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Abstract: Remote robotic systems are employed in the CERN accelerator complex to perform different
tasks, such as the safe handling of cables and their connectors. Without dedicated control, these
kinds of actions are difficult and require the operators’ intervention, which is subjected to dangerous
external agents. In this paper, two novel modules of the CERNTAURO framework are presented to
provide a safe and usable solution for managing optical fibres and their connectors. The first module
is used to detect touch and slippage, while the second one is used to regulate the grasping force and
contrast slippage. The force reference was obtained with a combination of object recognition and a
look-up table method. The proposed strategy was validated with tests in the CERN laboratory, and
the preliminary experimental results demonstrated statistically significant increases in time-based
efficiency and in the overall relative efficiency of the tasks.
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1. Introduction

CERN [1–3], European Center for Nuclear Research, located in Geneva, Switzerland,
hosts more than 50 km of underground particle accelerators [4], including the Large Hadron
Collider (LHC), the biggest particle accelerator in the world (it is approximately 27 km
in circumference [5]), which contains a huge variety of scientific equipment. The size
of the LHC poses continuous challenges concerning both its design and construction,
and its maintenance, a critical point to ensure the regular operation of the experimental
facility. Nevertheless, CERN experimental areas located underground present hazardous
characteristics: the presence of radiation, high magnetic fields and possible lack of oxygen.
Therefore, ensuring safe personnel access to the accelerator facilities can be challenging.
The use of robotic systems in hazardous environments allows personnel safety to be
ensured. Moreover, more accurate and detailed data about the environment can be collected
during robotic operation, resulting in more opportunities for more accurate and precise
operation [6]. Teleoperated robotic platforms can perform some of the maintenance tasks
more safely and reliably than humans. The maintenance of the LHC includes a wide
list of different tasks: visual inspection, screwing, welding, disassembling, reassembling
and many others. For each of these tasks, different robots are needed, with sensors and
tools, to face every situation.

Performing a stable grasp is the main challenge for most robotic manipulators, due to
the need to avoid the application of excessive gripping force and prevent slippage as well as
any possible damage to the object. The variability of the properties of the objects involved
in activities of daily living makes grasping difficult when the robot handles novel objects
without having prior information. Too much force could deform or damage the object or
the gripper fingers, while too little pressure could let it slip or drop during displacements.
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By using a robot gripper, dexterous handling can be achieved using information
measured with sensors, such as force sensors, torque sensors, slip sensors, contact sensors,
etc. [7]. The incipient slip information in human grasping [8] allows one to quickly adjust the
gripping force in response to the object characteristics perceived upon initial contact [8,9].
In [10], an adaptive closed-loop grasping algorithm for novel objects is implemented on a
robotic gripper instrumented with a force-sensing resistor (FSR) sensor and a laser-based
slip sensor. This algorithm can immobilize a novel object within the fingers of the gripper
with minimal deformation by estimating the exact minimal grasping force. In [11], a
slipping avoidance algorithm is proposed to allow the robot to react to both linear and
rotational slippage of the grasped object. The object grasped with a one-DoF gripper,
provided by a six-axis force/tactile sensor, can be safely lifted with given orientation and
information about its centre of gravity, and uncertain friction properties are not necessary.
In [12], a model-free intelligent fuzzy sliding mode control strategy is employed in an ad
hoc developed gripper sensorised with an FSR on the fingers. Slip information is obtained
after three consecutive force variations exceeding a specific threshold. The gripper can
dexterously pick and place various objects by using stiffness information and generating
an appropriate grasping force, and the anti-slip control strategy can adjust the grasping
force online to avoid object slippage. In [13], two different algorithms for controlling the
grasping force are implemented in a one-DoF parallel gripper sensorised with six-axis
force/tactile sensors. The first algorithm is aimed at avoiding both linear and rotational
slippage [14] by using, on the grasped object, as little force as possible. The controller
does not need information about the properties of the object to be grasped. The second
algorithm achieves the pivoting task, i.e., a controlled rotation of the grasped object to
change its orientation without releasing the object. In [15], gecko-inspired adhesives are
mounted on the tips of commercial gripper fingers to delicately grasp objects by using little
force. The gripper is equipped with tactile sensors [16]. Information about external forces
and moments derive from a sensor on the robot’s wrist. The gecko adhesive characteristic
is increased adhesion in proportion to the applied shear load. The knowledge of gripper
performance combined with the gecko-inspired adhesive properties significantly reduces
the overall demand for gripper actuators; then, smaller types can be used to lighten tools on
robotic arms. In [17], the Vibratory Finger Manipulator, a simple and affordable mechanism
based on the stick–slip phenomenon, where the application of vibrations enables friction to
be actively controlled, is proposed to potentially augment the capabilities of any generic
parallel jaw gripper. This approach generates propagation force onto the touched object,
allowing the manipulation of the object to be achieved with accuracy of less than 2 mm.

During the grasping and lifting of various objects, visual cues and beforehand-gained
knowledge allow humans to prepare for the imminent grasp by adapting the fingertip force
based on the real object weight [18]. Humans evaluate the object weight to grasp using
vision as an initial estimation; successively, they use tactile afferent control to improve
the grasping precision [19]. Different approaches have been developed to estimate the
object’s weight. In [20], active thermography and custom multi-channel neural networks
are used to classify the density property. The approach is capable to estimate the weight of
the unknown object by evaluating its volume. In [21], the estimation of the object weight
is obtained by measuring the currents flowing in the gripper motor servos and by using
linear regression between these and the weight values; the results show an estimation of
the weight of the object with an average error of 22.42%.

For the execution of a task (e.g., plugging in/unplugging a connector), information
on the object weight is not sufficient. Different solutions have been studied to overcome
this problem. In [22], a gripper is proposed for the accurate alignment and holding of the
position between the cable and the gripper. The method for plugging in the connector
needs information on the exact connector position of the gripper. If the tolerance between
the connectors is larger than the error position of the robot arm, the connection can be
achieved using the position control of conventional industrial robots, without using force
information. In [23], different solutions are presented to increase the degree of autonomy
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of robots involved in underwater intervention missions. In particular, an explored task
involves the plugging in/unplugging of the hot stab connector. The whole procedure
allows one to achieve the completion of the task, but no information is reported about the
control of the grasping force. Just two parts of the presented algorithm to perform the task
are notable: “Close the gripper completely; Reach the plug waypoint [...] This waypoint is
1 cm deeper than the manipulation waypoint because sometimes it is necessary to exert a
bit of force to be sure that the connector has entered completely. The execution of known
and pre-imposed actions is allowed by a controlled environment; again, a new unexpected
condition could be unmanaged”.

In the case of the handle of optical fibres and their connectors, the interventions at
CERN cannot be performed appropriately without a force control law that regulates the
force applied by the grippers. The object could fall or the task could not be performed, and
human intervention in hazardous environments would be necessary.

The aim of this work was to overcome this limitation by providing novel modules
of the CERNTAURO [24] framework already present at CERN and used for other types
of interventions: (i) the first module is a touch-and-slippage algorithm [25], and (ii) the
second one, force-and-slippage control [26] developed for prosthetic hands and adapted
for this work. CERNBot [27], a robotic platform (Figure 1) built at CERN, was used in the
dual-arm configuration. On each arm, an industrial gripper equipped with two ad hoc
developed fingers was munted.

Figure 1. Dual-arm CERNBot.

The strategy also includes an object recognition module (ORM) to recognize metallic
objects (e.g., connectors, sockets and patch panels) [28] and choose a force reference from
a table for the gripper to perform the desired task. The tasks were performed in a teleop-
erated way to recreate the conditions of a real intervention in hazardous environments.
The combination of the two novel modules and the ORM was employed to safely perform
the plugging in and the unplugging of an optical fibre connector by applying the correct
force to the connector for its management and to prevent any slipping during the execution
of the tasks.

2. Materials and Methods
2.1. Touch-and-Slippage Detection Algorithm

The algorithm is able to detect (i) the first touch between the sensor and an object and
(ii) slippage events. For removing the electronic noise from setup components, the mean
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value, vmean, of the FSR conditioned signal (i.e., force or voltage), vi, was computed for
every 5 samples.

vmean =
1
5

5

∑
i=1

vi (1)

The steps of the touch identification procedure are the following:

(1) Computation of the average value on 10 samples of the voltage signal in the resting
(calibration) period. In the calibration period, no force variation is detected, and vrest
represents the mean of background noise magnitude.

(2) Comparison of vrest with vmean to obtain a mean voltage error.

∆v = vrest − vmean (2)

Contact with the object is detected if ∆v is greater than the minimum voltage variation,
δ, measured by the sensor when pressed.

∆v > δ, touch = 1; (3)

Next, the value of v′mean, i.e., the voltage signal positive derivative, is computed. Only
the positive derivative is considered, since the negative value corresponds to a pressure
increment on the FSR.

v′mean =
d
dt

vmean (4)

The derivative of the mean values between two consecutive 5-sample sets is computed
and compared with a threshold α established using the ROC curve [29], ensuring the
discrimination between true and false-positive slippage events. A binary value (called
slip) is set to 1 when v′mean is higher than the threshold (i.e., the slippage occurs); this is
0 otherwise. {

v′mean ≥ α, slip = 1
v′mean < α, slip = 0

(5)

The proposed approach can be applied both on voltage and force signals by simply
choosing the negative or positive derivative of the signal. In this work, 100 Hz was the
sampling rate for calculating touch and slippage.

2.2. Force Reference Estimation

The normal force reference, Fd, is determined by analysing the gripper grasping and
manipulating a set of objects (i.e., plugging in and unplugging connectors) available in
hazardous environments. For each connector mounted on test benches in the laboratory,
the gripper of the robot repeated the grasping and the operation of plugging in/unplugging
three times. The grasping forces were acquired with the FSR sensors embedded in the
fingers, and the mean values are reported in Table 1.

Table 1. Force reference to plug in and unplug in the reported connectors.

Connector Type Manipulation Force (N)

FC 2.3 ± 0.13

Fisher ST-ST 4.14 ± 0.34

LEMO FIG 3.67 ± 0.21

LEMO FZG 3.89 ± 0.16

Then, the camera mounted on the robot (used to perform interventions in a teleop-
erated manner) is used to recognize the object to grasp and to select the corresponding
reference normal force, Fd, from a table.
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The strategy also includes the ORM [28], a module based on a deep learning-based
module for object recognition [30] that allows metallic objects to be recognised (e.g., con-
nectors, sockets and patch panels) according to non-textured attributes. The module is
based on region-based convolutional neural networks (Faster-RCNN) already pre-trained
in COCO [31]. The neuronal model chosen for this work to detect a large number of metallic
parts was ResNet-101 [32].

2.3. Force-and-Slippage Control

For this work, force-and-slippage control used in the prosthetic field [26] with a touch-
and-slippage detection algorithm [25] developed by the authors was chosen (Figure 2).
If the proposed strategy works well in a challenging area such as prosthetics, where stability
and reduced response times are required, good functioning is also expected in other less
stringent but equally challenging areas. The coordination of the fingers was not used,
because the gripper only had one motor for moving the two fingers.

Figure 2. Force-and-slippage control law.

Fn, i.e., the sum of the components of the normal forces applied by the gripper fin-
gertips [33] on the object surface and acquired with force sensors, is subtracted from the
reference force, Fd, to obtain a force error, e f , that has to be minimized by the control.
Then, reference position xd is obtained with proportional–integrative (PI) force control,

xd = Kp1

∫ t f

0
(Fd − Fn)dt + Kp2(Fd − Fn) (6)

and is compared with the actual position, x. Kp1 and Kp2 are the controller gains, and t f is
the final integration time, while Kp1 = 3 and Kp2 = 2.7 are the controller gains obtained
with a trial-and-error procedure, assuming them to be much higher than the stiffness of
the sensorised fingers. An additional contribution, es, is considered to manage slippage
events [34,35]. Therefore, the position error is

ex = xd − x− es (7)

where

es = Kp3

∫ t f

0
slip, (8)

slip is the binary signal equal to 0 obtained using the touch-and-slippage detection algo-
rithm (Section 2.1) and Kp3 = 1.34 is a constant regulating the es weight in the control
obtained with a trial-and-error procedure. The integration of this signal guarantees an
increment in the applied grasping force in the presence of slippage [34].

The so-obtained position error ex should be reduced to zero by PD control written as

τ = Kp4(xd − x− es)− KD ẋ (9)

where τ is the torque; x, ẋ and ẍ are position, velocity and acceleration derived from
the motor sensors; Kp4 = 2.7K and KD = 0.42 are the proportional and the derivative
gains, respectively.
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2.4. CERNTAURO Framework

The project in [24] (Figure 3) aims at creating a modular framework adaptable to
specific intervention needs, to be upgraded accordingly as new features need to be inte-
grated. The CERNTAURO framework is adaptable to different robots thanks to a con-
figuration layer that takes into account several factors, such as type of hardware, com-
munication layer and user needs, and can perform unmanned tasks in hazardous and
semi-structured environments.

Figure 3. CERNTAURO framework.

2.5. CERNBot

CERNBot (Figure 1) is a modular and flexible robotic platform built at CERN for
complex interventions in the presence of hazards, such as ionization radiation. It is made
of two robotic arms (Schunk) installed on a mobile platform. CERNBot uses standard
industry components for most of its electronic and control hardware, making it a constantly
evolving platform, as hardware is upgraded by the manufacturer. Further details can be
found in [27]. For this application, an industrial gripper (already used and chosen among
the available ones) was selected and installed on the robotic arm.

2.6. Multimodal Human–Robot Interface

The human–robot interface (HRI) presented in [36] has been developed for remote
robotic intervention in hazardous environments, and it is part of the CERNTAURO frame-
work. According to its definition, a multimodal interface provides different modalities for
user interaction: the interaction domain of user and interface, and the interaction domain
of user and robot.

In this work, the interaction between the user and the interface and that between the
user and the robot were performed with the keyboard.

2.7. Experimental Setup and Protocol

CERNBot in the dual-arm configuration (right side of the Figure 4a) was positioned in
front of a table where a test bench with a fibre optic coupler (in the centre of the Figure 4a)
was mounted.
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Figure 4. (a) Setup for experimental validation. (b) Particular of the gripper with the two ad hoc
fingers. (c) Object recognition for the force reference of choice.

Two commercial industrial grippers (Universal gripper PG; size, 70; Schunk, Lauffen
am Neckar, Germany) [33], with fingers realized with PLA, instrumented with two FSR
sensors Model 402 (Figure 4 [37]) and covered with silicon to increase the grip, were
mounted on the robotic arms of CERNBot. This kind of gripper has one motor to drive the
ball screw via a toothed belt drive; then, the rotational movement is transformed into a
linear movement by base jaws mounted on the spindle nuts. The position was measured
using an embedded encoder sensor. The position was the same for both fingers due to the
parallel mechanisms [33].

The user was sitting in front of a monitor and was asked to perform the teleoperated
tasks by following the whole operation using the camera mounted on the robot. Communi-
cation between the user and the robot was performed by means of an ethernet cable. The
user manually chose the type of connector to recognize and handle, and the correct force
value was automatically chosen from the table and set in the control.

Two kinds of tasks were performed: the unplugging task, i.e., to unplug the FC
connector to avoid losing it, and the plugging in task, i.e., to plug in the FC connector.
The connector of the optical fibre was made of three parts (Figure 5): the first one was
integrated with the cable and then rigid; the second one was the rotating threaded receptacle
part useful for screwing/unscrewing the connector, with the specular part blocking them
during use; the last one was a position-locatable notch to align male and female connectors.
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Figure 5. FC connector.

The normal use of this connector involves the screwing/unscrewing of the rotating
part and then the grasping of the rigid part to remove the connector from the female part.
An interferometer was connected to the backside of the fibre optic coupler to understand if
the unplugging or the plugging in was correct, reading signal interruption for the first task
and signal recovery for the second one. Information about the signal from the interferometer
was read by employing a PC (left side of Figure 4a).

For the plugging in task, the following steps need to be performed:

• The gripper on the right arm grasps the cable while the gripper on the left side grasps
the FC connector by the rigid part (Figure 6a);

• The left arm moves to plug in the cable in the fibre optic coupler, aligning the position-
locatable notch and the recess (Figure 6b);

• The gripper on the left arm releases the rigid part to grasp the rotating threaded
receptacle part and to screw the connector (Figure 6c);

• The gripper on the left arm releases the rotating threaded receptacle part (Figure 6d).

For the unplugging task, the following steps need to performed:

• The gripper on the right arm grasps the cable while the gripper on the left side grasps
the FC connector on the rotating threaded receptacle part to unscrew it (Figure 6e);

• The gripper on the left arm releases the rotating threaded receptacle part (Figure 6f);
• The gripper on the left arm grasps the connector by the rigid part (Figure 6g);
• The right arm moves to unplug the cable (Figure 6h).

For these tasks, 15 naive users (12 males and 3 females, 26 ± 5 years) were selected
to perform the two tasks three times. The tasks were carried out using CERNbot and
CERNTAURO with and without the two novel modules: the touch-and-slippage (TAS) and
the force-and-slippage (FAS) modules. The naive user was supported by an expert user to
explain the basic functionality of the robots in the two operative modalities before the first
attempt and to provide minimal support during the entire test. An Arduino board for each
gripper was used to read the voltage values from the conditioning circuit and to calculate
touch and slippage for both fingers. The force applied on the sensor surface caused a
mechanical deformation, resulting in resistance variations. Such variations were converted,
using a voltage divider, into voltage values ranging from 0 to 5 V [38]. A relationship
between the output voltage value from the FSR and the force value was established with
statistical characterization [39]. The relation between voltage and force was modelled as
reported in [40]. Force, touch and slippage information was delivered to the two developed
modules implemented in the CERNTAURO framework to obtain the necessary torques for
activating the gripper motion.



Sensors 2023, 23, 1979 9 of 15

Figure 6. Different phases of the two tasks. (a) First step: the two grippers grasp the cable and the FC
connector; (b) Second step: the left arm moves to plug-in the cable in the fiber optic coupler; (c) Third
step: the gripper on the left arm releases the rigid part to grasp the rotating-threaded-receptacle part
and to screw the connector; (d) Fourth step: the gripper on the left arm releases the rotating-threaded-
receptacle part. (e) First step: the two grippers grasp the cable of the FC connector; (f) the gripper on
the left arm releases the rotating-threaded-receptacle part; (g) the gripper on the left arm grasps the
connector on the rigid part; (h) the right arm moves to unplug-in the cable.

3. Results and Discussion

The users were asked to accomplish the two tasks (to unplug and plug in the cable)
three times. Moreover, to provide a baseline for the time comparison, the tasks were
executed in both modalities by two expert users; their execution time was considered
a lower bound of the execution of the tasks. The difference in the execution time was
statistically significant (Mann–Whitney test, p < 0.05) for both expert and naive users when
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the two tasks were performed with the combination of the two novel modules, i.e., TAS
and FAS, and the ORM (Figure 7).

Figure 7. Task execution time (in seconds) for expert and naive operators. Statistical significance
when the novel modules were used is indicated with * p < 0.05 (Mann–Whitney test).

For the sake of brevity, force, touch, slippage, position and interferometer information
is shown in Figure 8 for a single unplugging task. This task was performed in two parts: in
the first one, the FC connector was unscrewed (from time t0 to t1), and in the second one,
the fibre was removed from the fibre optic coupler of the test bench (from time t2 to t4).

Figure 8. Experimental results for a single unplugging task. (a) Position of each finger. (b,d) Nor-
mal forces acquired by the FSR sensors on the fingers. (c,e) Detected touch and slippage events.
(f) Interferometer signal.

Subplot (a) depicts the position of each finger. As described in Section 2.5, the gripper
was symmetric, and the displacement of only one finger is reported. The gripper was
positioned close to the test bench with an opening similar to the FC connector diameter
(∼10 mm) to reduce the time of operation. For this reason, the position of each finger did not
start from zero. Subplots (b) and (d) show the forces applied by the fingers. In subplots (c)
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and (e), the binary signals related to touch and slippage events detected by each finger [25]
are reported. In the last subplot, the signal acquired by the interferometer was used to
ensure that connector disconnection/connection had been established (in this case, at time
t3, the loss of interferometer signal to demonstrate the success of the task). In the first
phase, the gripper grasped the threaded receptacle, rotated to unscrew it and opened the
fingers. In the second phase, it repositioned itself to grasp the rigid part of the connector
to remove it from the fibre optic coupler of the test bench. In the first phase, one slippage
event was detected, while in the second phase, many of them were detected and contrasted.
This is normal behaviour, because the FC connector and the fibre are made of different
materials and have different friction coefficients. Hence, the vibrations induced by slippage
are different for each phase [41].

To measure the effectiveness (i.e., the ability to obtain the desired results in an ideal
context) of using the novel modules, the interferometer signal was taken as a reference (f).
When the FC connector was connected to the coupler, i.e., when a good signal transmission
through the optical fibre was guaranteed, the amplitude of the interferometer signal had a
maximum amplitude between 1.1 and 1.2 values. Therefore, if at the end of the plugging
in operation, the connector was between the fingers of the gripper and the signal was less
than 1.1, the task was still considered unsuccessful. Again, for the unplugging operation,
the task was considered a success when the interferometer signal was equal to 0 and the
connector was still between the fingers of the gripper.

According to ISO-9241, efficiency represents the resources spent by the users to ensure
accurate and complete achievement of the goals. Efficiency is measured in terms of the time
employed by the participant to complete a task and can be defined in two ways: time-based
efficiency (the measurement of the time spent by the user to complete the task; Figure 9)
and the overall relative efficiency of the task (users who completed the task concerning the
total time taken by all users; Figure 10) [42].

In particular, the time-based efficiency for expert users was about 0.03 with the com-
bination of the two novel modules as compared with the value obtained in the situa-
tion without the new modules, which was half. A similar situation was found for naive
users, with values of about 0.01 with the novel modules and less than half without the
new modules.

The overall relative efficiency was equal to 100% for both expert and naive users when
the two modules were used. Without the novel modules, the percentages were less the 70%
for expert users and less the 40% for naive users.

The combined use of the two novel modules, i.e., TAS and FAS, led to a success rate
(i.e., No. of completed tasks/No. of tasks) of 100%.

Figure 9. Time-based efficiency of the two tasks performed without and with the two novel modules.
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Figure 10. Overall relative efficiency of the two tasks performed without and with the two novel modules.

4. Comparison with Other Approaches

The analysed works propose different strategies to control a gripper by managing
grasping force and slippage.

In [10], the force reference is obtained with the initial grasp, but without lifting the
object. Hence, object re-grasping is necessary for the phase immediately following lifting.
Instead, the proposed approach detects the needed force to manage the grasped object in an
offline phase to avoid a successive re-grasping phase. Moreover, when a slip is detected, a
corrective action is performed to make the grasp action more robust. Differently from [11],
where friction information is needed to solve an equation for determining the right torque
to avoid slipping during grasping, the proposed approach only needs the information of
the force reference previously calculated. During the task, only the forces read by the FSR
sensors are employed.

Environments such as those where CERNBot is used cannot be equipped with systems
to digitally reconstruct the entire workspace (such as optoelectronic systems with markers).
Furthermore, human intervention needs to be limited or even forbidden, so the knowledge
of the actual positions of each object within the work environment is difficult. This makes
the methods described in the Introduction section unsuitable for our purposes.

On the other hand, the knowledge of some information about the operation to perform,
such as the connectors to manipulate, is possible. Then, since such operations are planned
in advance, the determination of the force references, as well as the recognition of new
objects, can be made in the laboratory using bench tests.

5. Conclusions

Safety in the work environment is the main advantage of utilizing robotics [43]. Em-
ployees who work in hazardous environments can delegate to a robot dangerous tasks
that are not possible or safe for humans. The CERNTAURO framework was developed at
CERN to help users to perform robotic tasks comfortably, increasing the success rate and
safety, and decreasing the intervention time. Teleoperation is currently the only solution to
intervene for maintenance in extreme environments. Nevertheless, there are some types of
tasks that require particular attention from users. In particular, grasping an optical fibre,
and plugging in and unplugging its connector were open challenges.

Until today, the only solution for plugging in or unplugging connectors within haz-
ardous environments was the employment of operators. This involved exposure to con-
ditions dangerous to their health. Tests carried out within the laboratory showed a high
failure rate if a robot was used without the solutions described in this work, thus still
requiring the intervention of operators.

In this work, two novel modules were added to the CERNTAURO framework (i) to
detect touching and slipping between the sensor positioned on the gripper finger and the



Sensors 2023, 23, 1979 13 of 15

object surface and to use this information (ii) to regulate the force and to avoid slips during
the whole task.

The time-based efficiency when using the combination of the two novel modules was
found to be twice as much as that achieved in the same task performed without them.
The overall relative efficiency achieved using the two novel modules was 100% for both
expert and naive users, while the percentage was less than 70% for expert users and less
than 40% for naive users without the new modules. The combination of (i) the two novel
modules, (ii) the sensorised fingers mounted on each gripper of the CERNBot platform and
(iii) the ORM showed 100% success for both expert and naive users, as evidenced by both
effectiveness and efficiency. In addition, users reported a decrease in anxiety due to the
task to be performed, as the automatic management of force and slippage allowed them to
only focus on plugging in or unplugging the connector.

Future works should test these novel modules during interventions in hazardous
environments, such as the LHC [3], the collimator in the North Experimental area [44], the
Super Proton Synchrotron accelerator [45] or the Antimatter Production facility [46].
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