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Abstract: α1-Adrenergic receptors (ARs) are members of the G-Protein Coupled Receptor superfamily
and with other related receptors (β and α2), they are involved in regulating the sympathetic nervous
system through binding and activation by norepinephrine and epinephrine. Traditionally, α1-AR
antagonists were first used as anti-hypertensives, as α1-AR activation increases vasoconstriction, but
they are not a first-line use at present. The current usage of α1-AR antagonists increases urinary
flow in benign prostatic hyperplasia. α1-AR agonists are used in septic shock, but the increased
blood pressure response limits use for other conditions. However, with the advent of genetic-based
animal models of the subtypes, drug design of highly selective ligands, scientists have discovered
potentially newer uses for both agonists and antagonists of the α1-AR. In this review, we highlight
newer treatment potential for α1A-AR agonists (heart failure, ischemia, and Alzheimer’s disease) and
non-selective α1-AR antagonists (COVID-19/SARS, Parkinson’s disease, and posttraumatic stress
disorder). While the studies reviewed here are still preclinical in cell lines and rodent disease models
or have undergone initial clinical trials, potential therapeutics discussed here should not be used for
non-approved conditions.
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1. Introduction

Receptors that are activated by the adrenaline-type catecholamines, epinephrine (Epi)
and norepinephrine (NE), are called adrenergic receptors (ARs). They belong to the G-
Protein Coupled Receptor (GPCR) superfamily, which are receptors that transduce their
intracellular signals through G-proteins. According to their physiological effects on the
body, they were initially assigned as classifications α and β [1]. α-ARs were later fur-
ther subdivided into α1- and α2-ARs, after noting that some functions were distinctively
different between the two families. Upon further tissue characterization and molecular
cloning, α1-ARs were further subdivided into the α1A-, α1B-AR, and α1D-AR subtypes
based upon the subsequent cloning of the receptors [2–4]. The α1C-AR is missing from
the current α1-AR nomenclature due to misclassification and incomplete pharmacological
characterization of the α1A-AR subtype [4,5].

2. Pharmacology

α1A-ARs can be pharmacologically distinguished in tissues and cell lines from the
α1B-AR subtype based upon a 10–100-fold higher binding affinity for several ligands that
are commercially available [6,7] (Table 1). The α1D-ARs share more pharmacological similar
and genetic homology with the α1A- than the α1B-AR but buspirone analogs (i.e., BMY7378)
have been developed that have at least a 10-fold higher binding affinity for the α1D-AR
over the α1A-AR subtype [8,9] and 100-fold selectivity compared with the α1B-AR subtype.
α1B-AR does not have sufficiently selective ligands developed yet, but with the recent
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crystal structure of the α1B-AR bound with the antagonist cyclazosin [10], chiral analogs
are being developed [11].

Table 1. α1-Adrenergic Receptor Agonists and Antagonists.

Drug Receptor Selectivity Current Indications Potential Indications

Agonists
Non-selective

Norepinephrine α1 = α2 = β Septic and refractory
Epinephrine α1 = α2 = β shock, Cardiopulmonary arrest

Hypotension
Selective

Phenylephrine α1 > α2 >> β Pupil dilation, Rosacea
Oxymetazoline α1A > α1D = α1B Nasal decongestion, Rosacea
Methoxamine α1A > α1D > α1B Septic and refractory shock

Cirazoline α1A > α1D > α1B HF, Ischemia, cataracts
A-61603 α1A > α1D = α1B HF, Ischemia, cataracts

Dabuzalgron α1A >> α1D = α1B HF, Ischemia, cataracts
Cmpd-3 1 α1A >> α1D > α1B AD, HF, Ischemia, cataracts

Antagonists
Non-selective

Prazosin α1A = α1D = α1B BPH, Therapy-resistant COVID-19/SARS, PD,
Doxazosin α1A = α1D = α1B Hypertension, ALS, PTSD,
Terazosin α1A = α1D = α1B Pheochromocytoma Hyperinflammation
Alfuzosin α1A = α1D = α1B
Selective
BMY7378 α1D > α1A >> α1B

Tamsulosin α1A = α1D > α1B BPH, Pheochromocytoma
Silodosin α1A > α1D >> α1B BPH

5-Methylurapidil α1A > α1D > α1B
WB4101 α1A = α1D > α1B

1 [12]. AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; BPH, benign prostatic hyperplasia; HF, heart
failure; PD, Parkinson’s disease; PTSD, posttraumatic stress disorder; SARS, severe acute syndrome coronavirus 2.

3. Signal Transduction

While the nine subtypes (α1A, α1B, α1D, α2A, α2B, α2C, α1, α2, and α3) bind Epi and NE
with comparative affinities, the three different families couple to different G-proteins and
effector pathways that allow specificity in function. While all GPCRs can couple to multiple
G-proteins, they strongly couple to only a few. α-ARs couple more efficiently to Gαs, which
stimulates adenylate cyclase and increases cAMP levels. α2-ARs are transduced by Gαi,
which inhibits the production of cAMP. α1-ARs couple to Gαq to activate phospholipase
C that causes the hydrolysis of membrane-bound phosphatidylinositol 4,5-bisphosphate
to release inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 binds to IP3 receptors
located on the endoplasmic reticulum which causes the release of calcium. DAG activates
protein kinase C (PKC), an enzymatic effector that can phosphorylate many proteins to
amplify signals downstream in the signaling cascade. α1-ARs, as in all GPCRs, can signal
directly or through cross-talk to couple to many other signaling pathways, both G-protein-
dependent and independent, and through spatio-temporal as well as biased-agonistic
mechanisms [13–18]

4. General Physiology
Blood Pressure

The best described function of the α1-AR activation is to increase blood pressure via
the contraction of the vasculature which highly expresses α1-ARs in the smooth muscle
layer [19]. α1-ARs regulate blood pressure through IP-mediated increased calcium release,
causing the contraction of the vascular smooth muscle by activating myosin light chain
kinase and actin/myosin cross-bridge formation [20], and may involve several different
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signaling pathways involving PKC, PI3K, Rho Kinase, and MAPK [21,22]. Transgenic and
KO mice have been developed for all three α1-AR subtypes, using receptors that are WT or
contain constitutively-active mutations, some have cardiac-specific promoters and others
that are systemically or conditionally expressed [23–38]. These mouse models provided
various insights into the physiological differences between the subtypes. Using these mouse
models, all of the α1-AR subtypes have been reported to affect phenylephrine-induced
blood pressure [24,33,39] but only the α1D-AR KO decreased resting blood pressure [39,40].

5. α1A-AR Agonists
5.1. Currently Approved Uses

α1-AR agonists are not commonly prescribed because of the potential to raise blood
pressure but are approved for the treatment of vasodilatory shock, hypotension, hypop-
erfusion, septic and refractory shock, and cardiopulmonary arrest. Approximately 7% of
critically ill patients develop refractory shock causing a 50% short-term mortality rate [41].
Vasopressor agents used to maintain blood pressure and preserve tissue perfusion during
shock are methoxamine (discontinued in the US) or norepinephrine/epinephrine [42,43].
α1-AR agonists such as phenylephrine have been used in procedures to dilate the iris [44].
Phenylephrine, naphazoline, and oxymetazoline are also used in nasal decongestion and
edema [45,46] and the facial erythema associated with rosacea [47,48].

5.2. Heart Failure and Cardioprotection

The human heart contains both the α1A and α1B-AR subtypes with a total density
of approximately 11–60 fmoles [49–51]. The α1D-AR may be present in the myocyte but
at very low levels [52,53]. The current hypothesis is that selective α1A-AR agonists may
be a potential treatment in heart failure [54,55], since chronic α1B-AR stimulation, as
evidenced through transgenic mouse models, appears to be maladaptive by inducing
dilated cardiomyopathy [29] or heart failure [37]. While α-AR blockers are a current
treatment option for heart failure, using α1A-AR selective agonists may provide potentially
greater benefits such as preventing dementia [56], improving metabolic function and
glucose tolerance [56–58], increasing lifespan with reduce cancer risk [59,60] and reducing
inflammation and cataracts [58,61].

The preclinical evidence that the α1A-AR subtype is cardioprotective and could be
therapeutic for heart failure is abundant. Transgenic mice with heart-targeted α1A-AR
overexpression were protected from dysfunction due to myocardial infarction [26], pressure-
overload [25], or imparted ischemic preconditioning [34,62]. Correspondingly, α1A-AR
KO mice had induced greater heart injury after myocardial infarction [55]. The α1A-AR
selective agonists, A61603 or dabuzalgron, prevented damage from the cardiotoxic agent,
doxorubicin [63–65] and increased contraction during heart failure [66]. Removing load by
mechanical assist devices in failing human hearts improved function and re-distributed
α1A-ARs from the peri- to intra-myocyte location [67]. However, there are currently no
clinical trials underway, most likely due to the potential to increase blood pressure and the
risk of stroke. The use of positive allosteric modulators (PAMs) for the α1A-AR developed
to treat Alzheimer’s disease [12] are currently in preclinical studies in mice and to assess
potential benefits in heart failure.

The ability of the α1A- and not the α1B-AR to cardioprotect may be due to several
mechanisms. One is the ability of the α1A-AR to increase inotropy [30,68,69]. Another mech-
anism may be due to increased glucose uptake and oxidation in the heart [70] as glucose
oxidation has been shown to repair heart damage after ischemia or heart failure [71–76].
Transgenic α1A- but not α1B-AR mice increased glucose uptake into the heart and only the
α1A-AR KO mice displayed decreased glucose uptake into the heart [57]. Heart failure has
been described as a metabolic disease of energy starvation [77] and so any therapeutic that
can increase ATP production may improve heart function.
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5.3. Cognition and Memory

α1-ARs have long been associated with learning and memory functions [7]. α1-AR
agonists promoted while α1-AR antagonists blocked long-term potentiation (LTP, a mech-
anism of memory formation) in the rat CA1 hippocampus [78], neocortex [79], and may
coordinate with β-AR signaling [80–83]. α1A-AR systemically overexpressing transgenic
mice increased synaptic plasticity, LTP, and performance in a battery of cognitive tests
of spatial memory, while α1A-AR KO mice performed poorly [60]. α1B-AR KO mice had
impaired spatial learning to novelty and exploration [84], and a decrease in memory consol-
idation and fear-motivated exploration [85]. While α1D-AR KO mice did not show deficits
in spatial learning [86], they did show deficits in working memory and attention [87].
While all three α1-AR subtypes are localized in the brain and expressed in overlapping
domains, the α1A-AR subtype appears to have greater expression in cognitive areas such as
the hippocampus and amygdala, as well as particular areas of the cortex and neurogenic
regions involved in learning and memory [88,89]. The α1A-AR selective agonist cirazoline
increased cognition and BrdU incorporation in normal adult mice, while the α1A-AR over-
expressing transgenic mice had increased BrdU incorporation in both the subventricular
and subgranular neurogenic regions [88].

In order to develop suitable therapeutic α1A-AR agonists to treat heart failure, cardiac
ischemia, or Alzheimer’s disease, PAMs with sufficient signal bias would need to be
developed that could regulate heart or brain function without effects on the vascular
system to increase blood pressure. PAMs will increase a receptor activation and function
but in such a way that it does not bind to the same site as the endogenous agonist (i.e.,
orthosteric), such as NE [90]. Allosteric modulators result in decreased side effects and
have greater selectivity by binding to non-conserved regions of the receptor resulting
in conformational bias that can alter the receptor’s signaling pathways. There are now
many GPCR allosteric modulators in clinical trials [91]. Another issue is the poor brain
penetration of most of the current α1-AR agonists which limit their use in neurological
conditions. The first PAM at the α1-ARs with high selectivity for the α1A-AR subtype has
been developed [12] that can cross the blood–brain barrier sufficiently enough to improve
cognitive functions and modify disease in Alzheimer’s disease mouse models without
increased blood pressure. This drug (i.e., Cmpd-3, Table 1) only activates the NE-bound
receptor and can potentiate cAMP signaling without effects on IP-signaling. IP-signaling
and the resulting calcium release causes the increase in blood pressure. However, NE-
mediated cAMP signaling in the brain regulates learning and memory [92–97]. This drug is
currently in preclinical studies to treat heart failure.

6. α1-AR Antagonists
6.1. Currently Approved Uses

As in the vascular system, α1-AR antagonists affect the contraction of smooth muscle
in several organ systems. α1-AR blockage results in the relaxation of smooth muscle in the
prostate and ureter to increase urinary flow [98–100]. Since the 1980s and 1990s, α1-AR
antagonists are frequently used medications in the management of benign prostatic hyper-
plasia (BPH), kidney stones, and in therapy-resistant arterial hypertension, two conditions
frequently found in older adults. As a powerful anti-hypertensive, α1-AR antagonists
are not recommended as a first-line treatment [101,102] as they are counter indicative for
those with heart disease. While α1-AR antagonists are effective in the relief of urinary
symptoms and improve the quality of life in BPH, they appear less effective in preventing
disease progression [103,104]. α1-AR blockers are also used to treat pheochromocytoma,
a rare condition where a tumor forms on the adrenal gland or other paraganglia to cause
excessive catecholamine release and severe hypertension. The tumor is excised immedi-
ately under the use of an α1-AR blocker to reduce hemodynamic instability, morbidity and
mortality [105]. General counterindications for α1-AR antagonists will be discussed at the
end of this article.
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6.2. COVID-19/SARS

Coronavirus disease 2019 (COVID-19) and the causative agent, severe acute respiratory
syndrome coronavirus 2 (SARS), can elicit a vigorous systemic immune response (i.e.,
hyperinflammation) in the lungs as well as multiple organs, resulting in heart and kidney
failure, liver damage, precipitating severe illness, and increased mortality [106]. Recent
evidence suggests that some patients with COVID-19 develop a cytokine storm syndrome
that is associated with increased release of pro-inflammatory cytokines, disease severity,
and poor clinical outcomes [107].

Beyond their role in neurotransmission, cardiovascular, and the stress response, α1-
ARs have been shown to modulate the immune system [108,109], innate immunity [110],
and inflammatory damage by increasing cytokine production in immune cells [111,112].
α1-ARs have been identified on a wide variety of immune cells. Identification of im-
mune cells using flow cytometry depends upon highly avid antibodies whose speci-
ficity are questioned for the current commercially available antibodies for the α1-ARs
and many other GPCRs [113]. However, many studies have utilized mRNA expression
and ligand binding analysis. Human neutrophils contain the mRNA for all three α1-AR
subtypes [114]. Monocytes contain the mRNA for the α1B- and α1D-ARs [112,115,116]. NK
killer cells, leukocytes [117–119], and lymphocytes, including human peripheral blood
lymphocytes [120,121], also contain α1-ARs but the subtypes are not clearly defined.

6.2.1. α1-AR Antagonists May Protect against Severe COVID-19

Several studies indicate that α1-AR antagonists may reduce morbidity and mortality
in patients at risk for hyperinflammation and cytokine storm that is often associated with
COVID-19 and other conditions that result in severe respiratory tract conditions. Blockade
of α1-AR function with prazosin prevents cytokine storm following pro-inflammatory
conditions and increases survival in preclinical studies [122]. A retrospective analysis in
two large cohorts of patients with acute respiratory distress (n = 18,547) and three cohorts
with pneumonia (n = 400,907) found that patients exposed to α1-AR antagonists had a
significantly lower risk (34%) for mechanical ventilation and death [123]. Similar results
were obtained in a subsequent retrospective analysis on US veterans [124] and another large
cohort study of influenza or pneumonia patients in Denmark [125]. These studies led to a
clinical trial to test whether prazosin can prevent the cytokine storm syndrome [126] caused
by COVID-19 (https://clinicaltrials.gov/ct2/show/NCT04365257, accessed on 7 February
2023) but this trial is currently halted due to lack of recruitment. These results extend
circumstantial findings that prazosin may be an early preemptive therapy in COVID-19
and may prevent the cytokine storm and severe complications due to hyperinflammation.

6.2.2. α1-AR Antagonists May Not Prevent COVID-19 Infection

The protective effects of α1-AR blockers against COVID-19 were recently challenged
in a study using meta-analysis of millions of patients prescribed α1-AR blockers (alfuzosin,
doxazosin, prazosin, silodosin, tamsulosin, and terazosin), compared to alternative medica-
tions (dutasteride, finasteride, and 5-α-reductase inhibitors) or tadalafil (PDE5 inhibitor)
to treat BPH. This study found no reduction in the risk of COVID-19 infection due to
the sustained use of α1-AR blockers [127]. The negative results are unlikely due to the
comparison to non-α1-AR blocker treatments for BPH as the study of Thomsen et al. [125]
also included non-users (normal controls). However, this study did find significant but not
large differences on the ability of α1-AR blockers to confer protective benefits against death
and ICU admission due to COVID-19.

The study of Nishimura et al. [127] suggested that previous positive results from clini-
cal trials had systematic biases from residual confounding [128,129]. For example, patients
with severe asthma are more likely to be prescribed α-agonists and to die from their asthma
than patients with less severe disease but not receiving treatment. Therefore, such confound-
ing would make α-agonists appear they were associated with asthma mortality. However,
all epidemiology studies that utilize user vs. non-user comparisons from databases are
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prone to systematic biases from residual confounding. The study of Nishimura et al. [127]
used a database of older male patients that are at higher-risk for COVID-19 and for de-
veloping severe COVID-19 compared to the general population, and then analyzed the
risks of developing COVID-19, being hospitalized, or hospitalizations that also require
intensive services requiring ventilation or oxygenation. The study of Thomsen et al. [125]
and others, while also analyzing older men, used a database of high-risk patients already
hospitalized with hyperinflammation or cytokine storm (pneumonia, severe COVID, and
influenza) and measured α1-AR blocker effects on more severe outcomes (ICU, mortality).
Therefore, one interpretation is that α1-AR blockers do confer protection, but the amount of
pre-emptive protection is not that significant for use in the general population but only for
a subset of severely ill patients once the cytokine storm has developed, and then used to
reduce mortality. All of these studies have limitations in that they measured outcomes on
men who are more likely to be prescribed α1-AR blockers due to BPH and may not reflect
possible outcomes for women. Nevertheless, these results suggest the need for further
clinical trials to include women and whether α1-AR blockers first ameliorates the severe
symptoms of lower respiratory tract infection-associated hyperinflammation and the risk
of death.

6.2.3. The Case for Anti-Hyperinflammation as a Direct α1-AR Mediated Effect

There is precedent in preclinical studies for the ability of α1-AR blockers to reduce
hyperinflammation. Prazosin prevents cerebral infarction by inhibition of the inflamma-
tory cascade [130]. One mechanism that α1-ARs may use to combat hyperinflammation
is through their association with chemokine receptors. Chemokines are a group within
the cytokine family whose general function is to induce cell migration and are poten-
tial therapeutic targets in numerous inflammatory diseases, such as COVID-19. Several
chemokine genes have been associated with disease severity and susceptibility to infec-
tion with COVID-19 [131]. At least 20 members of the human chemokine receptor family
heterodimerize with the α1B or α1D-AR subtypes and inhibited their function and were
detectable in human monocytes [118]. The CXCR2 has been reported to heterodimerize
with the α1A-AR in prostatic smooth muscle [132]. Many GPCRs can form homo- and
hetero-oligomers, which is thought to alter their pharmacological behavior and function
and may play a role in pathophysiology [133–135]. Another mechanism that is described
is through catecholamine excess [136]. In animal studies, the blockade of catecholamine
synthesis (and indirect blockage of α1-ARs) reduced cytokine release and protected mice
against COVID-19 lethal complications [122]. Furthermore, autoantibodies against GPCRs,
including the α1-AR, were observed in patients after SARS infection and suggested to
cause impaired blood flow, the formation of microclots, and autoimmune dysfunction
contributing to long-COVID symptoms [137,138]. These results suggest a direct effect of
α1-AR antagonists in blocking α1-AR mediated adverse effects in hyperinflammation.

6.2.4. The Case for Non-α1-AR Mediated Effects of Quinazoline Antagonists: PGK1

It is possible that the protective anti-inflammatory effects of prazosin, doxazosin and
terazosin may be non-α1-AR mediated through activation of phosphoglycerate kinase
(PGK1)-mediated ATP production. Terazosin and its related “osins” are postulated to
mediate protective mechanisms by binding adjacent to the ADP-ATP site of PKG1 and
facilitating its activation. PGK1 is the first enzyme in glycolysis where ADP enters the
cleft of the active site and is converted into ATP and shown to inhibit apoptosis [139,140].
Terazosin increases the release of ATP by competing for the same binding site, re-exposing
the binding pocket, thereby exerting an agonistic effect [140]. PKG1 binding and activa-
tion has also been demonstrated in related α1-AR antagonists that contain quinazoline
motifs, such as alfuzosin, prazosin, and doxazosin [140]. PGK1 activation may improve
cellular functions in disorders with an established energy deficit, common with critically ill
patients [141] and COVID-19 patients [142,143]. Terazosin was shown to increase PGK1 ac-
tivity and glycolysis in motor neuron models of amyotrophic lateral sclerosis (ALS), which
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correlated with protection and survival [144]. The effects of prazosin-like compounds
appear directed at the quinazoline structural motif, as tamulosin, also an α1-AR blocker but
with some selectivity for the α1A-AR [145], does not appear to mediate anti-inflammatory
effects, does not contain the quinazoline motif, and does not interact with PGK1 [139,146].
Furthermore, an analysis of the Truven database and Danish nationwide health registries
demonstrated that individuals treated with terazosin, alfuzosin, or doxazosin showed
lower rates of Parkinson’s disease (PD) and PD-related diagnoses when compared with
patients treated with tamsulosin [147]. Therefore, quinazoline-based antagonists of the
α1-ARs may confer therapeutic levels of protection against inflammation and morbidity
through non-α1-AR -mediated effects of increasing glucose metabolism by binding to the
active site of PGK1.

While the above protective effects of PGK1 appear to be metabolic, α1-AR quinazolines
(i.e., not tamsulosin) have also been shown in several studies to induce apoptosis in
different cell lines and in vivo through non-α1-AR mechanisms [148–150]. Pyroptosis, a
proinflammatory form of apoptosis, acts as a host defense mechanism against infections.
Pyroptosis decreases the replicative ability of viruses by inducing the apoptosis of infected
cells and exposing the virus to extracellular immune defenses. Several therapeutics that
target inflammasomes, caspases, or cytokines are in clinical trials to evaluate efficacy in
mitigating the severe outcomes of COVID-19 [151]. Therefore, the ability to reduce severity
of COVID-19 outcomes by prazosin and other quinazolines may be due to their ability to
increase apoptosis, improve energy deficit, or both.

These two different but protective mechanisms (metabolic verses apoptotic) may
be cell-type, α1-AR subtype, or disease-dependent. All of the pro-apoptotic effects of
quinazolines are non-α1-AR mediated and mostly found in cancer cell lines, while metabolic
effects are more systematic and may be α1-AR subtype dependent. The non-quinazoline
tamsulosin does not exhibit cytotoxic or apoptotic activity in cancer cell lines [148]. Prazosin
treatment protects the brain by decreasing oxidative stress and apoptotic pathways [152].
A non-quinazoline α1-AR antagonist reduced inflammation and immune cell infiltration
and improved insulin signaling in the adipose of fructose-fed rats [153], as well as cardiac,
vascular, and renal dysfunction in hypertensive rats [154].

6.3. α1A-AR Activation but α1B-AR Blockage Is Protective

Concerning α1-AR subtype-dependent effects of antagonists, there is evidence that
α1A-AR activation is protective, while chronic α1B-AR activation is damaging and neurode-
generative. Therefore, α1A-AR agonists would be protective and in systems where chronic
α1B-AR activation is damaging, non-selective blockers may exert protective effects. Systemic
overexpression of the α1A-AR in mice has anti-tumor effects [59], preconditions the heart
against ischemia [34], reverses heart failure and cardiac apoptosis [62,65,66], and increases
longevity [59]. In contrast, systemic overexpression of the α1B-AR subtype in mice was
neurogenerative, induced autonomic dysfunction, heart failure, apoptosis [37,38,155,156],
and decreased lifespan [59]. Tamsulosin has a 10-fold higher binding affinity and slower
dissociation kinetics compared to the other two subtypes, rendering it an α1A-AR selective
antagonist [145,157]. The epidemiology study of [158], while finding that usage of tera-
zosin/alfuzosin/doxazosin failed to see any changes in the risk in Parkinson’s disease (PD)
development, did find that tamulosin increased PD risk and may associate with disease
progression. Protective effects of prazosin may be due to α1B-AR blockage since tamsulosin
(α1A-AR blockage) does not induce apoptosis nor binds with PGK1. The study of Koenecke
(2021) [123] found that doxazosin was two-fold more efficacious than tamsulosin in pre-
venting COVID mortality, suggesting blockage of α1B or α1D-mediated pro-inflammatory
effects. There is an increased expression and cellular proliferation of the α1B-AR subtype
in prostatic cancer cell lines that exhibit apoptosis with prazosin [159]. α1B-AR activation
mediates unchecked cell cycle progression and induced foci formation [160], supporting a
cancer-inducing paradigm. Therefore, protective effects of α1-AR blockage might indicate
that the α1B- or α1D-AR subtype is being blocked in the particular tissue or disease.
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6.4. Other Neurological Benefits of α1-AR Quinazoline Antagonists: Parkinson’s, ALS, PTSD

Neuroprotection, just like cardioprotection, may be mediated through increased
metabolism [161]. As the heart is energy-starved during failure, so too are several neu-
rodegenerative diseases. Glucose metabolism is essential for proper brain function, ac-
counting for 20% of whole-body energy consumption, but compiles only 2% of body
mass. Therefore, brain energy demand is mostly met by the metabolism of glucose [162].
Bioenergetic and mitochondrial dysfunction are common hallmarks of PD and ALS, and
regulate disease onset and progression [161,163,164]. In ALS pathogenesis, the early dys-
regulation of the AMPK signaling pathway was found in motor neurons and in a large
proportion of patients [165]. Preclinical and epidemiologic data suggest that terazosin, a
quinazoline antagonist, may be neuroprotective in PD and ALS [144,166] and impart a
decreased risk for developing PD [139]. However, another study that analyzed a large
database of terazosin/alfuzosin/doxazosin users failed to see any changes in the risk of
PD development [158]. A clinical study evaluating the safety and tolerability of terazosin,
5 mg once daily for 12 weeks, in patients with PD has been initiated (NCT03905811). Doxa-
zosin can also reduce oxidative stress, pro-inflammatory cytokines, and cell death in rat
photoreceptor cells in vivo [167]. Terazosin protected against organ damage, sepsis, and
death in rodent models [140]. Therefore, nonselective α1-AR quinazoline antagonists may
also be useful in other neurodegenerative diseases.

Posttraumatic stress disorder (PTSD) is associated with elevated noradrenergic
activity [168–170]. In clinical trials and meta-analysis, prazosin has been effective and
well-tolerated to reduce combat trauma nightmares, sleep disorders, and general clinical
status in veterans [171–173] and for general trauma-related nightmares [174]. Compared
with image rehearsal therapy which is the recommended treatment for trauma-induced
nightmares, prazosin was more efficacious at relieving the frequency and stress-related
symptoms but image rehearsal therapy combined with cognitive behavioral therapy was
better at improving sleep quality [175]. A more recent study by Raskind et al. (2018) [176]
also showed that prazosin did not improve sleep-related problems in PTSD. However, it
is unclear whether or not prazosin will reduce the risk of nightmares in people without
trauma or whether other α1-AR blockers (non-quinazolines) are effective. α1A-AR stimula-
tion has been suggested to mediate stress-induced memory formation and consolidation [7]
and, therefore, blockage with prazosin may be psychotherapeutic, resulting from a direct
α1A-AR antagonistic effect.

7. Counterindications
7.1. α1A-AR Blockers but Not Non-Selective Antagonists May Increase Dementia and Depression

While non-selective α1-AR quinazoline antagonists appear to improve symptoms in
neurodegenerative diseases and PTSD, regardless of whether they are α1-AR or non-α1-AR
mediated, antagonists that are selective for the α1A-AR subtype may potentiate neurode-
generation and dementia. This would be consistent with α1A-AR activation demonstrating
increased cognitive performance and reversing Alzheimer’s disease as discussed in this re-
view. Just as tamsulosin does not follow the protective properties of quinazoline antagonists
as discussed in the above sections, tamsulosin, which is α1A-AR selective, increases the risk
of dementia modestly and other adverse cognitive effects, in particular among patients over
age 61 [177]. This study utilized cohorts taking various medications (including 5a-reductase
and quinazoline α1-AR blockers) for BPH as well as those taking no medications and fol-
lowed them for 20 months after the first prescription was filled. However, two subsequent
clinical studies contradict these results [178,179]. While tamsulosin did increase the risk of
dementia, there was no evidence of a dose–response, and after adjustments for confound-
ing variables, the results were not significant [179]. Differences between the three studies
could be due to the mean age that was assessed. The two negative studies used a mean
age of 78.7 [178], and 76.1 years [179], while the positive study of Duan et al. (2018) [177]
used younger patients for a mean age of 73.2. As the risk of cognitive decline increases
dramatically with age [180,181] or genetic variant status (APOE e4) [182], the amount of
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baseline neurodegeneration may have been substantially different in the two studies to
mask any benefit. The study of Tae et al. (2019) [179] acknowledged that age was the
strongest variable in the risk of dementia in all their comparisons. Another variable is
the length of follow up. The positive study followed patients for 20 months [177], while
the other two negative studies followed patients for 56 months [179] and 36 months [178].
Again, the two negative studies would have increased dementia at study end given the
advanced age of the patients.

The amygdala can regulate psychological stressors and anxiety, besides regulating fear-
conditioned memory and memory consolidation [7,183], and is regulated by the α1A-AR
subtype [89,184]. Transgenic mice overexpressing the α1A-AR but not the α1B-AR showed
antidepressant behavior [185]. α1A-AR blockage with WB4101 induces learned despair in
mice [186] and tamsulosin facilitated depressive-like behavior in mice [187]. While a small
clinical study found that tamsulosin decreased patient-reported depressive symptoms in
BPH patients, contrary to the hypothesized effect in mice [188], BPH itself is associated with
increased depressive and anxiety symptoms [189,190] and suicide [191]. Further large-scale
clinical studies are needed to determine if tamsulosin and other α1A-AR blockers may
increase depressive and anxiety-based disorders as hypothesized.

7.2. α1-AR Blockers May Increase Risk of Heart Failure

The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial
(ALLHAT) is a large, randomized double-blind study comparing four different classes of
antihypertensive agents in patients older than 55 years [101]. The use of doxazosin (i.e.,
Cardura) increased the risk of stroke and the development of heart failure twice as much as
those receiving a thiazide diuretic and caused this arm of the study to terminate early. In
addition, doxazosin is not recommended as a first-line antihypertensive, particularly in
the elderly [101,103]. However, this effect is not just isolated to doxazosin. A recent study
of 175,200 men with BPH treated with either 5-alpha reductase inhibitors, various α1-AR
antagonists, or a combination, found a 22% increased risk of cardiac failure among the users
of α1-AR blockers [192]. Non-selective α1-AR blockers (terazosin, doxazosin, and alfuzosin)
were significantly associated with an 8% higher risk for heart failure compared with
selective α1A-AR blockers (silodosin and tamsulosin). Silodosin is 500-fold more selective
for the α1A-AR than α1B-AR [193], while tamsulosin is 10-fold selective [145]. The α1A-AR
is theorized to be cardioprotective and agonists protect against heart failure [56], but why
are α1A-AR blockers then not associated with a higher risk of heart failure compared to
non-selective blockers? There may be other non-α1-AR mediated effects associated with
the increased risk of heart failure, such as increased apoptosis [148–150], particularly with
α1-AR quinazoline blockers. While α1-AR blockers are still a popular treatment for BPH,
and particularly in younger men who may not display heart failure, it is advised that
physicians assess the cardiovascular health of the patient before long-term use.

7.3. α1A-AR Blockers May Have Adverse Ocular Effects

Another adverse effect of the long-term use of α1-AR antagonists is intraoperative
floppy iris syndrome (IFIS), that increases serious complications and is characterized by
a poor pupillary response, iris billowing, and prolapse during cataract surgery [194]. α1-
ARs, and particularly the α1A-AR subtype, regulates the dilator smooth muscle of the
iris [195,196], intraocular pressure [197,198], and the extracellular matrix and metabolic
functions in human retinal pigment epithelium cells [199]. Tamsulosin has been identified
to causing IFIS among BPH patients, with risks increased up to forty times more compared
to other α1-AR antagonists and causing severe IFIS [200–204], but other non-selective α1-AR
antagonists can also cause it. A large meta-analysis of over 6000 cases using various α1-AR
antagonists indicate that most α1-AR blockers associate with a higher risk of IFIS [205].
With the increasing prevalence of both BPH and cataracts in the aging population, it is
recommended that tamsulosin use is stopped 2 weeks before cataract surgery or is replaced
by another α1-AR blocker.
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8. Summary

The use of α1-AR agonists to potentially treat heart failure, cardiac ischemia, Alzheimer’s
disease, and other dementias are targeted to the α1A-AR subtype. However, all of these
studies are preclinical in cell lines and mouse models or in initial clinical trials and it is not
currently recommended to use these agents for non-approved use. Current development of
positive allosteric modulators would be the choice as first-in-class therapeutics to avoid issues
with increasing blood pressure to reduce other adverse side effects. The use of non-selective
α1-AR antagonists of the quinazoline class to treat severe COVID-19/SARS, PTSD, and
neurodegenerative disorders, such as Parkinson’s disease and ALS, have extensive evidence
of efficacy in many clinical trials. However, the mechanism of action may be non-α1-AR
mediated. Counterindications for α1-AR blockers are focused on those with established heart
disease. Future clinical studies and larger, randomized, cross-over trials are required before
drawing firmer conclusions about the counterindications of tamsulosin or other α1A-AR
selective blockers.
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