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Abstract: Ischemia-reperfusion injury (IRI), a pathological condition resulting from prolonged cessa-
tion and subsequent restoration of blood flow to a tissue, is an inevitable consequence of solid organ
transplantation. Current organ preservation strategies, such as static cold storage (SCS), are aimed at
reducing IRI. However, prolonged SCS exacerbates IRI. Recent research has examined pre-treatment
approaches to more effectively attenuate IRI. Hydrogen sulfide (H2S), the third established member
of a family of gaseous signaling molecules, has been shown to target the pathophysiology of IRI
and thus appears to be a viable candidate that can overcome the transplant surgeon’s enemy. This
review discusses pre-treatment of renal grafts and other transplantable organs with H2S to mitigate
transplantation-induced IRI in animal models of transplantation. In addition, ethical principles of pre-
treatment and potential applications of H2S pre-treatment in the prevention of other IRI-associated
conditions are discussed.

Keywords: ischemia-reperfusion injury (IRI); solid organ transplantation (SOT); pre-treatment; hy-
drogen sulfide (H2S); sodium thiosulfate (STS)

1. Introduction

Solid organ transplantation (SOT) is the preferred therapy for end-stage organ disease.
Despite its benefits, the long-term success of SOT is hampered by the incidence of ischemia-
reperfusion injury (IRI). IRI is an inevitable pathological condition resulting from temporary
cessation of blood flow to a tissue (warm ischemia) during graft procurement, followed by
hypothermic preservation (cold ischemia) and restoration of blood flow (reperfusion) during
transplantation of the graft [1]. Current mitigation strategies against IRI include static cold
storage (SCS) of organ grafts at 4 ◦C in clinically standard preservation solutions, such as the
University of Wisconsin (UW) solution [2]. While SCS is effective in reducing the metabolic
demand of the graft and thereby minimizing the extent of IRI and keeping the graft in a
usable state, development of IRI remains unavoidable [3]. The duration of ischemic cold
storage correlates with delayed graft function (DGF) and reduced long-term survival of the
grafts [4–6]. This necessitates the swift usage of organ grafts and as a result, thousands of
organs are discarded each year [7]. This clinical problem suggests that better preservation
techniques are needed to improve graft quality and help combat the global donor organ
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shortage crisis [7]. Many additional strategies to mitigate IRI in SOT have been proposed and
tested in experimental models [3]. These include the pharmacological modification of organ
preservation solutions, ischemic preconditioning (brief periods of ischemia to protect against
subsequent long ischemic periods), and mechanical perfusion [8–11]. In particular, the strategy
of pre-treating donor organs before procurement has gained credit as a prospective solution. A
study by Niemann et al. [12] enrolled 394 kidney donors after neurological death to investigate
the role of mild hypothermic (34–35 ◦C) pre-treatment on renal transplant outcomes. Body
temperature of neurologically deceased donors was either actively maintained at 37 ◦C as
a control or cooled to 34 ◦C, with these target temperatures being maintained until organ
procurement. Interestingly, the rate of DGF was significantly lower in transplanted kidneys
from the hypothermic group. Another trial investigating the potential of pre-treatment is
currently underway in Canada, where neurologically deceased kidney donors are administered
tacrolimus, a calcineurin inhibitor, intravenously 4–8 h before organ procurement [13]. The
goal of this pilot trial is to determine the effectiveness of tacrolimus pre-treatment on reducing
DGF through protection against IRI. Pre-treatment with other pharmacological agents, such
as hydrogen sulfide (H2S) are currently being investigated with the goal of limiting IRI
and reducing the occurrence of DGF. The clinical potential of H2S pre-treatment in SOT is
considerable. Pre-treatment could be easily paired with either of the two most widely used
mitigation strategies, SCS and machine perfusion. Extending beyond pre-treatment, the
inclusion of H2S in the SCS preservation solution and mechanically perfused solution has been
shown by our research group to benefit these respective strategies in a renal transplantation
model [14,15]. In this review, we discuss the concept of treating donor animals with H2S before
their organs are harvested for transplantation into recipient animals.

2. Cellular Mechanisms Underlying Ischemia-Reperfusion Injury in SOT

IRI can occur in various organs and tissues, commonly resulting from medical pro-
cedures, including SOT. In general, IRI is characterized by oxidative stress, inflammation,
mitochondrial dysfunction, and cell death primarily via necrosis or apoptosis [16,17]. How-
ever, there are certain tissue-specific characteristics of IRI that usually reflect the function
of the organ in which IRI occurs [17]. The lack of perfusion to a tissue generates a hypoxic
environment in the tissue. The reduction of available oxygen encourages anaerobic respira-
tion, leading to a dramatic decrease in ATP production accompanied by a decrease in cell
pH [18] (Figure 1). The high intracellular proton concentration promotes the activity of the
Na+/H+ exchanger, which along with the arrest of the Na+/K+ ATPase, generates an elevated
intracellular Na+ concentration [8]. The accumulation of cytosolic Ca2+ ensues due to the
arrest of the ATP-dependent calcium export and the reduction in the activity of the Na+/Ca2+

exchanger [8]. As a result, mitochondrial Ca2+ transport is increased, resulting in elevated
mitochondrial Ca2+ concentration [19]. Mitochondria play a critical role in the pathogenesis
of IRI. During prolonged ischemic periods, protein complexes of the electron transport chain
(ETC) are impaired, leading to decreased ATP production and increased electron leak [20,21].
Electron leak is responsible for the production of superoxide (O2

−), which is normally elim-
inated through oxidation by mitochondrial superoxide dismutase (MnSOD) to H2O2 and
subsequent oxidation to H2O by glutathione peroxidases, catalase, or peroxiredoxins [22].
This basal level of reactive oxygen species (ROS) generation is exacerbated during reperfu-
sion, the effector phase of ischemic injury, where rapid oxidation of accumulated succinate
by reverse action of the ETC drives massive ROS generation [23]. The overproduction of ROS
overwhelms antioxidant enzyme activity and further contributes to ROS accumulation [24].
The resultant elevated ROS and increased mitochondrial Ca2+ concentration lead to the open-
ing of the mitochondrial permeability transition pores (mPTPs) [24]. Opening of the mPTPs
causes the uncoupling of oxidative phosphorylation and the release of pro-apoptotic factors
into the cytoplasm and nucleus, leading to apoptosis [19]. Increased levels of inorganic phos-
phate, depletion of adenosine nucleotides, and rapid pH restoration upon reperfusion also
contribute to mPTP opening and further cell death by apoptosis [25]. In addition to apoptosis,
cell death in IRI occurs through autophagy and various forms of regulated necrosis, such as
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necroptosis and ferroptosis [26–28]. Necroptosis in particular is a major contributor to cell
death in IRI, as evidenced by the protective effects of necrostatin-1 (inhibitor of necroptosis)
against renal IRI [26]. Necroptosis and a more recently discovered form of regulated necrosis
called ferroptosis appear to be the most prominent causes of necrotic cell death in IRI [27,29].
Cell death via necrosis induces the release of danger-associated molecular patterns (DAMPs)
into the extracellular space that are normally sequestered inside the cell [30]. DAMPs, as
well as ROS, induce the production of pro-inflammatory cytokines, chemokines, and the
expression of endothelial adhesion molecules [18,31]. This inflammatory response causes
the accumulation of neutrophils, macrophages, CD4+ T cells, and other immune cells in the
affected tissue [18,19]. Neutrophils exacerbate cell death via the deposition of pore-forming
proteins onto affected cells. Additionally, IRI induces complement activation, which further
contributes to cell death and inflammation [32]. Autophagy is another form of cell death that
has a unique role in the pathogenesis of IRI. It has been shown that autophagy confers protec-
tion to cells during ischemia, perhaps by providing the cell energy in the form of degraded
cellular components [28]. In prolonged ischemia, however, catabolism exceeds anabolism
and thus autophagy contributes to cell death [28]. Collectively, IRI induces significant cell
death, ROS formation, and inflammation.
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Figure 1. Cellular mechanisms of ischemia-reperfusion injury incurred through solid organ trans-
plantation. The warm ischemia period begins with the interruption of perfusion to the donor organ
and continues until the organ is flushed with hypothermic preservation solution, which marks the
beginning of cold ischemia. The cold ischemic period typically consists of 4 ◦C cold storage of the
procured organ and continues until the graft is implanted into the recipient. Together, these two
ischemic periods lead to the generation of a pathological state that is included in the depletion of
ATP due to the unavailability of oxygen, calcium accumulation, and decrease in cellular pH due
to altered ion channel activity, and autophagy, which likely occurs to provide a source of energy.
Subsequent reperfusion of the transplanted organ induces a paradoxical response whereby the injury
is exacerbated. The restoration of blood flow rapidly restores pH levels and leads to the massive
generation of reactive oxygen species (ROS), which together with the high intracellular calcium
concentration can induce the opening of mitochondrial permeability transition pores (mPTP). Collec-
tively, these effects can induce cell death, primarily via apoptosis and necrosis. Necrotic cell death
releases danger-associated molecular patterns (DAMPs) into the extracellular space and leads to an
inflammatory response. Figure created with BioRender.com.
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3. H2S and Its Endogenous Production

H2S is an established member of a family of small endogenously produced gaseous
signaling molecules referred to as gasotransmitters [15,33]. This family of gaseous signal-
ing molecules, which also includes carbon monoxide (CO) and nitric oxide (NO), plays
an important role in cellular homeostasis and are being experimentally investigated in
the context of organ transplantation [15,33]. H2S is endogenously produced via three
enzymes: cystathionine beta-synthase (CBS) [34,35], cystathionine γ-lyase (CSE) [36], and
3-mercaptopyruvate sulfurtransferase (3MST) [37,38]. Both CBS and CSE are cytosolic en-
zymes and produce H2S using the amino acid L-cysteine as their substrate [34–36], whereas
3MST, a mitochondrial enzyme, uses 3-mercaptopyruvate (3MP) as a substrate [37,38].
In turn, 3MP may be generated via cysteine aminotransferase with α-ketoglutarate and
cysteine used as substrates [38] or via D-amino acid oxidase (DAO) with D-cysteine used
as a substrate [37].

Historically, H2S was recognized as both a human and environmental toxin [39]. At
high concentrations, it inhibits complex IV of the mitochondrial ETC, which suppresses
cellular proliferation and metabolism while inducing apoptosis [40,41]. However, research
on H2S over the past several years has shown that H2S is an important gaseous signaling
molecule with biological usefulness and therapeutic potential [39,42]. In addition to direct
inhalation of the gas, H2S donors have been recognized as compounds that can release
gaseous H2S in response to specific stimuli [33]. Exogenous administration of several
H2S donors has shown great therapeutic promise in the context of IRI, such as sodium
sulfide (Na2S), sodium hydrosulfide (NaHS), GYY4137, AP39, and sodium thiosulfate
(STS) [15,43–52]. Our research group recently reviewed the use of H2S donors in models
of transplantation-induced cold IRI [1]. These studies have largely focused on treating
organs with H2S donors during ischemia (ischemic treatment) or after reperfusion (post-
treatment). Ischemic treatment and post-treatment approaches have been shown to protect
against IRI involving the brain, heart, intestine, kidneys, lungs, and pancreas [15,43–52].
The mechanisms of this protection include suppressing oxidative stress, cell death, pro-
inflammatory responses, or a combination of these processes (Table 1) [15,43–52]. However,
a more limited body of research has investigated the effect of pre-treating organs with H2S
prior to ischemia (pre-treatment).

Table 1. Summary of the protective effects of exogenous H2S ischemic treatment and post-treatment
in animal models of cold and warm IRI.

Model H2S Treatment Modality Effect of H2S References

Warm cerebral IRI in mice

STS administered one
minute or one minute

and daily for one week
after reperfusion

-Improved survival
-Improved neurological function [43]

Warm hepatic IRI in mice

Na2S administered
during ischemia

(five minutes
before reperfusion)

-Reduced liver injury
-Increased ratio of GSH to GSSG
-Increased protein expression of Trx-1, HSP-90,
and Bcl-2
-Decreased protein expression of cleaved caspase-3
-Reduced lipid peroxidation

[44]

Warm intestinal IRI in mice NaHS administered
during reperfusion

-Increased mesenteric perfusion
-Reduced intestinal mucosal damage
-Decreased levels of IL-6, IL-9, IL-10, VEGF, FGF-2,
MIP-1α, eotaxin, IP-10, MIP-2, G-CSF, KC in
intestinal tissue
-Effects of H2S mediated through endothelial nitric
oxide synthase

[45]
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Table 1. Cont.

Model H2S Treatment Modality Effect of H2S References

Warm myocardial IRI in mice Na2S administered
during reperfusion

-Reduced myocardial injury and infarct size
-Reduced level of IL-1β and apoptosis in cardiac tissue
-Increased cardiac function
-Reduced leukocyte infiltration
-Increased efficiency of ETC complexes I and II

[46]

Cold pancreatic IRI in pigs

AP39 administered
during ischemia

(preservation solution
supplemented with

AP39)

-Decreased ROS production
-Increased mitochondrial membrane polarization
-Increased ATP production
-Decreased expression of IL-1β and TNF-α
-Improved islet function in recipient mice following
xenogeneic transplantation

[47]

Cold pulmonary IRI in
rabbits (ex vivo)

NaHS administered
during reperfusion -Decreased ROS production [48]

Cold renal IRI in rats

NaHS administered
during ischemia

(preservation solution
supplemented with

NaHS)

-Improved recipient survival and renal function
-Reduced renal tissue apoptosis and necrosis
-Reduced leukocyte infiltration and expression of
IFN-γ and ICAM-1

[49]

Warm renal IRI in mice
NaHS administered daily

beginning two days
after reperfusion

-Reduced renal tubule damage
-Improved renal function and recovery of recipient
body weight
-Increased tubular epithelial cell and decreased
interstitial cell proliferation
-Reduced renal fibrosis
-Decreased ROS production, ratio of GSSG to GSH,
and Nox4 expression
-Increased MnSOD and catalase expression

[50]

Warm renal IRI in rats AP39 administered
during ischemia

-Improved renal function
-Decreased ROS production
-Decreased neutrophil infiltration and IL-12 levels
-Decreased apoptosis

[51]

Cold renal IRI in rats

STS administered during
ischemia (preservation
solution supplemented

with STS)

-Improved recipient survival and renal function
-Decreased apoptosis and necrosis
-Decreased KIM-1, IFN-γ, TNF-α, IL-6, Bax, Caspase-3,
and JNK2 expression
-Increased PGC-1α, NDUFB8, SDHB, ERK1, and
ERK2 expression
-Decreased macrophage and neutrophil infiltration

[15]

Cold renal IRI in rats

AP39 administered
during ischemia

(preservation solution
supplemented with

AP39)

-Improved recipient survival and renal function [52]

GSH: reduced glutathione; GSSG: oxidized glutathione; Trx-1: thioredoxin-1; 90-kDa heat shock protein (HSP-90);
Bcl-2: B-cell lymphoma-2; IL-6: interleukin-6; IL-9: interleukin-9; IL-10: interleukin-10; VEGF: vascular endothelial
growth factor; FGF-2: fibroblast growth factor 2; MIP-1α: macrophage inflammatory protein-1 alpha; IP10:
C-X-C ligand 10; MIP-2: macrophage inflammatory protein 2; G-CSF: granulocyte-colony stimulating factor;
KC: C-X-C ligand 1; IL-1β: interleukin-1 beta; ETC: electron transport chain; ROS: reactive oxygen species; ATP:
adenosine triphosphate; TNF-α: tumor necrosis factor-alpha; IFN-γ: interferon gamma; ICAM-1: intercellular
adhesion molecule-1; Nox4: NADPH oxidase 4; MnSOD: manganese superoxide dismutase; IL-12: interleukin-12;
KIM-1: kidney injury molecule-1; Bax: Bcl-2 associated X-protein; JNK2: c-Jun N-terminal kinase 2; PGC-1α:
Pparg coactivator 1 alpha; NDUFB8: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8; SDHB:
succinate dehydrogenase [ubiquinone] iron-sulfur subunit; ERK1: mitogen-activated protein kinase 1; ERK2:
mitogen-activated protein kinase 2.
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4. H2S Pre-Treatment against Cold IRI

Currently, there is a very limited body of research focused on the use of exogenous
H2S pre-treatment in the context of cold IRI induced by SOT. To our knowledge, only two
studies have examined the effect of exogenous H2S pre-treatment in models of cold IRI.
Both studies have focused on lung transplantation (Figure 2).
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(H2S) pre-treatment regimens may protect against IRI by modifying different molecular targets.
SOD: superoxide dismutase; Nrf2: nuclear factor erythroid 2-related factor 2; IL-10: interleukin-10;
ROS: reactive oxygen species; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells;
IL-6: interleukin-6; TNF-α: tumor necrosis factor-alpha; CAT: catalase; GPx: glutathione peroxidase;
GR: glutathione reductase; HO-1: heme oxygenase-1; NQO-1: NADPH quinone oxidoreductase-1;
ETC: electron transport chain; PGC1-α: peroxisome proliferator-activated receptor gamma coactiva-
tor 1-alpha; K+

ATP: adenosine triphosphate-sensitive potassium channel; Bcl2: B-cell lymphoma-2;
ICAM-1: intercellular adhesion molecule-1; Bax: Bcl-2 associated X-protein. H2S is represented as a
ball-and-stick model (sulfur in yellow; hydrogen in white; covalent bonds in grey). Figure created
with BioRender.com.
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4.1. H2S Pre-Treatment against Cold IRI in Lung Transplantation

In one study, male New Zealand white rabbits either inhaled room air supplemented
with gaseous H2S or room air alone for two hours prior to their lungs and heart being
harvested for en bloc heart-lung transplantation [53]. The heart-lung grafts were stored in
preservation solution at 4 ◦C for 18 h, after which they were ventilated and perfused with
blood from donor rabbits for two hours. The researchers found that during reperfusion,
heart-lung blocs from rabbits pre-treated with H2S exhibited better pulmonary function as
evidenced by improved oxygenation and ventilation. While ROS levels did not differ in
lung biopsies taken from either the H2S pre-treated or control groups before SCS of the heart-
lung blocs in preservation solution, ROS levels were significantly lower in lung biopsies
taken during reperfusion in the H2S pre-treated group. This antioxidant effect of H2S
during reperfusion is particularly important since most ROS production occurs during the
reperfusion phase of IRI due to the reverse action of complex I of the ETC [23]. Interestingly,
complex IV activity was significantly higher in biopsies taken from lungs in the H2S pre-
treatment group after SCS but before reperfusion [53]. This finding may seem contradictory
to the known inhibitory effect of H2S on complex IV of the ETC [40]. However, since H2S
can also act as an electron donor to the ETC [54], H2S may have supported complex IV
activity by donating electrons to the ETC to maintain ATP production during ischemia [53].
Another possible explanation is that apoptosis may have been higher in heart-lung blocs
from the control group, which would have lowered complex IV activity, since apoptosis
leads to the release of complex IV [53,55].

In a more recent study by Meng et al. [56] involving donation after circulatory death
(DCD) lung transplantation in male Sprague Dawley rats, the researchers either deflated
the lungs or inflated the lungs with air containing gaseous H2S or air alone for two hours.
During this period of warm ischemia, lungs inflated with H2S had a lower metabolic rate
relative to the control lungs, which aligns with a previous study that showed H2S can
induce a hypometabolic state in mice [41]. The left lungs were then harvested and stored in
preservation solution at 4 ◦C for 3 h followed by syngeneic transplantation into recipient
rats, where reperfusion occurred for 3 h [56]. Interestingly, lungs that were inflated with
H2S showed enhanced pulmonary function along with reduced apoptosis, inflammation,
and oxidative stress. To understand the anti-inflammatory and antioxidant effects of H2S
pre-treatment, the researchers examined the translocation of both nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) and nuclear factor erythroid 2-related
factor 2 (Nrf2) from the cytoplasm to the nucleus. NF-κB is a well-recognized transcription
factor that is normally inhibited in the cytoplasm, but upon activation is translocated
to the nucleus where it can upregulate the expression of pro-inflammatory genes [57].
Nrf2 is a transcription factor normally degraded in the cytoplasm but is stabilized under
oxidative stress, which enables Nrf2 to translocate to the nucleus and upregulate the
expression of genes involved in cellular protection [58]. As would be expected, NF-κB
nuclear translocation was lower and Nrf2 nuclear translocation was higher in biopsies
obtained from lungs that were inflated with gaseous H2S [56]. In summary, these two
studies demonstrate that H2S pre-treatment of lung donors protects transplanted lung
grafts from IRI through the suppression of apoptosis, inflammation, and oxidative stress,
likely via modulation of NF-κB and Nrf2 nuclear localization.

4.2. H2S Pre-Treatment against Cold IRI in Kidney Transplantation

Although no studies have examined the impact of H2S pre-treatment in the context
of cold IRI in kidney transplantation, a previous study showed that endogenous H2S
production in kidney donors is associated with improved kidney function in recipients after
kidney transplantation [59]. Specifically, the expression of CSE at the time of kidney graft
procurement was positively associated with the glomerular filtration rate 14 days following
transplantation in humans. Although this is not an example of exogenous H2S donor
pre-treatment, this study suggests that higher levels of H2S in kidney transplant donors
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prior to graft procurement may protect kidney grafts against IRI, leading to enhanced
kidney function in recipients after transplantation.

5. H2S Pre-Treatment against Warm IRI

Much of the research concerned with the effect of H2S pre-treatment on IRI to date has
been carried out in the context of warm IRI. Although cold IRI is of considerably longer
duration, warm IRI remains an inevitable consequence of SOT (Figure 1). In addition
to SOT, warm IRI has implications in many other surgical procedures and pathological
conditions. While pre-treatment using an agent effectively protective against warm IRI
would be a tremendous asset in preventing surgically induced IRI, the unpredictable onset
of ischemia in pathological conditions makes pre-treatment a less practical option. In the
following section, the literature concerning the effects of H2S pre-treatment against warm
IRI in transplantable organs will be discussed.

5.1. H2S Pre-Treatment against Warm Renal IRI

Renal IRI is a major cause of acute kidney injury (AKI) [60]. A study by Bos et al. [61]
showed that inhalation of H2S gas prior to and during the induction of renal ischemia
(which the authors referred to as pretreatment) protected mouse kidneys. In their obser-
vations, renal protection following pre-treatment with H2S was characterized by reduced
apoptosis, inflammation, and histopathological changes. This renal protection resulted in
improved renal function (as measured by serum creatinine) compared to mice that received
gaseous H2S beginning immediately before reperfusion and the control group [61]. This
protective effect of H2S can be attributed to the induction of hypometabolism [61] as well
as the suppression of oxidative stress, reduced intracellular adhesion molecule 1 (ICAM-1)
expression, and increased Nrf2 nuclear translocation [62–64]. The protective effects of H2S
against warm renal IRI observed in this study cannot be attributed to pretreatment alone
due to the continuation of H2S inhalation into the ischemic period. Still, these findings
provide insight into the prospective usefulness of H2S pretreatment as a novel strategy to
mitigate the induction of AKI in clinical settings. Utilizing H2S as a protective therapeutic
would prove especially valuable in major surgical procedures (such as cardiac surgery),
contrast dye administration, and patients with sepsis, all of which are major causes of
AKI [65,66]. It could also be extended to experimental and clinical kidney transplantation
in which kidney donors could be treated with H2S donors prior to renal graft procurement,
during which a brief period of warm ischemia occurs. A summary of studies involving
pre-treatment with H2S in cold and warm IRI is provided below in Table 2.

5.2. H2S Pre-Treatment against Warm Myocardial IRI

Warm myocardial IRI is an inevitable consequence of the restoration of blood flow
following myocardial infarction (MI) and contributes to an estimated 50% of the resultant
infarct size [25,67]. A significant body of research has assessed the cardioprotective potential
of H2S pre-treatment against warm myocardial IRI. Sivarajah et al. [68] pre-treated rats with
the H2S donor NaHS 15 min prior to left anterior descending coronary artery occlusion and
subsequent reperfusion. Compared to the control, they observed a significant reduction in
infarct size and attenuation of apoptosis, caspase 9 activity, NF-kB nuclear translocation,
oxidative stress, myeloperoxidase activity, and neutrophil infiltration in the cardiomyocytes
of the NaHS-treated group. In a similar study, pre-treatment with NaHS resulted in a more
significant reduction in infarct size than NaHS post-treatment [69]. H2S pre-treatment
could also be especially valuable in diabetes mellitus patients, who are at increased risk for
myocardial ischemia and its associated mortality [70]. In db/db mice, the cardioprotective
effect of H2S pre-treatment against myocardial IRI has been described [71]. Taken together,
the cardioprotective effects of H2S pre-treatment in these experimental models demonstrate
the need for further research on the potential of clinically viable H2S donor molecules in
attenuating the damage induced by myocardial IRI. Since warm IRI also occurs during
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SOT, further research could provide a clinical rationale for pre-treating heart donors with
H2S prior to heart procurement.

5.3. H2S Pre-Treatment against Warm Hepatic IRI

Ischemia-reperfusion injury is the most common cause of liver dysfunction following
liver surgery [72]. Zhang et al. [73] demonstrated that the administration of NaHS to rats
5 min before the induction of hepatic ischemia reduced levels of necrotic, mitochondrial-
related, and apoptotic cell death. The authors attributed this protective effect to the inhibi-
tion of mPTP opening and activation of Akt-GSK-3β signaling in hepatocytes. A similar
study by Cheng et al. [74] also found NaHS to have a protective effect against hepatic IRI.
In this study, NaHS was shown to reduce the expression of the pro-inflammatory cytokines
TNF-α and IL-6 in addition to diminishing apoptotic cell death via the inhibition of JNK1
signaling. The protective effects of H2S against hepatic IRI in these models demonstrate
the potential clinical utility of H2S administration preceding surgical procedures known to
induce warm IRI in the liver, such as liver transplantation.

5.4. H2S Pre-Treatment against Warm Intestinal IRI

Intestinal IRI can result from necrotizing enterocolitis, midgut volvulus, intussus-
ception, adhesive intestinal obstruction, sepsis, and hemodynamic shock [75]. Surgical
induction of intestinal IRI is also seen as a consequence of cardiac surgery and liver or
intestinal transplantation [76]. Protection against intestinal IRI was observed after H2S
pre-treatment in a study by Liu et al. [77]. This protective effect was primarily attributed to
the attenuation of mitochondrial damage induced by IRI. Additionally, the authors noted
an anti-inflammatory effect, in which H2S hindered leukocyte rolling and adhesion in
postischemic intestine. The protective effect of H2S against intestinal IRI observed in this
study demonstrates the possible utility of H2S pre-treatment in instances of predictable
induction of intestinal IRI, such as intestinal transplantation.

5.5. H2S Pre-Treatment against Warm Pulmonary IRI

Pulmonary IRI is a complication of surgical procedures, such as lung transplantation
and cardiopulmonary bypass surgery, as well as pulmonary embolism [78]. The effec-
tiveness of H2S pre-treatment against pulmonary IRI was examined in a study by Jiang
et al. [79]. The authors demonstrated that the administration of GYY4137 prior to the occlu-
sion the lung hilum in diabetic rats attenuated warm pulmonary IRI by reducing apoptosis
and inflammation. These effects were attributed to the activation of the SIRT-1 pathway,
which promoted Nrf2/HO-1 and eNOS-mediated antioxidant signaling pathways. If hy-
drogen sulfide pre-treatment does indeed provide clinically significant protection against
warm pulmonary IRI, the utility of this therapeutic would benefit lung transplant and
cardiopulmonary bypass surgeries tremendously.

Table 2. Summary of protective effects of exogenous H2S pre-treatment in animal models of cold and
warm IRI.

Model H2S Pre-Treatment Modality Effect of H2S References

Cold pulmonary IRI in rabbits Inhalation of H2S for 2 h prior
to procurement

-Better pulmonary function in recipient
-Lower ROS production following reperfusion [53]

Cold pulmonary IRI in rats Inflation of procured lung
with H2S for 2 h before SCS

-Reduced apoptosis, inflammation, and
oxidative stress
-Reduced NF-kB nuclear localization
-Increased Nrf2 nuclear localization

[56]
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Table 2. Cont.

Model H2S Pre-Treatment Modality Effect of H2S References

Warm renal IRI in mice Inhalation of H2S for 30 min
prior to ischemia

-Reduced impairment of kidney function,
apoptosis, inflammation, and degree of
structural damage
-Attributed protective effect to hypometabolism
induced by H2S

[61]

Warm renal IRI in rats NaHS administered 10 min
before ischemia

-Reduced levels of plasma creatinine, blood urea
nitrogen, renal malondialdehyde concentration,
and increased superoxide dismutase activity

[62]

Warm renal IRI in rats NaHS administered daily for
35 days before ischemia

-Decreased NF-kB concentration
-Downregulation of ICAM-1 expression [63]

Warm renal IRI in mice
GYY4137 administered for 2

consecutive days
before ischemia

-Elevated Nrf2 nuclear translocation [64]

Warm myocardial IRI in rats NaHS administration 15 min
prior to ischemia

-Reduced infarct size
-Reduced apoptosis, caspase 9 activity, NF-kB
nuclear translocation, oxidative stress,
myeloperoxidase activity, and neutrophil
infiltration

[68]

Warm myocardial IRI in rats NaHS administered 1 day
before ischemia

-Cardioprotection through a PKC-dependent
mechanism
-Pre-treatment provided a greater protective
effect than post-treatment

[69]

Warm myocardial IRI in
db/db mice

Na2S administered 24 h or
daily injection for 7 days

before ischemia

-Infarct size relative to area at risk was reduced
in both treatment regiments compared to vehicle
control, but was 51% more effective in 7 day
treatment than acute treatment.

[71]

Warm myocardial IRI in rat
heart (ex vivo)

STS administration 15 min
before ischemia

-Reduced apoptosis and ROS levels.
-Preserved mitochondrial function [80]

Warm myocardial IRI in rat
heart (ex vivo)

STS administration 15 min
before ischemia

-Improved activity of ETC complexes I-IV
-Elevated PGC1α expression [81]

Warm myocardial IRI in rat
heart (ex vivo)

STS administration 15 min
before ischemia

-Protective effects abolished in the presence of
PI3K/mTOR/KATP inhibitors [82]

Warm hepatic IRI in rats NaHS administration 5 min
before ischemia

-Reduced necrosis, mitochondrial-related cell
death and apoptosis
-Inhibited mPTP opening and activation of
Akt-GSK-3β signaling

[73]

Warm hepatic IRI in mice NaHS administration 30 min
before ischemia

-Reduced expression of TNF-α and IL-6
-Reduced apoptosis through inhibiting JNK1
signaling

[74]

Warm intestinal IRI in rats NaHS administered 24 h
before ischemia

-Prevented postischemic mitochondrial
dysfunction) in a BKCa channel-dependent
manner
-Reduced leukocyte rolling and adhesion in
postischemic intestine

[77]

Warm pulmonary IRI in rats GYY4137 administered 1 h
before ischemia

-Promoted Nrf2/HO-1 and eNOS-mediated
antioxidant signaling pathways. [79]

ROS: reactive oxygen species; NF-κB: nuclear factor kappa B; Nrf2: nuclear factor erythroid 2–related factor
2; ICAM-1: intercellular adhesion molecule 1; PKC: protein kinase C; ETC: electron transport chain; PGC1α:
peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PI3K: phosphoinositide 3-kinase; mTOR:
mammalian target of rapamycin; KATP: ATP-sensitive potassium; mPTP: mitochondrial permeability transition
pore; Akt: protein kinase B; GSK-3β: glycogen synthase kinase-3 beta; TNF-α: tumor necrosis factor-alpha; IL-6:
interleukin-6; JNK1: c-Jun N-Terminal Protein Kinase 1; BKCa channel: calcium-activated, large conductance
potassium channel; HO-1: heme oxygenase-1; eNOS: endothelial nitric oxide synthase.
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6. Sodium Thiosulfate: A Clinically Viable H2S Donor Drug against IRI

When considering the clinical relevance of H2S pre-treatment against IRI, the non-
viability of gaseous H2S demonstrates the need for clinically viable donor molecules that
can exhibit therapeutic potential against IRI. While the H2S donor molecules used in the
studies above (GYY4137, AP39, and NaHS) demonstrated protective effects in animal
models of IRI, clinical translation of these compounds is years away. Alternatively, STS
is an H2S donor molecule that could expedite clinical translation as it is already used
clinically for the treatment of acute cyanide poisoning, cisplatin toxicity in cancer patients,
and calciphylaxis in patients with end-stage renal disease [83–86]. Thiosulfate is produced
endogenously from H2S through the mitochondrial sulfide oxidation pathway, which we
recently reviewed [87]. Importantly, the reverse reaction also occurs whereby H2S is gener-
ated from thiosulfate [87]. A small body of literature has examined the effects of STS in IRI.
Marutani et al. [43] demonstrated that following warm cerebral IRI, a single dose or week-
long regimen of intraperitoneal STS injections improved the survival rate and neurological
function in mice. In addition, Sen et al. [88] found that STS provided cardioprotective
effects when administered after generating an atrioventricular fistula. These effects were
accompanied by an increase in endogenous H2S, which was suggested to be responsible for
the therapeutic effects. Recently, a clinical trial in the Netherlands examined the effects of
administering STS to patients presenting with ST-segment elevation myocardial infarction
prior to restoring perfusion through percutaneous coronary intervention [89]. Unfortu-
nately, the researchers observed no effect of the STS treatment on infarct size, leading to
the discontinuation of the trial [90]. However, Ravindran et al. [80] demonstrated that
STS pre-treatment is protective against cell death, ROS accumulation, and mitochondrial
dysfunction induced by in vitro hypoxia and re-oxygenation in cardiomyocytes. By occlud-
ing the left anterior descending artery, these researchers also observed similar protective
effects of STS pre-treatment in an ex vivo model of warm IRI in rat hearts. The authors
further reported that STS pre-treatment preserved mitochondrial integrity, leading to pro-
tection against warm myocardial IRI [81]. However, such protection conferred by STS
was abolished in the presence of PI3K/mTOR/KATP inhibitors [82], suggesting that the
mechanism underlying STS protection against myocardial IRI is at least partially via the
PI3K/mTOR/KATP pathway.

7. Ethics and Regulations

The concept of treating an organ donor prior to graft procurement may raise several
ethical issues. In the context of H2S donor pre-treatment, a major ethical issue would be
the possible toxicity of H2S [39,40]. Such an ethical issue would be particularly problematic
in the context of living donors, where the administration of H2S donor molecules could
cause serious side effects in the organ donor. It must be emphasized that treatment of
living donors with any class of drugs for the purpose of ameliorating transplantation
outcomes in the recipient must not harm the donor in any way. Accordingly, extensive pre-
clinical and clinical studies would need to be conducted to identify a safe and efficacious
dose of a clinically viable H2S donor for administration in humans. The optimal dosage
would depend on the specific H2S donor used since different H2S donors have different
potencies [52]. A potential approach to facilitate the translation of H2S donor pre-treatment
from bench to bedside would be to focus on H2S donors that are already approved by
national health regulatory agencies, such as STS [91,92]. However, it is important to note
that STS treatment is associated with adverse side effects, such as hypotension, headaches,
nausea, and vomiting [91]. To confer protection against IRI, the required dose of STS may
be higher than the recommended dose [91], which could lead to worsened side effects in
the organ donor. Nonetheless, research focused on protection against IRI should prioritize
the use of H2S donors clinically approved for other diseases, since such H2S donor drugs
would be more likely to receive approval for use in transplantation. Another important
factor to consider is that treating a living organ donor with a drug before procurement
of the organ graft may dissuade the donor from donating the organ. The decision to
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donate an organ and the pre-transplantation phase can cause great psychological stress in a
prospective donor [93–96]. Compounding the stress of donating an organ with receiving
treatment that would likely not benefit the donor but could cause harm may discourage
an organ donor from deciding to donate. For example, Pillay et al. [94] reported that stem
cell donors experienced anxiety toward the possible adverse effects of being pre-treated
with granulocyte-stimulating factor, which is administered to bone marrow donors before
and during transplantation [97]. If H2S donor pre-treatment of living organ donors is to
have clinical relevance, research should be conducted to assess the impact of H2S donor
pre-treatment on an individual’s decision to donate an organ.

Shifting the focus to pre-treating deceased donors, current international approaches
to consent for organ donation require donative intent, which is distinct from informed
consent [98]. Donative intent is simply the requirement that an individual formally indicates
their intention to donate an organ [98]. The organ donor can choose to be informed and
decide to donate their organ(s) without the involvement of a healthcare team [98]. If an
individual formally declares their intention to donate, then treatment of the deceased donor
with a drug would not require informed consent if such an organ procurement protocol is
clinically approved. However, an important consideration that must be made with respect
to donation from deceased donors is the clinical relevance of pre-treating such donors.
In the case of donation after brain death (DBD), such donors are declared dead based on
neurologic criteria; the circulatory system in these patients remains functional [99,100].
Thus, drugs, such as H2S, administered to these organ donors should effectively circulate in
the body. By contrast, circulatory function in DCD donors is compromised [99,100], which
may impair the ability of a pre-treatment agent to act on its target organ, depending on
the organ of interest. As reported in the study by Meng et al. [56], H2S pre-treatment of
DCD donors in lung transplantation is feasible since the lungs can simply be inflated with
gaseous H2S. However, H2S donor pre-treatment of DCD donors may be more challenging
in the context of other organs. It is important to note that there are two major types of DCDs:
uncontrolled and controlled [99–101]. In the context of controlled DCDs, the cessation
of circulation is anticipated [99–101] and thus in this scenario, administration of a pre-
treatment agent prior to the onset of ischemia should be possible. By contrast, pre-treatment
of uncontrolled DCD donors prior to the onset of ischemia would be unattainable since
there would be no prior anticipation of the circulatory cessation [99–101], at which point
warm ischemia would take place. Despite the inability to administer treatment prior to
warm ischemia, it would still be possible to administer treatment to DCD donors before the
induction of cold ischemia. A major challenge would be circulating the pre-treatment agent
to the organ of interest due to the lack of circulation. However, cardiovascular resuscitation
(CPR) may serve as a potential option for circulating pre-treatment agents in DCD donors
prior to organ harvesting and cold ischemic induction. For instance, Limkemann et al. [102]
found that intravenous administration of gluconate, a cell impermeant, combined with
CPR following circulatory death in rats reduced cell swelling and death along with liver
injury in an ex vivo model of cold hepatic IRI. Interestingly, the authors showed that
CPR distributed gluconate to various tissues in the body in a similar fashion to cardiac
circulation. Although this research was conducted using gluconate as a pre-treatment
agent, CPR could potentially help circulate H2S donor molecules in DCD donors. If any
drug is to be used for pre-treating DCD donors to enhance transplantation success, the
ability to circulate the drug of interest in the donor should be investigated to ensure the
effectiveness of the treatment.

Collectively, pre-treating organ donors to protect against IRI and thereby enhance
transplantation outcomes in recipients presents several ethical questions that must be
considered. The importance of addressing these ethical and regulatory questions should be
emphasized, as the concept of organ donor pre-treatment is becoming more of a clinical
possibility. As previously mentioned, a clinical trial focused on pre-treating neurologically
deceased kidney donors with tacrolimus to protect against renal IRI and improve post-
transplantation outcomes is currently underway in Canada [13]. Importantly, this trial is
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funded by the Canadian Institutes of Health Research (CIHR) and has received approval
from both federal and provincial health regulatory agencies [103]. The trial, referred to
as the CINERGY pilot trial, may pave the way for future clinical trials focused on organ
donor pre-treatment.

8. Conclusions

In conclusion, the alternative approach of pre-treating transplant donors with H2S
donor compounds may enhance post-transplantation outcomes in recipients by protecting
against IRI. The lack of literature surrounding H2S pre-treatment in the context of transplan-
tation demonstrates a key research area with great potential. Considering that many studies
have shown that H2S pre-treatment is protective against warm IRI, it is likely that H2S
pre-treatment can protect against transplantation-induced cold IRI. Importantly, research
in this area could enhance transplantation success and thereby improve the survival and
quality of life of transplant recipients. As such, our research group is currently examining
whether STS pre-treatment of donors can protect against transplantation-induced renal
IRI. If a protective effect is established, the ethical implications of donor pre-treatment will
need to be considered for clinical translation. Indeed, donor pre-treatment is becoming
more of a clinical possibility, as evidenced by the CINERGY pilot trial, and may ultimately
represent the future of transplantation.
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