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Abstract: An imbalance in gut microbiota, termed dysbiosis, has been shown to affect host health.
Several factors, including dietary changes, have been reported to cause dysbiosis with its associated
pathologies that include inflammatory bowel disease, cancer, obesity, depression, and autism. We
recently demonstrated the inhibitory effects of artificial sweeteners on bacterial quorum sensing
(QS) and proposed that QS inhibition may be one mechanism behind such dysbiosis. QS is a
complex network of cell–cell communication that is mediated by small diffusible molecules known
as autoinducers (AIs). Using AIs, bacteria interact with one another and coordinate their gene
expression based on their population density for the benefit of the whole community or one group
over another. Bacteria that cannot synthesize their own AIs secretly “listen” to the signals produced
by other bacteria, a phenomenon known as “eavesdropping”. AIs impact gut microbiota equilibrium
by mediating intra- and interspecies interactions as well as interkingdom communication. In this
review, we discuss the role of QS in normobiosis (the normal balance of bacteria in the gut) and
how interference in QS causes gut microbial imbalance. First, we present a review of QS discovery
and then highlight the various QS signaling molecules used by bacteria in the gut. We also explore
strategies that promote gut bacterial activity via QS activation and provide prospects for the future.
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1. Introduction

The gut ecosystem has the greatest concentration and variety of microbial species of
any natural environment. An estimated 1014 bacteria and other microbial species including
viruses, archaea, and fungi have been reported to inhabit the human gut [1]. This collection
of microbial species coevolved with the host over time to create a delicate and beneficial
association that essentially promotes health and well-being. It has been shown that the
“gut microbiota “contains more bacterial cells—about 10 times as many as there are in
other human organs—and its genomic content is more than 100 times as abundant as the
human genome [2]. The major phyla of gut microbiota include Bacteroidetes, Firmicutes,
Proteobacteria, Actinobacteria, Verrucomicrobia, and Fusobacteria, with Firmicutes and
Bacteroidetes accounting for over 90% of the entire gut microbiota [3]. Evaluation of the
makeup of microbial species found in the human gut reveals distinct inter-individual
variances [4], with the average total number of diverse commensal bacterial strains approx-
imated at over 500 per individual [5]. While the diversity of dominating species appears to
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be constant throughout time and between individuals, that of subdominant taxa is far less
stable, largely as a result of genomic plasticity [4].

2. Normobiosis

The term “normobiosis” is used to describe the normal balance of the different types
of microbial species in the gut. In a symbiotic association, the gut microbiota performs vital
functions while the host offers a nutrient-rich environment [5]. The gut microbiota serves
the host in a variety of physiological ways, including maintaining gut epithelium integrity,
facilitating digestion, producing vital metabolites and vitamins, suppressing pathogen
expansion, and regulating host immunity [1,3,6].

Despite the enormous variety of microorganisms and complexity observed in the
adult intestine, the microbiota is initially an uncomplicated ecosystem that gradually goes
through successional modifications until it reaches great diversity [7,8]. For many years, it
was thought that the infant’s gut was sterile and that colonization after delivery came solely
from the mother, nutrition, and the environment [9–12]. The discovery of bacterial DNA
from placenta samples [13] and meconium [8] gave an indication initially that the placenta
may be a possible pathway through which horizontal bacterial DNA transfer occurs from
mother to fetus [13]. However, other investigations show bacteria in the umbilical cord
blood [14] and meconium of healthy newborns including from murine amniotic fluid taken
during a cesarean operation [15], thus indicating that bacterial exposure may begin in utero.
Infants with a balanced gut microbiota have healthier growth and development, a stronger
immune system, and a lower chance of developing chronic diseases [16]. Studies have
indicated that the first bacteria to colonize the newborn gut are the facultative anaerobic
bacteria such as Staphylococcus, Streptococcus, Enterococcus, and Enterobacter spp. [8,17]. By
lowering the initial oxygen levels, the facultative bacteria open the way for anaerobes like
Bifidobacterium, Bacteroides, and Clostridium spp. to begin colonizing the gut [8]. Several
factors, like dietary changes and the use of antibiotics, have been shown to cause dysbiosis,
an imbalance in gut microbiota. This dysbiosis is associated with a number of disorders
such as inflammatory bowel disease, cancer, obesity, depression, and autism [18–21].

Normobiosis depends on several factors such as the mode of delivery, diet, host
genotype, age, medication, and the environment in which an individual is born and raised
(rural or urban).

2.1. Mode of Delivery

Mode of delivery has a significant impact on bacterial species that first colonize the
infants’ gut [8]. Through vaginal deliveries, bacteria such as Bifidobacterial strains from
the mother’s gut and vagina are passed to the infant’s gut [22–24], whereas cesarean
deliveries introduce colonizing bacteria from the environment, such as from the hospital
environment [25]. Examples of hospital bacteria include opportunistic pathogens like
Klebsiella and Enterococcus [26].

2.2. Diet

The gut microbiota is highly dynamic during the first few weeks of life, with nutri-
ents controlling the changing ecosystem [27]. Infants who are fed formula often have a
microbiota that is more diverse than the microbiota of those who are breastfed, typically
dominated by Bifidobacteria [8,28]. Following the introduction of solid foods, the bacterial
succession continues to slowly diversify and includes adult-type species such as Bacteroides
spp. and Clostridium clusters IV and XIV [8,17]. Although the precise age for the attain-
ment of a permanent adult-type composition is still unknown, it is generally accepted
that this age is in the range of 3 years [29–31]. Nonetheless, the process of gut microbiota
modification continues after the age of 3, and later-life occurrences like hormonal changes
associated with puberty or diet changes also have an impact on the composition of the mi-
crobiota [32,33]. Generally, a diet high in fiber and plant-based foods, and low in processed
foods, is associated with a more diverse and balanced gut microbiota [34].
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2.3. Genetics

Studies suggest that genetics can influence the composition of gut microbiota. One
of the basic approaches to determining how host genotype influences gut microbiota is
through twin studies [35]. Fraternal (dizygotic; DM) twins often share 50% of their genes
compared to 100% shared by identical (monozygotic; MZ) twin pairs [36]. Twin heritability
studies as well as the assumption that twins raised together experience similar environ-
mental conditions [37]. Using 416 twin pairs and more than 1000 fecal samples from the
TwinsUK community, Goodrich and colleagues in 2014 reported numerous microbial taxa
whose abundances were impacted by host genetics [35]. Particularly, the family Chris-
tensenellaceae (phylum Firmicutes) indicated the most heritable taxon found. Additionally,
people with low body mass index (BMI) showed an enriched network of Christensenel-
laceae and its associates. Because of these findings, Goodrich and colleagues went further
to modify obese-associated microbiota with Christensenella minuta, a cultivated member
of the Christensenellaceae, and then implanted them into germ-free mice. The result re-
vealed that the receiving mice’s microbiota was changed, and the C. minuta amendment
decreased weight gain. Although previous studies with relatively smaller twin numbers,
54 [38] and 87 [29], indicated no meaningful difference in the composition of gut microbiota
between MZ and DZ twins, the difference became statistically significant with the larger
sample, 416 [35] and 1126 [39]. Furthermore, studies have confirmed the relationship
between the gene for lactase (LCT) and the relative abundance of Bifidobacterium (phylum
Actinobacteria) [40–42].

2.4. Geographical Location

The environment in which a person resides can play a crucial role in determining
the structure and composition of a person’s gut microbiota. To examine how gut micro-
biomes vary between human populations, Yatsunenko and colleagues characterized the
bacterial species and their gene content found in fecal samples taken from 531 healthy
individuals representing Amerindians from the Venezuelan Amazon, people living in
rural Malawi, and people living in urban areas in the United States [29]. The findings
reveal that people living in the USA have significantly different bacterial species compo-
sitions and functional gene repertoires than people living in the other two nations, thus
indicating the possible impact of Westernization on gut microbiota. Due to their shared
genes, similar bacterial richness and heritability for MZ twins compared to DZ twins have
been observed [35,39]. However, twins’ microbial similarity decreased when they started
to live apart, suggesting that the environment may have a greater influence on the gut
microbiota than does genetics [43]. Furthermore, a non-twin investigation [40] revealed a
considerable bacterial species similarity among genetically unconnected people who lived
together, but not among family members who did not live together. Family members that
live together as well as with their pets share similar microbiota [44], indicating that the
structure and composition of people’s microbiota may be profoundly shaped by their direct
and regular contact with cohabitants. Additionally, traditional diets vary by location, which
may have an impact on the gut microbiome’s makeup. People who live in rural regions
and eat more fermented foods, for instance, might have a distinct gut flora than people
who live in cities and eat more processed foods. Evidence indicated that fermented dairy
products consumed by nomadic Bedouins presented significantly more bacterial species,
characteristic to the gut microbiota, compared to urban Saudis [45]. One of the main causes
of fast-disappearing biodiversity is expanding urbanization. Residents of rural areas are
more exposed to environmental microorganisms than residents of metropolitan areas [46].
In a study conducted by Parajuli and colleagues, it was observed that the diversity of
Actinobacterial, Proteobacterial, Firmicutes, and Bacteroidetes communities decrease with
urbanization [47]. Evidence also showed that people who live in warmer regions have a
distinct gut microbiota from people who live in colder areas [48].
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2.5. Other Factors

Throughout the world, antibiotics are a treatment of choice for bacterial infections.
However, the downside is that they can disrupt the balance of the gut microbiome. An-
tibiotic use can cause the microbiota to become less diverse and rid the gut of beneficial
bacteria which have an impact on people’s health and how resistant they are to illnesses [49].
A person’s gut microbiota can also be impacted by a lack of access to sanitary facilities.
People who reside in unsanitary settings have been reported to be more susceptible to
infections and disruption of the gut flora [50]. Moreover, stress has been implicated in
gut microbiota imbalance. Host stress hormones are advantageous for enteric bacterial
infections. Hormones secreted during host stress, such as catecholamines, can impact
host–bacterial interactions, bacterial pathogenicity, and susceptibility to infection [51]. En-
teric pathogens use stress hormones as signaling molecules to modify their virulence
genes [52]. As an individual ages, changes in microbiota are introduced. Older adults
show less diverse and imbalanced gut microbiota including immune system disruption
and disease vulnerability [53]. Additionally, many lifestyle choices like drinking, smoking,
and lack of physical activity have been reported to disrupt gut microbiota balance [54,55].
Eating soil—such as clay, dirt, chalk, or other kinds of soil—is a behavior known as geopha-
gia. In some countries and regions, it is a popular practice, yet it can be harmful to the gut
microbiota [56]. Heavy metals, herbicides, and other polluting residues found in the soil
can disrupt the gut microbiota and promote the growth of pathogens [57].

To perform activities, gut microbiota must communicate using a sophisticated cell–cell
system known as quorum sensing (QS). Studies reveal that QS has a pivotal role in gut
microbiota homeostasis [58–60]. This suggests that interference in QS could disrupt gut
microbiota balance and lead to disease conditions. Recently, we demonstrated that artificial
sweeteners exert inhibitory effects on bacterial QS and proposed that QS inhibition could
be one mechanism behind dysbiosis [61,62]. In this review, we discuss the role of QS
in normobiosis. Beginning from the discovery of QS, we highlight the discovery of the
numerous signaling molecules utilized in QS. We also evaluate strategies that enhance gut
bacterial activity through QS activation and provide possible future direction.

3. Quorum Sensing

Our understanding of chemical communication among bacteria has undergone a
significant shift since the discovery of QS. From being seen as distinct noncooperative
species, bacteria are now understood as socially cooperative organisms with the ability to
engage in multicellular behaviors [63]. Via QS, bacteria live a multicellular life, coordinating
group behaviors that are often impossible for a single cell to carry out [64]. Hastings and
colleagues [65] were the first to discover QS over 50 years ago. In their investigation, they
found that Vibrio fischeri (known then as Photobacterium fisheri) a bioluminescent bacterium
rapidly produced light, which was not a result of cell growth but rather the “conditioning”
of media by the developing cells. In freshly inoculated cultures, the bacterial cells did not
begin to produce light until the mid-logarithmic phase. The researchers later named this
conditioning phenomenon “autoinduction”. To describe and make the phenomenon clearer,
Greenberg and colleagues introduced the phrase “quorum sensing” in 1994 [66]. Later
studies showed that QS exists across various bacterial species, including pathogens [67–75].

QS is driven by chemical messengers known as autoinducers (AI), by which bacteria
communicate with one another and coordinate their gene expression in response to their
population density [71–73]. In the gut though, not every species produces AIs. When
bacteria cannot produce their own AIs, they secretly “listen” to the signals produced
by other bacteria, a phenomenon known as “eavesdropping” [76]. Using QS, numer-
ous group activities are performed. These activities include biofilm formation [77,78],
virulence factor production [74,79,80], sporulation [81,82], bioluminescence [65,83], nu-
cleotide biosynthesis [84], DNA horizontal transfer [81,85], antibiotic synthesis [86], glucose
uptake [70,84,87], adaptation to noxious environments [88,89], and production of secondary
metabolites [90]. Interestingly, QS can occur within species and between species [90,91],
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as well as between kingdoms (e.g., eucaryotic host cells and bacteria) [92–96]. Therefore,
the term “quorum sensing” can be expanded to encompass multimodal communication
networks including the intraspecies, interspecies, and interkingdom signaling cascades.

4. Different Quorum Sensing Signals in the Gut (Figure 1)
4.1. Autoinducing Peptides (See Table 1)

Different AIs are employed by Gram-positive and Gram-negative bacteria. The Gram-
positive bacteria utilize oligopeptides, commonly referred to as autoinducing peptides
(AIPs), for their communication [97]. These AIPs are of various types, differing in se-
quence and structural organization [97,98]. Following their synthesis, AIPs are immediately
processed. Since peptides are unable to traverse lipid-bilayer membranes, specialized
transporters move the processed AIPs outside the cell [64]. The AIPs’ processing by post-
translational modification produces a number of products with sizes ranging from 5 to
17 amino acids in linear or cyclical structural organization [97,98]. The extracellular AIPs
bind to a two-component histidine kinase receptor on the bacterial membrane and ac-
tivate the kinase activity of the receptor. This results in autophosphorylation and the
subsequent relay of the phosphate group to a response regulator downstream [99,100].
The phosphorylated response regulator activates the operon, creating an autoinducing
feed-forward looping that synchronizes the QS response [64]. Some Gram-positive bacteria
lack membrane-bound receptors. Therefore, the AIPs are returned to the cells’ cytoplasm
with the aid of a transporter where they interact with the transcription factors, forming a
regulatory complex that modulates gene expression [98,101].

Table 1. Quorum sensing molecules in the gut.

Quorum Sensing Molecules Source Structure References

Autoinducing peptides
Gram-positive bacteria
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4.2. N-Acyl Homoserine Lactones (See Table 1)

In Gram-negative bacteria, the most prevalent group of AIs are the N-acyl homoserine
lactones (AHLs) [71,115]. Different bacterial species produce AHLs with different acyl chain
lengths or substitutions [102,103], but with the same essential homoserine lactone moiety
(Table 1). The LuxI protein family is responsible for producing the AHLs from S-adenosyl
methionine (SAM) and an acylated-acyl carrier protein (ACP) [116]. The AHLs can freely
move across the cell membrane [75,80]. At an extracellular threshold concentration, the AIs
enter the cell and once in the cytoplasm and bound to their receptors, form a regulatory
complex that activates the transcription of QS-control genes. Some Gram-negative bacteria
have two-component histidine kinase receptors that function similarly to the Gram-positive
two-component QS system [64,100,103,117]. The N-terminal domain of the QS regulatory
protein LuxR (or its analog in other Gram-negative bacterial species) interacts with AHL,
whereas the C-terminal domain interacts with DNA [118].

4.3. Autoinducer-2 (See Table 1)

Before the discovery of autoinducer-2 (AI-2), QS was thought to occur just within
species employing AIP or AHL (collectively known as autoinducer-1 or AI-1). However,
we now know that bacteria in mixed populations have different mechanisms by which they
can sense, recognize, and interact with one another [68,104,105]. AI-2 is the “universal” QS
molecule that mediates interspecies communication and was first identified in the marine
bacterium Vibrio harveyi which, together with AHL, regulates bioluminescence [104,105].
Produced by S-ribosylhomocysteinase (LuxS), AI-2 is conserved in both Gram-positive and
Gram-negative bacteria [91,119–121]. Using S-adenosylmethionine (SAM), bacterial cells
produce S-adenosylhomocysteine (SAH) which is then broken down by the nucleosidase
Pfs into adenine and S-ribosylhomocysteine (SRH) [122,123]. LuxS cleaves SRH at the
thioether bond to produce homocysteine and 4,5-dihydroxy-2,3-pentanedione (DHPD), the
latter of which cyclizes and rearranges spontaneously into AI-2 [68]. For bacteria, the step
catalyzed by LuxS has at least two uses: SAH detoxification and AI-2 production [124].
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Figure 1. Cross-communication in the gut, showing bacteria–bacteria, bacteria–host, and host–
bacteria communication. In the bacteria–bacteria communication, elevated AI-2 induces the growth
of native gut bacterial residents such as Firmicutes and Bifidobacteria but suppresses the expansion
of pathogens such as V. cholera. 3-Oxo-C12:2 is positively associated with Firmicutes. Indole enhances
the proliferation of beneficial bacteria. In the bacteria–host communication, 3-oxo-C12:2 protect tight
junction integrity. Indoles enhances epithelial barrier function via the aryl hydrocarbon receptor
(AhR). While AI-3 induces pro-inflammatory reactions by stimulating the expression of cytokines IL-8,
3-oxo-C12:2-HSL reduces inflammation by repressing the expression of IL-1, IL-8, and TNF. 3-Oxo-
C12 exacts a negative impact on the epithelial barrier by disrupting the tight junctions. Gram-positive
signal peptides, such as competence and sporulation factor (CSF) bind to the cation transporter
(OCTN2), and subsequently activate heat shock protein (HSP), p38 MAP, and protein kinase B
(Akt), to protect intestinal barriers from oxidative stress damage, and impairment. The QS peptide,
EntF*, promotes colorectal cancer (CRC) metastasis through interference with the epithelial cells’
integrity. The host–bacteria communication means, from the host end, the microenvironment in the
lumen (pH, Temperature, Osmotic pressure, and Bile acids) which inactivates QS signals such as
AI-2 is modulated. Also, paraoxonases (PONs) exert lactonase-like activity against AHLs signals.
AI-2 mimics, and catecholamines (epinephrine (EPI)/norepinephrine (NE)) are recognized by the
bacterial QS receptors to modulate gut microbial balance (created using BioRender.com, accessed on
12 December 2022).
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4.4. Autoinducer-3 (See Table 1)

Autoinducer-3 (AI-3) consists of various products belonging to the pyrazinone family
(Table 1) synthesize through a chain of reactions. Two of these reactions—the production of
the AI-3 by the action of threonine dehydrogenase (Tdh) and the spontaneous cyclization
by aminoacyl-tRNA synthetase—are crucial [79]. Studies have shown that the production
of AI-3 is not dependent on AI-2 synthase (LuxS) [106,107]. AI-3 is responsible for the
pathogenesis of enteropathogenic Escherichia coli (EPEC) [79,106,107,125,126]. QseC, a
histidine kinase receptor, senses AI-3 to modulate gene expression [127]. QseC is conserved
among different kinds of bacteria. Bacterial species such as E. coli, V. cholerae, Salmonella sp.,
Shigella sp., and C. violaceium possess QseC sensors [127,128]. Since bacterial QseC can
also respond to host hormones (catecholamines), Kim et al. explored whether the AI-3
analogs may modulate human adrenergic signaling [79]. Their findings showed that AI-3
analogs have no impact on human adrenergic receptors. QseC lacks the primary sequence
homology of adrenergic receptors [127].

4.5. Others (See Table 1)

Besides AI-2 and AI-3, indole is another signaling molecule that both Gram-positive and
Gram-negative bacteria share (Table 1). Indole is produced by about 100 species of Gram-
positive and Gram-negative bacteria, suggesting that it may also serve as an interspecies
signal, although some bacterial species, such as Pseudomonas aeruginosa, Aspergillus niger, and
Salmonella enteric, do not synthesize it [108]. Tryptophanase, an enzyme encoded by the
tnaA gene, primarily found in commensal bacteria like Bacteroides spp. and Clostridium spp.,
breaks down tryptophan to produce indole [129]. Studies have shown that AI-2 and indole
signaling are intertwined [108,130].

Other important QS molecules include alkyl quinolones (AQs). Some Gram-negative bac-
teria, such as Burkholderia and Pseudomonas genera, utilize the AQ-mediated QS system [109,110]
besides the AHL-mediated QS system that is used by the majority of Gram-negative
bacteria [71,72]. Although certain AQs, containing remarkable antibiotic properties, were
first discovered in the 1940s in P. aeruginosa, it has only recently been found that the op-
portunist pathogen also produces an AQ derivative called the Pseudomonas quinolone
signal (PQS) which is essential for bacterial communication [110]. Another QS family
of molecules found in several Gram-negative bacterial species are the cis-2-unsaturated
fatty acids, also known as the diffusible signal factors (DSFs) [114]. The first discovered
DSF is cis-11-methyl-2-dodecenoic acid, which regulates the pathogenicity of the plant
pathogen Xanthomonas campestris pv campestris (Xcc) [111,112]. Although DSF production
was previously believed to be exclusive to xanthomonads, it is now recognized that other
unrelated bacteria such as Pseudomonas aeruginosa and Burkholderia cenocepacia synthesize
structurally similar molecules [113,114].

5. Role of QS in Normobiosis
5.1. Intraspecies QS and Normobiosis

Gut bacteria were initially thought to be eavesdropping on AHLs synthesized within
the complex gut microbial ecosystem [131]. However, available evidence, recently obtained
using highly sensitive and sophisticated technologies, indicates the existence of AHL
signaling among native gut residents [58,59,132,133]. The discovery of AHL signaling in
the gut which is linked to normobiosis is one of the significant findings in understanding
the human gut. In the human fecal samples from patients with inflammatory bowel disease
(IBD) and healthy individuals, 14 distinct AHLs were profiled, one of which was prominent,
identified as 3-oxo-C12:2-HSL [93]. Evidence further showed that the patients with IBD
had considerably lower levels of 3-oxo-C12:2-HSL molecules (16%) than individuals in
good health (65.4%) [93]. The dramatic decrease in the 3-oxo-C12:2-HSL molecule in
IBD patients was found to correspond with a gut microbiota imbalance characterized by
a considerable decrease in important gut bacterial phyla including Firmicutes [58,134].
Firmicutes, together with Bacteroidetes, make up more than 90% of the gut microbial



Int. J. Mol. Sci. 2023, 24, 3722 9 of 22

species in healthy individuals [3,135]. These prominent taxonomical groups perform a
variety of tasks crucial to host health, including fermentation of a variety of complex
polysaccharides to produce short-chain fatty acids (SCFAs) such as acetate, propionate,
and butyrate [136,137]. SCFAs offer a variety of physiological benefits for the host such as
tumor prevention [138], immunomodulation [139], and glucose and lipid regulation [140].
Firmicutes and Bacteroidetes species are believed to contribute differently to the pools of
each SCFA. For example, the main butyrate producers are thought to be Firmicutes [141],
whereas higher amounts of propionate and acetate in the total SCFA pool have been
linked to the higher prevalence of Bacteroidetes [137,142]. For this reason, variations in the
populations of these vital bacteria could affect the concentration of SCFAs, which in turn
would have an impact on the host’s health. Indeed, reduced SCFAs have been observed in
IBD [139,143,144].

5.2. Interspecies QS and Normobiosis

A growing body of knowledge shows that interspecies interactions mediated by Al-2
play a vital role in gut bacterial composition and balance. By using engineered E. coli
strains that manipulate AI-2 levels by either raising or lowering the concentration of AI-2
in the gut, Thompson et al. evaluated the effect of the QS molecule on gut microbiota
equilibrium [145]. In their studies, the researchers found that the antibiotic treatment
lowered Firmicutes and other members carrying the luxS gene, indicating that AI-2 levels
were reduced. Bacteroidetes were shown to dominate the microbiota following antibiotic-
induced dysbiosis, possibly due to competitive advantage acquired from resistance caused
by spontaneous mutations [146]. The streptomycin-induced dysbiosis from Thompson
and colleagues’ study is consistent with those observed in other studies [147–149]. By
elevating AI-2 levels, Thompson et al. observed that the growth of Firmicutes and other
AI-2 producers was stimulated, whereas the proliferation of Bacteroidetes was suppressed,
thus reversing the antibiotic-induced dysbiosis. More recently, in a study involving human
patients and murine models of neonatal necrotizing enterocolitis (NEC), it was discovered
that the concentration of AI-2 was dramatically reduced during the acute phase of the
disease but gradually increased throughout the convalescent phase [150]. These findings
show that AI-2 impacts the composition and equilibrium of gut microbiota. The link
between AI-2 levels and intestinal microbiota balance suggests that the signaling molecules
might be a novel biomarker for gut homeostasis.

Gut microbiota functions also include the suppression of pathogen expansion, a phe-
nomenon known as colonization resistance. Direct interactions between gut microbial
communities appear to be crucial in colonization resistance. In a study using fecal micro-
biota of adults living in a region with a high cholera burden, Hsiao et al. showed that
the production of AI-2 by commensal bacteria conferred colonization resistance against
Vibrio cholerae infection [151]. Among other commensal bacteria, Ruminococcus obeum was
particularly prevalent in fecal samples during the recovery stage following V. cholerae
infection. To elucidate the mechanism, Hsiao et al. artificially implanted gnotobiotic mice
with a population of bacterial species from the human gut. Again, R. obeum, one of the
species, significantly increased and prevented the colonization of V. cholerae through the
expression of luxS (the gene for AI-2 synthase). Earlier, Bifidobacteriae were reported to
offer protection against enterohemorrhagic E. coli (EHEC) [152] and Citrobacter rodentium
infections [153] through colonization resistance. Studies have shown that the presence of
AI-2 impacts Bifidobacteriae to form more biofilms, in turn promoting the colonization of
the species [154,155]. It can be inferred, therefore, that AI-2 in the gut at least enhances the
colonization fitness of the gut native bacterial community by promoting biofilm formation.
When AI-2 activity was decreased using D-ribose, the biofilm formation of bacteriocin-
producing Lactobacillus paraplantarum was inhibited [156]. AI-2 was shown to facilitate the
auto-aggregation of E. coli, which promoted biofilm formation as well as enhanced bacterial
stress resistance [157]. Taken together, these findings reveal that QS may have a role in
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suppressing pathogen expansion and restoring gut microbiota balance through enhancing
biofilm formation and stress resistance in native gut bacteria.

One of the crucial interspecies QS molecules produced by some bacteria is indole, an
amino acid-derived metabolite [108,130]. At indole concentrations below 1 mM, E. coli
was reported to only exhibit a repellent response, but switched to an attraction response
when the indole concentration was at 1 mM or more [158]. Yang et al. suggest that indole
may prevent pathogen invasion with a repulsion mechanism while bringing beneficial
resident bacterial species together and enhancing their proliferation [158]. Through differ-
ential adaptation, gut bacteria in the presence of indole can suppress pathogen expansion.
Enteropathogenic E. coli (EPEC) motility, epithelial cell adhesion, biofilm formation, and vir-
ulence gene expression were all reported to be reduced in the presence of indole [159–161].
Usually, co-infections with two or more infectious agents, such as V. cholerae and EPEC,
have been observed in diarrheal samples [162]. Particularly, EPEC virulence has been
demonstrated to increase in the presence of V. cholerae, possibly as a consequence of in-
creased concentrations of V. cholerae AI-1 (CAI-1), the main QS molecule produced by
V. cholerae [163]. Interestingly, the production of CAI-1 is inhibited by indole [163]. Addi-
tionally, the EPEC type III secretion system (T3SS), which was reported to be upregulated
by the presence of CAI-1 [163], was inhibited by indole [164]. To infect host cells, EPEC
uses the T3SS [165]. The interference of EPEC T3SS in the presence of indole was proposed
to be due to the disruptive activity of indole to the CAI-1-mediated communication that
enables EPEC to interact with V. cholerae [164]. This, therefore, suggests that the native
resident bacteria of the gut could interfere with the pathogens’ virulence by thwarting their
communication. By producing and rereleasing essential metabolites such as indole, native
gut bacteria promote the fitness of their members as well as undermine the communication
of enemies.

5.3. Interkingdom QS and Normobiosis

The most documented inter-kingdom communications (host–bacteria interactions)
are the ones driven by AHL molecules from pathogens [166]. Hosts adjust accordingly
by monitoring AHLs within the gut ecosystem and resisting infection by interfering with
QS signal transduction [92]. Enteric bacterial pathogens use host stress hormones to
their advantage. Although the exact mechanisms behind microbiota and hormonal sig-
naling are as yet unknown, hormones released during host stress can affect the host–
bacteria interactions, bacterial pathogenicity, and vulnerability to infection [51]. These
stress hormones may be exploited by enteric pathogens as signaling molecules to mod-
ulate their virulence genes [52]. The growth and motility of pathogenic bacteria like
Helicobacter pylori [167], Vibrio spp. [128,168], Klebsiella pneumoniae, P. aeruginosa, E. coli, and
Staphylococcus aureus [169] have been found to be modulated by catecholamines. Cate-
cholamines have also been reported to increase bacterial virulence [170]. In P. aeruginosa
PA14, virulence appears to be induced via the las QS pathway following norepinephrine
treatment [171].

One of the mechanisms developed by the host in resisting infection is through influ-
encing the activity of QS molecules. By modulating the gut physico–chemical environment
including pH, temperature, osmotic pressure, bile acid levels, etc. the host may impact
the functions of QS molecules such as AI-2 and thus influence gut microbiota activities
(Figure 1) [172]. Besides regulating the gut environment, special QS-quenching enzymes
are produced by host cells to modulate gut microbiota equilibrium. Enzymes such as PON-
sare known to degrade AHLs [173,174]. Three types of PON, which are all substantially
conserved across species, have been identified (PON1, PON2, and PON3) [175] and are
reported to be expressed in the gastrointestinal tract (GIT) [176]. Although PON1 and
PON3 are primarily expressed in the liver and found in serum bound to high-density
lipoprotein [177], PON2 is widely expressed and found in almost all human tissues includ-
ing in the GIT but not detected in serum [178]. Higher levels of PON2 are reported in the
jejunum than in the colon, ileum, and duodenum [179]. PON2 appears to have higher
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lactonase activity than the other two PON types [180,181]. PON2 deficiency in epithelia
increased P. aeruginosa 3-oxo-C12-HSL-mediated QS, whereas the absence of PON1 or
PON3 activity in epithelial cells did not affect the 3-oxo-C12-HSL [180]. Therefore, PON2
may be a key player in mammals’ inactivation of 3-oxo-C12-HSL [181]. The 3-oxo-C12-HSL
from P. aeruginosa has been shown to have a negative impact on the epithelial barrier by
disrupting the tight junctions, increasing paracellular permeability of macromolecules
and ions [93,96]. The spread of pathogens such as P. aeruginosa with its associated effects
could be mitigated by PON2. Although PONs’ primary physiological function and natural
substrates remain largely unknown, it appears that they have roles in GIT pathologies.
Patients with IBD express PON1 and PON3 at reduced levels when compared with healthy
individuals [182]. On the other hand, carrying the PON1 R192 allele conferred protection
against the onset of IBD in a case–control study conducted on Ashkenazi Jews [183].

Another important finding is the release of AI-2 mimics by human epithelial cells
that are recognized by bacterial AI-2 receptors [95]. Although the mechanism of AI-2
mimic synthesis is still poorly understood, the data currently available indicate that AI-2
mimic activity is stimulated when epithelial cells are exposed to bacteria, either directly
or indirectly, suggesting that one or more secreted bacterial components induce AI-2
mimic synthesis [95]. One can compare pathogen interactions with their host as an “arms
race” in which each player continuously responds to the other’s changing tactics [92].
The human aryl hydrocarbon receptor (AhR), a protein well-known for its function in
mediating toxicity [184], has been shown to interact with several QS molecules (such as
3-oxo-C12-HSL, C4-HSL, and PQS) produced by P. aeruginosa to keep track of the bacterial
infection at various stages [92]. Such eavesdropping helps the host adapt to changes in the
gut flora.

The suggestion that AHL molecules play a positive role in gut ecosystems is supported
by 3-oxo-C12:2-HSL’s anti-inflammatory properties as well as its protective benefits on
tight junction integrity (Figure 1) [93]. The chemokine IL-8, which is an important protein
secreted by intestinal epithelial cells during inflammation, induces neutrophil recruitment
in the mucosa and takes part in the acute-phase response [185,186]. Comparing the effects
of 3-oxo-C12:2-HSL and the structurally similar AHL molecule 3-oxo-C12-HSL synthesized
by P. aeruginosa, researchers found out that 3-oxo-C12:2-HSL, but not 3-oxo-C12-HSL,
suppressed the stimulation of IL-8 secretion [93]. IL-8, induced by the pro-inflammatory
cytokine IL-1 [187], was recently demonstrated to be downregulated, together with tumor
necrosis factor (TNF), by 3-oxo-C12:2-HSL via bitter taste receptors [188]. While AI-3 could
induce inflammatory reactions in a similar manner to other pyrazinones [79] through the
expression of IL-8 [20,96], 3-oxo-C12:2-HSL [93] and AI-2 [189] were reported to reduce
inflammation.

By stimulating beneficial bacteria and suppressing pathogenic bacteria in the intestines,
indoles have an impact on the epithelial barrier [129]. Indole also has a direct impact on
the epithelial barrier (Figure 1), exerting anti-inflammatory effects and immune system
response by interacting with AhR [129]. The action of indoles on the AhR results in the
induction of IL-22 [190] which enhances stem cell-mediated epithelial barrier repair and
safeguards against infection and damage induced by hyperinflammatory reactions [191].
Furthermore, intestinal microbiota-produced indole metabolites were reported to reduce
intestinal inflammation through activating type I interferon (IFN-1) signaling [192].

Compared to other QS signaling molecules, much less research has been done on the
impact of AIP on gut microbiota balance. However, available data suggest the importance
of host–bacteria interaction via AIP in gut microbial balance (Figure 1). An AIP from
Bacillus subtilis, also known as competence and sporulation factor (CSF), was shown to
contribute to normobiosis by mediating inter-kingdom signaling [193]. B. subtilis was
previously thought to be just soil bacteria, however, it is now confirmed to be a member of
the human gut and evolved to exist there [194,195]. Today, Bacillus species are commonly
used as probiotics [196]. B. subtilisis administration was demonstrated in murine models to
reduce dextrose sulfate sodium (DSS)-induced inflammation and dysbiosis by balancing
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the gut microbiota as well as related metabolites, with the resultant healing of intestinal
mucosa damage impacted following DSS exposure [197]. The organic cation/carnitine
transporter 2 (OCTN2), a cell membrane transporter, appears to be the channel through
which CSF interacts with the host [193]. A significant correlation exists between mutations
in the gene that codes for OCTN2 and susceptibility to Crohn’s disease [198,199]. CSF
appears to reduce oxidative stress that causes cell death and breakdown of the epithelial
barrier [193]. After being absorbed by intestinal epithelial cells via OCTN2, CSF triggers
vital survival pathways such as p38 MAP kinase and protein kinase B (Akt) and stimulates
cytoprotective heat shock proteins (HSPs), the latter of which protects gut epithelial cells
from oxidative stress damage and impairment of barrier function [193]. These findings
suggest that the interaction between QS molecules and host cells may make it easier for
the host to adjust/adapt to changes in the microbiota that favors restoration and recovery
of microbial equilibrium. Available evidence so far indicates that the function of OCTN2
may be limited to CSF [193]. This, therefore, suggests that other similar transporters
such as OCTN1 [200] and MDR 1 (also known as P-glycoprotein or P-gp 1) [201] could
complement OCTN2 in the surveillance of the gut microbiota by the host. Together, these
transporters represent crucial systems for homeostatic host–bacteria interactions. Perhaps
this system of host surveillance of gut ecosystem is one mechanism by which the host
assesses alterations that might otherwise tip the balance of the gut microbiota. With the
growing interest in AIPs, important discoveries are constantly being made. For example, a
recently published study demonstrates that a new family of QS peptides, such as EntF*,
produced by Enterococcus faecium, mediates host interaction and enhances colorectal cancer
(CRC) metastasis [202]. In their findings, Wynendaele et al. showed that EntF* modulates
the epithelial–mesenchymal transition (EMT) by regulating the expression of E-cadherin
via the CXCR4 receptor [202]. Mechanistically, EMT enables solid tumors to develop into
more malignant phenotypes and increases their invasive and metastatic properties [203].

6. Future Direction

Imbalance in the enteric bacterial community by a variety of agents can result in disease
conditions [204–207]. Accordingly, restoring, or re-establishing, normobiosis may hold
promise to address or even avoid dysbiosis-associated pathologies. Despite our knowledge
of numerous receptor proteins that enable the host’s surveillance of the gut ecosystem for
QS signaling molecules [184,193], the intracellular mammalian receptors or targets for such
QS signals and the specific QS signaling pathways have not been elucidated yet.

Understanding how enteric bacteria compete and cooperate is crucial for uncovering
the processes of disorders associated with dysbiosis [208]. A recent report shows that
targeting the LuxR-type receptors for bacterial QS may be a novel strategy for modulating
the gut microbiota in IBD [134]. Quorum quenching, or the use of inhibitory chemicals (QS
blockers) or enzymes, may offer promise for treating diseases (Figure 2). However, they may
also possess the potential to inhibit the action of beneficial bacteria. Therefore, to develop
effective therapeutic interventions, it is necessary to ensure that such therapies are target-
specific, and not broad in their actions. This emphasizes the need for more knowledge
about how QS is regulated and how various QS systems interact in the gut environment.
With this understanding, we may be able to regulate bacterial community structure and
functions to improve human health while also producing much-needed alternatives to
antibiotics. The ease with which peptides may be synthesized and the revelation that some
peptide-based QS molecules, such as CSF, function within a physiological concentration
range (10–100 nM) [209] makes them promising candidates for therapeutic applications in
restoring and reestablishing normobiosis.

On one hand, one could also think of QS molecules as trustworthy biomarkers for
chronic dysbiosis-related disorders. The concentration of AI-2 is said to rise as adeno-
mas develop into CRC [210]. On the other hand, in IBD, 3-oxo-C12:2-HSL decreases
significantly [93]. To date, the source of 3-oxo-C12:2-HSL has not yet been identified. Al-
though the 3-oxo-C12:2-HSL is strongly associated with Firmicutes, for the time being, it
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might be more appropriate to think of it as a marker of gut microbial balance as opposed
to anything Firmicutes themselves synthesize [93]. Uncovering which bacteria synthesize
3-oxo-C12:2-HSL will advance our understanding and discussion on the role of AHLs
in normobiosis. Given its protective function on intestinal epithelia and its loss in IBD
patients [93,132,211], 3-oxo-C12:2-HSL could be targeted to reduce inflammation and pos-
sibly IBD. Furthermore, since the presence of AI-2 increases Firmicute count [145], hope
is raised for therapeutic applications. The AI-2 molecule might be a useful intervention
for redressing the balance between the prominent taxonomical groups. As demonstrated
previously [145], recombinant AI-2-manipulating strains can be used as probiotics to restore
substance-induced dysbiosis or suppress pathogen expansion. While the human epithelial
cells release AI-2 mimics that are recognized by bacterial AI-2 receptors [95], a lot is still
not understood about the process through which AI-2 mimics are synthesized. One can
imagine a variety of approaches using AI-2 or mimics supplementation as QS-type prebi-
otics (Figure 2). Additionally, including organic, traditional, and personalized functional
foods in the diet could help the body deal with numerous harmful stressors and the lifetime
developmental epigenetic program, preventing genetic and epigenetic anomalies in the
human metagenome [21].
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Figure 2. Opportunities for therapeutic interventions in restoring or re-establishing gut microbiota
balance after dysbiosis. Normobiosis (1) can be altered through quorum sensing disruption (2).
In turn, the quorum sensing disruption leads to decrease in bacterial diversity and pathogens
proliferation (3), which eventually results in dysbiosis (4). Dysbiosis can be reversed using probiotics,
prebiotics, engineered QS systems, or blockers of pathogens’ QS.
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Other microbial components of the gut, such as fungi, also show evidence of QS uti-
lization besides bacteria [212,213]. Available data from other complex microbial ecosystems,
like the soil, indicates the importance of QS in fungal activities [214]. Despite being less
prevalent in the gut compared to bacteria, fungi are crucial to maintaining the equilibrium
of this intricate gut microbial community [215,216]. Since our focus in this review is on
bacterial QS, we intend, in a separate paper in the future, to discuss the QS signaling
molecules produced by gut fungi and elucidate the mechanisms by which they influence
bacteria and the host, including their potential for healthcare applications.

7. Conclusions

Since Hastings and colleagues discovered QS in 1970, our understanding of bacterial
communication has improved substantially. Today, QS is broadened to include multimodal
communication, encompassing intraspecies, interspecies, and interkingdom signaling.
The role of QS in normobiosis is undeniable. Via QS, gut microbiota maintains balance
by suppressing pathogen expansion through enhancing biofilm formation and fitness of
resident gut bacteria, mobilizing native members to reestablish balance following substance-
induced dysbiosis, exerting anti-inflammatory response as well as preserving the tight
junction integrity. Although gut microbiota research has just scratched the surface, exciting
prospects exist for QS-based therapeutic interventions. With the advancement in technology,
more and more tools are made available to further clarify the role of QS in normobiosis and
elucidate the connection between QS inhibition and dysbiosis.
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