicity; the existence of hydrophobic monomer
PDL is helpful to effectively form particles at low cationic density [170].
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Cui et al. proved that PACE nanoparticles (NPs) can provide a large amount of protein
knockout in human embryonic kidney cells (HEK293) and primary human umbilical vein
endothelial cells (HUVECs) that are difficult to transfect. Hydrophobic lactones with high
monomer content are synthesized and accumulated in the liver, providing siRNA treatment
opportunities for alcoholic liver disease and liver fibrosis [171].

By electrostatic interaction, cationic polymers combine with siRNA to form polymers
with beneficial therapeutic effects in vivo and in vitro. Although the high charge of cationic
polymers leads to the high loading rate of siRNA, its toxicity cannot be avoided. The
functionalization of cationic polymers will overcome toxicity problems and remain the
most important non-viral vectors in the future.

2.2.3. Coordination Polymer

Coordination polymers (CPs) are composed of metal ions and organic ligands. As a
promising vector for gene delivery, it has attracted great interest in the biological community.
CPs have several advantages over conventional polymers, including adjustable size, clear
pore size, high loading rate, and great biocompatibility [172]. In recent years, CPs have
been used as vectors for gene therapy, carrying siRNA and DNA ribozymes, among others.

Liu et al. have prepared GSH-responsive photosensitive nanocarriers using [Cu(tz)]
nanosheets to adsorb Ce6-DNAzyme on the surface of the nanosheets to form Ce6-
DNAzyme/[Cu(tz)]. When endocytosed by cancer cells, Ce6-DNAzyme/[Cu(tz)] can be de-
composed by GSH to release DNAzyme and catalyze the cleavage of the target mRNA. Ce6
produced 1O2 upon 660 nm laser irradiation (Figure 6). Furthermore, [Cu(tz)] nanoplates
produced hydroxyl radicals under 808 nm laser excitation, and Ce6-DNAzyme/[Cu(tz)]
demonstrated promising antitumor efficacy by using a combination of gene silencing,
type II PDT and type I PDT [173]. Zhu et al. utilized two-dimensional (2D) coordi-
nation nanosheets loaded with oligodeoxynucleotides composed of Zn2+ and Tetrakis
(4-carboxyphenyl) porphyrin (TCPP). Two-dimensional nanomaterials have a large sur-
face area loaded with cytosine-phosphorothioate-guanine (CpG). SDT can work with
Zn-TCPP/CpG to trigger the immune memory effect and inhibit tumor recurrence after
the elimination of the primary tumor (Figure 7). Two-dimensional coordination nanosheets
may be a promising and efficient platform for cancer treatment [174].
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Figure 7. Schematic image of the synthesis of Zn-TCPP/CpG nanosheets and the mechanism of
immune responses induced by Zn-TCPP/CpG-based SDT. Briefly, The SDT with Zn-TCPP/CpG
could induce ICD of cancer cells and release TAAs, which could be engulfed and presented by DCs
with the assistance of CpG. The immune system could be activated to suppress tumor metastasis
owing to the antigen presentation by matured DCs. Moreover, ultrasound itself could strengthen anti-
tumor immune responses by improving the tumor infiltration of T cells and limiting regulatory T cells
in the tumor microenvironment. Reprinted with permission from Ref. [174]. 2020, Springer Nature.

2.3. Inorganic Nanoparticles

Despite their high transfection efficiency and low production cost, Liposomes and
polymers are limited by their toxicity, lack of targeting, and instability [175]. Inorganic
nanoparticles have drawn much attention for drug delivery to specific sites since they
have a high specific surface area and a surface that is easily chemically modified [176],
providing a reliable platform for siRNA delivery. At present, the commonly used inorganic
nanocarriers include gold nanoparticles (AuNPs) [177], graphene oxide (GO) [178], carbon
nanotubes [179], and mesoporous silica [180].

2.3.1. Gold Nanoparticles (AuNPs)

AuNPs are the most widely used siRNA delivery carriers in inorganic materials [181].
It has been proved that most AuNPs bind to siRNA through the Au-S bond. The advantages
of gold nanoparticles as carriers include: AuNPs are non-toxic, biocompatible [182], and
chemically stable in blood [183]; AuNPs have a high specific surface area and bind to
siRNA in a particular manner [184]; AuNPs offer a possibility of the transfer and release of
siRNA at specific sites by modification [185]. However, as carriers, a variety of factors, such
as the size and shape of AuNPs, have an impact on the efficacy of transfection. In a study
on the relationship between gold nanoparticle size and cell uptake, it was found that the
40–50 nm AuNPs had substantially higher cell uptake efficiency than 15 nm AuNPs [186].
Also, other studies have confirmed that spherical AuNPs have higher cell uptake efficiency
than bar AuNPs [187].

AuNPs coated with oligonucleotides cannot distinguish tumor cells from normal cells,
which hinders their application in treatment. Chang et al. formed an outer layer with
tumor-targeting ability by laying adhesive Ap-YTDB on the surface of AuNPs loaded
with siRNA. Sticky Ap-YTDB contains a y-shaped dsDNA backbone in the central, sticky
terminal, and vertex-restricted aptamers, which can achieve the effect of release in target
cells [188].
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There are highly expressed glucose transporters1 (GLUT1) on the surface of malignant
tumor cells. Yu et al. installed glucose on the α end of PEG-block poly (L-lysine) through
an ether bond. The modification of glucose has the ability to recognize GLUT1 and endow
Glu-NPs with the specific targeting ability to GLUT1 [189].

Inflammation is caused by macrophages secreting inflammatory factors that cause
many autoimmune diseases. The inhibition of the expression of cytokines has proved to be
beneficial to the treatment of inflammation. Jiang et al. designed a gold nanoparticle carrier
to transport siRNA targeting TNF-α to the cytoplasm of RAW 264.7 cells. The results show
that 80% or more NPSC/siRNA accumulates in the spleen, and the transfection rate in
RAW 264.7 is as high as 80% [190].

Li et al. proposed a nuclear-targeted siRNA delivery system. The nano-carrier is
composed of siRNA-modified AuNPs and nuclear localization signal (NLS) peptides. NLS
peptide can interact with the nuclear pore complex and transfer the nano-carrier into the
nucleus, thus achieving nuclear-targeted gene silencing [191].

2.3.2. Graphene Oxide (GO)

In recent years, GO, as a nanocarrier, has attracted wide attention due to its high
specific surface area [192], biocompatibility [193], and easy degradation in vivo without
toxic substances [194]. The loose and porous structure of GO and its functional groups,
such as hydroxyl, epoxide, and carbonyl groups on the surface of GO, enable it to bind to
siRNA and chemotherapy drugs through π-π* stacking, electrostatic attraction, or other
actions [195]. Additionally, studies have shown that in vivo administration did not cause
various adverse symptoms [196]. The findings of these studies confirm that GO is an
effective vector for gene silencing.

The hydrophilic groups on the surface of GO, such as hydroxyl and carboxyl groups,
make GO readily functionalized by PEG with strong biocompatibility and improve the
loading rate and biocompatibility of siRNA of GO. As well as being used as nanocarriers,
GO’s photothermal effects are also widely utilized in cancer treatment [197]. Li et al. modi-
fied CRGDFV-functionalized GO with octagarginine (R8) in the cell-penetrating peptide
(CPPS) to improve cell uptake efficiency and deliver VEGF-SiRNA into HeLa cells. In vivo
and in vitro studies showed that the nanocarriers down-regulated VEGF gene expression
and inhibited tumor growth [198].

Yang et al. constructed go-PEI-PEG-CPP nanocarriers, in which the addition of cell-
penetrating peptide (CPP) improved cell uptake efficiency while PEI and PEG enhanced
the binding ability to siRNA and Go-PEI-PEG-CPP-siRNA has demonstrated efficacy in
the treatment of breast cancer at the cellular level and mouse models of breast cancer [199].

2.3.3. Carbon Nanotubes (CNTs)

CNTs, as carriers of siRNA and drugs, have their unique advantages and have drawn
much interest from the nanomedicine community [200]. First, CNTs have a high specific sur-
face area to facilitate their interaction with ligands [201]. Secondly, CNTs have delocalized
large π bonds on their surfaces that can be bonded to molecules with conjugated π bonds
by π bonds. Finally, cell membranes can be effectively penetrated by CNTs. Multi-walled
CNTs (MWNTs) were used as delivery carriers by Wen et al. to deliver SORafenib (Sor)
and epidermal growth factor receptor (EGFR) siRNA into HepG2 cells. The results demon-
strated enhanced uptake of MWNT/Sor/siRNA and increased Sor and siRNA release,
proving that CNTs exhibit great anti-tumor effects [202].

However, CNTs have poor water dispersion and a high level of toxicity [177]. As
a result, surface functionalization of covalent or non-covalent CNTs is crucial [203]. It
has been demonstrated that cationic polymers can graft CNTs to improve their dispersity,
reduce their toxicity, and improve gene transfection efficiency [204]. The most used polymer
for CNTs modification is PEG. Hu et al. designed a cell-penetrating peptide and linked it to
pegylated MWNTs to obtain MWCNT-PEG-TAT. They also coupled FITC to MWCNT-PEG-
TAT to monitor the cellular uptake of the nanocervator. DOX is prepared for DOX-loaded
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stacking to obtain DOX-loaded nanocarriers. The data of particle size, polydispersity index,
and zeta potential of MWCNTS-PEG, MWCNTS-PEG-TAT, DOX-MWCNTS-PEG, and
DOX-MWCNTS-PEG-TAT are shown in Table 3. The results show that the nano-carrier
has suitable particle size and stability. The drug loading rates of MWCNTs-PEG and
MWCNTs-PEG-TAT for DOX were 97.3% and 98.2%, respectively. The nano-carrier showed
a high drug loading rate for DOX. The pH-responsive release of DOX in PBS at 37 °C
was investigated in vitro. The data shows that at pH 7.4, the release rate is close to 30%
within 72 h, while under acidic conditions, the release rate is as high as 80% within 72 h.
After co-incubation of 10 µg/mL DOX-MWCNTs-PEG-TAT with MG63 cells for 72 h, most
cells experienced apoptosis, with 92.08% of cells observed in the Annexin V positive or PI
positive quadrants [205].

Table 3. Physiochemical characterization of different MWCNTs complexes. Reproduced with permis-
sion from [205].

Group Particle
Size (nm)

Polydispersity
Index

Zeta Potential
(mV)

DOX Loading
Efficiency (%)

MWCNTs-PEG 89.39 0.343 −8.46 –
MWCNTs-PEG-TAT 96.26 0.394 −9.03 –
DOX-MWCNTs-PEG 135.24 0.290 −3.53 97.3

DOX-MWCNTs-PEG-TAT 145.24 0.339 −4.96 98.2
Statistical Analysis: The obtained results were expressed as mean ± standard deviation (SD) of triplicate.

2.3.4. Mesoporous Silica (MSN)

Mesoporous silica nanoparticles (MSN) have attracted extensive attention in the biomed-
ical field due to their large specific surface area, biocompatibility [206], and mesoporous-
mediated loading capability [207]. One of the advantages of using MSN as a carrier is that
nanoparticles can be passively concentrated at the tumor site by utilizing the EPR effect of the
tumor [208]. The second advantage is that the MSN surface is easy to modify, and research
has shown that surface modification can improve its therapeutic effect [209]. Mora-Raimundo
et al. used PEI to function MSN to jointly deliver SOST siRNA and osteogenic statin to pro-
mote bone formation, which has great application prospects in the treatment of osteoporosis
(Figure 8) [210]. To transport NH2-MSN without degradation, Heidari et al. coated siMDR1
with PEG and folate functionalized CS as a carrier (Figure 9). They then demonstrated that the
cell uptake of nanoparticles in Hela-RDB cells with the folate receptor was twice as high as that
of EPG85.257-RDB. In vivo results showed that the protein level of MDR1 was significantly
decreased, and this nanoparticle offers excellent potential for use in the treatment of multidrug
resistance in cancer [211].

As siRNA carriers, inorganic nanoparticles offer a practical application in gene therapy
thanks to their obvious advantages, including the ability to protect siRNA, low immuno-
genicity, and easy surface modification. The modified surface of inorganic nanoparticles
improves gene transfection efficiency as well as biocompatibility. Although inorganic
nanoparticles have been used as gene therapy vectors only recently, they have received
extensive attention in the field of gene therapy. As the research advances, inorganic
nanoparticles will eventually become one of the ideal gene therapy vectors.
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Figure 9. Schematic illustration of synthesis steps and mesoporous silica nanoparticles (MSNs)
functionalization to obtain NH2-MSN, NH2-MSN-siRNA, and NH2-MSN-siRNA-chitosan function-
alized with PEG-folate and PEG-TAT. APTES 3-Amino propyltriethoxysilane, CTAB cetyltrimethy-
lammonium bromide, PEG polyethylene glycol, TAT trans-activator of transcription, TMB 1,3,5-
triisopropylbenzene, TEOS tetraethyl orthosilicate. Reprinted with permission from Ref. [211]. 2019,
American Chemical Society.

3. Conclusions and Prospect

As a new treatment method, gene therapy has far-reaching significance in the treatment
of malignant tumors and congenital genetic diseases. Over the past decade, gene therapy
has developed rapidly and made great progress. Even though most current methods of gene
therapy employ viral vectors, there are still certain flaws, mutation risks, and limitations.
New research on non-viral vectors has advanced tremendously and has been gradually
applied in clinical practice. An excellent siRNA delivery system should first form a stable
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structure with siRNA that protects against nuclease degradation in the blood. Second,
nanovectors can target cells and enter cells through endocytosis. Finally, nanovectors
should be designed to successfully help siRNA escape from the endocytosome into the
cytoplasm. Several commonly used non-viral vectors for siRNA delivery are described in
this review, including various liposomes, biopolymers, synthetic polymers, AuNPs, MSN,
CNTs, and GO and their functionalization. Cationic polymers are the most widely used
among these carriers. Nanocarriers and their functionalization have created new avenues
for the treatment of diseases. As a growing number of siRNA is expected to be developed,
gene therapy will certainly advance tremendously soon.

Currently, malignant tumors are a serious threat to human health and are among
the leading causes of human death. Tumors are mainly treated with chemotherapy, and
most tumor chemotherapy drugs cannot eradicate the tumor. Even successful surgeries
are plagued by recurrences. In most cases, chemotherapy fails due to multidrug resistance
(MDR) in tumors. As an alternative, gene therapy has provided unimaginable results in
curing tumors. The use of siRNA has a significant impact on the treatment of tumors by
silencing the MDR-related gene expression and re-sensitizing the chemotherapy drugs.
Through gene therapy, siRNA can be delivered to tumor cells together with chemotherapy
drugs. Nanocarriers can protect siRNA from degradation and improve the efficiency of
gene silencing. Nanocarriers can penetrate tumor tissue more easily through the EPR effect
to achieve the targeted effect and can stay in tumor tissue for a long time. Drug delivery
based on the EPR effect depends on various factors, including cycle time, targeting, and the
ability to overcome obstacles, which depend on the size, shape, and surface characteristics
of drug particles. The size of nanoparticles is a key factor. Research shows that the size
range of about 40–400 nm has a longer cycle time and enhances the accumulation of tumors.
Shape and form also play an important role in passive targeting. Generally speaking, rigid
spherical particles with a size of 50–200 nm have a longer cycle tendency. Surface properties
also play a key role in determining the internalization of drug particles into target cells.
Also, fatal diseases such as pancreatic ductal carcinoma and hepatocellular carcinoma
exhibited good therapeutic effects via gene therapy. This proves that gene therapy does
open up new pathways of cancer immunity.

Most genetic diseases are difficult to cure and have a lifelong impact. Gene therapy has
emerged as a new treatment option, with breakthroughs in basic research and clinical trials
promising to make long-awaited gene therapy a reality for genetic diseases. Hemophilia is
a condition in which blood fails to clot as a result of a deficiency in a certain clotting factor
caused by bleeding or non-bleeding diseases. Hemophilia can be effectively treated using
gene therapy. Adeno-associated virus (AAV) vectors target genes efficiently into specific
cells or tissues, substituting therapeutic genes for pathogenic genes to cause minimal
harm to the human body. It has been clinically effective in treating hemophilia using this
approach. Gene therapy has also achieved success in the treatment of optic nerve genetic
diseases, Pompey’s disease, Tay-Sachs disease, and sickle cell disease. Gene therapy has
proven its effectiveness in genetic diseases.

Cardiovascular diseases (CVDs) are another main cause of death in the worldwide
range. CVDs pose a severe threat to human life and health because of their high prevalence
and mortality. Cardiovascular diseases mainly include coronary heart disease, angina
pectoris, hypertension, and heart disease. Therefore, it is urgent to offer patients with
cardiovascular diseases new treatment strategies. Gene therapy was investigated for
this issue. Several clinical trials have demonstrated that gene therapy can be safely and
effectively used for the treatment of heart dysfunction. Among many targets for heart
failure treatment, AAV and retrovirus are the most commonly used vectors, which achieved
excellent therapeutic effects on heart failure, coronary heart disease, and heart disease.

The breakout and rapid spread of COVID-19 since the end of 2019 can cause acute
infectious pneumonia. Mild cases can cause fever and cough, while severe cases may result
in respiratory failure, multiple organ damage, and even death. The ongoing spread of
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COVID-19 has posed new challenges to global health development, and biomedical science
has become a priority area for countries.

The US FDA granted the authorization for mRNA-based Moderna company’s mRNA-
1273 and Pfizer biotech’s BNT162b2 vaccine developed by lipid nanoparticles for the first
time. Their successful implementation in clinical therapy demonstrated the promise of
nanomedicine to address COVID-19 [212].

Gene therapy is a promising therapeutic strategy that overcomes the limitations of
conventional therapies. The scope of gene therapy is already extensive, covering not only
congenital genetic diseases, malignancies, and COVID-19 but also other conditions, such as
cardiovascular and neurodegenerative diseases. The implementation of the human genome
project will significantly expand the scope of gene therapy and bring profound influence
on human health as new genes are discovered, and new technologies are developed. It is
believed that the utilization of gene therapy in clinical trials offers exciting new prospects
for the advancement and development of therapeutics.
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DOTAP 3-dioleoxypropyl ammonium
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CL Cationic lipid
DC-CHOl 3β-[N-(N′,N′-dimethylaminoethyl) aminoformyl] CHO
DOPC Dioleoylphosphatidylcholine
PTX Paclitaxel
CRI Crizotinib
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PAMAM Polyamide-amine dendritic polymers
cRGD Cyclic arginine-glycine-aspartic acid
CPs Coordination polymers
TCPP Tetrakis (4-carboxyphenyl) porphyrin
CpG Cytosine–phosphorothioate–guanine
AuNPs Gold nanoparticles
GO Graphene oxide
FA Folic acid
CPP Cell-penetrating peptide
CNTs Carbon nanotubes
MWNTs Multi-walled CNTs
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Sor SORafenib
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TNF-α Tumor necrosis factor alpha
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