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Abstract: Eleven manganese 4′-substituted-2,2′:6′,2′′-terpyridine complexes (1a–1c and 2a–2h) with
three non-oxygen-containing substituents (L1a–L1c: phenyl, naphthalen-2-yl and naphthalen-1-yl,
L1a–L1c) and eight oxygen-containing substituents (L2a–L2h: 4-hydroxyl-phenyl, 3-hydroxyl-phenyl,
2-hydroxyl-phenyl, 4-methoxyl-phenyl, 4-carboxyl-phenyl, 4-(methylsulfonyl)phenyl, 4-nitrophenyl
and furan-2-yl) were prepared and characterized by IR, elemental analysis or single crystal X-
ray diffraction. In vitro data demonstrate that all of these show higher antiproliferative activities
than cisplatin against five human carcinoma cell lines: A549, Bel-7402, Eca-109, HeLa and MCF-7.
Compound 2d presents the strongest antiproliferative effect against A549 and HeLa cells, with IC50

values being 0.281 µM and 0.356 µM, respectively. The lowest IC50 values against Bel-7402 (0.523 µM)
Eca-109 (0.514 µM) and MCF-7 (0.356 µM) were obtained for compounds 2h, 2g and 2c, respectively.
Compound 2g with a nitro group showed the best results on the whole, with relevantly low IC50

values against all the tested tumor cells. The DNA interactions with these compounds were studied
by circular dichroism spectroscopic and molecular modeling methods. Spectrophotometric results
revealed that the compounds have strong affinities in binding with DNA as intercalators, and the
binding induces DNA conformational transition. Molecular docking studies indicate that the binding
is contributed by the π–π stacking and hydrogen bonds. The anticancer activities of the compounds
are correlated with their DNA binding ability, and the modification of oxygen-containing substituents
significantly enhanced the anticancer activity, which could provide a new rationale for the future
design of terpyridine-based metal complexes with antitumor potential.

Keywords: terpyridine; manganese complex; anticancer activity; DNA interaction; molecular docking

1. Introduction

Cancer is considered the most deadly disease impacting the different countries of the
world [1–3]. According to WHO reports, as of 2018, cancer was the leading cause of death,
with a global estimate of around 9.6 million, and one out of every six cases of death is due
to cancer worldwide [4]. Metal-based drugs have been known and widely used as early
as in ancient medicine. In modern times, a new era in oncology has been reopened using
platinum anticancer agents [5]. Platinum drugs attracted attention in cancer treatment
once the antineoplastic activity of cisplatin was discovered in the 1960s [6–9]. Despite
the broad anticancer potential of platinum drugs, their clinical use has regularly been
constrained by renal toxicity, low solubility and high cross-resistance [10]. To overcome
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these adverse reactions, the design and development of new drugs that have high efficacy,
good bioavailability and weak cross-resistance are hotspots in the research of anti-tumor
metal complexes [11–13].

As very popular ligands in coordination chemistry, terpyridine and its derivatives are a
kind of multidentate N-donor ligands with a strong coordination ability to transition metals,
and the planar aromatic ring structure is conducive to the interaction with DNA [14–25]. The
metal complexes of terpyridine and its derivatives have rich photophysical and electrical
properties. Therefore, they have important research and application prospects in the fields
of luminescent materials, photodynamic therapy and chemical sensors [26–32]. After the
success of cisplatin and carboplatin in cancer chemotherapy, other transition metal ions have
been of great interest, since they are involved in many biological processes [33–45]. Among
them, manganese is used to synthesize new complexes that exhibit excellent antibacterial and
antitumor activity [46–48].

Due to their multi-faceted biological activity, a clear-cut target is not always easy
to identify for metal or metalloid drugs [49]. Clinically approved platinum drugs are
widely accepted to target DNA, and their activities are known to be influenced by DNA
damage response pathways or respective repair mechanisms [50,51]. Therefore, DNA
is considered the primary target for most anticancer and antiviral therapeutics [52–56].
DNA Topoisomerases (Topo) are ubiquitous nuclear enzymes involved in regulating the
topological state of DNA, and in eukaryotic organisms, Topo can be classified into two
structurally and functionally different main classes: Topo I and Topo II. Both these enzymes
are the cellular target of clinically important anticancer and antibacterial drugs, and their
inhibition has been considered an effective strategy for the design of many anticancer agents.
At the same time, Topo I or II inhibitors show considerable wide spectrum antitumor
activities, an important feature to be included in many chemotherapeutic protocols [57–63].

Although many terpyridine complexes have shown an interesting antiproliferative
activity against tumor cells [21–24], the factors that govern the activity and the biologi-
cal target are unknown. In this work, a series of manganese dichloride-substituted ter-
pyridine complexes were synthesized by the reaction of manganese dichloride with the
corresponding 4′-substituted-2,2′:6′,2′′-terpyridine-bearing phenyl (L1a), naphthalen-2-yl
(L1b), naphthalen-1-yl (L1c), 4-hydroxyl-phenyl (L2a), 3-hydroxyl-phenyl (L2b), 2-hydroxyl-
phenyl (L2c), 4-methoxyl-phenyl (L2d), 4-carboxyl-phenyl (L2e), 4-(methylsulfonyl)phenyl
(L2f), 4-nitrophenyl (L2g) or furan-2-yl (L2h), which were characterized by IR, elemental
analysis and X-ray single-crystal diffraction. Their antiproliferative potentials against five
tumor cell lines were studied. The ability of the complexes to bind to DNA was investigated
by spectrophotometric studies and molecular modeling methods.

2. Results and Discussion
2.1. Synthesis and Characterization

The complexes 4′-phenyl-terpyridine (L1a), 4′-(naphthalen-2-yl)-2,2′:6′,2′′-terpyridine
(L1b), 4′-(naphthalen-1-yl)-2,2′:6′,2′′-terpyridine (L1c), 4′-(4-hydroxyl-phenyl)-2,2′:6′,
2′′-terpyridine (L2a), 4′-(3-hydroxyl-phenyl)-2,2′:6′,2′′-terpyridine (L2b), 4′-(2-hydroxyl-
phenyl)-2,2′:6′,2′′-terpyridine (L2c), 4′-(4-methoxyl-phenyl)-2,2′:6′,2′′-terpyridine (L2d), 4′-(4-
carboxyl-phenyl)-2,2′:6′,2′′-terpyridine (L2e), 4′-(4-(methylsulfonyl)phenyl)-2,2′:6′,2′′-
terpyridine (L2f), 4′-(4-nitrophenyl)-2,2′:6′,2′′-terpyridine (L2g) and 4′-(furan-2-yl)-2,2′:6′,2′′-
terpyridine (L2h) were obtained using the general established protocol, and the syntheses
of the ligands L1a and L2a–L2f were reported earlier [38,41]. The manganese compounds
1a–1c and 2a–2h (Figure 1) were synthesized by the reaction of L1a–L1c and L2a–L2h with
MnCl2·4H2O in MeOH/DCM solution, giving yields in the range of 46–73%.
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Figure 1. Synthesis of compounds 1a–1c and 2a–2h.

The structures of the target compounds were confirmed by IR, elemental analysis
and single-crystal X-ray crystallography. Their IR spectra (Figures S1–S11) display the
expected bands [43,64,65]. Namely, multiple bands in the range of 1650–1401 cm−1 and
1263–1011 cm−1 were observed for the C=C stretch and for in-plane C–H bending vi-
brations, as well as bands in the range of 911–673 cm−1 for out-of-plane C–H bending
vibrations. The hydroxyl group of 2a–2c gave a broad band in the range of 3300–3600 cm−1

for the O–H stretch, and the methoxyl group of 2d showed a band at 1240 cm−1 for the C–O–
C stretch. The carboxyl group of 2e displayed a broad band in the range of 3400–3600 cm−1

with the O–H stretch and a band at 1726 cm−1 with the C=O stretch. The sulfonyl group of
2f gave strong bands at 1308 and 1297 cm−1 for SO2 stretching, a band at 793 cm−1 for the
S–O stretch and two bands at 532 and 548 cm−1 for SO2 bending. The nitro group of 2g
exhibited strong bands at 1519 and 1343 cm−1 for NO2 stretching, a band at 858 cm−1 for
the CN stretch and a band at 754 cm−1 for CNO bending. The furyl group of 2h displayed
bands at 790 and 782 cm−1 for C–H bending vibrations.

2.2. Single Crystal X-ray Crystallography

The single-crystal X-ray crystallography of compounds 1a, 1c, 2a–2c, 2f and 2g con-
firmed their formulation as [MnCl2Ln] (n = 1a, 1c, 2a–2c, 2f and 2g), and the manganese
cation presented the common square pyramidal geometry. The crystal structures of com-
pounds 1a and 2c have been reported [64,66]. Thermal ellipsoid plots and packing diagrams
of 1a, 1c, 2a–2c, 2f and 2g are shown in Figures 2 and S12–S24.

Compound 1c is a mononuclear neutral manganese complex that crystallized in
the centric symmetric space group P-1, as shown in Figure 1. Each mononuclear ion is
coordinated by the three N atoms of the 4′-(naphthalen-1-yl)-2,2′:6′,2′′-terpyridine (L1c)
ligand and two chlorine atoms as two auxiliary ligands, therefore forming an irregular
square-based pyramid with a N3Cl2 coordination environment (τ = 0.07) [67]. Three
hydrogen bonds exist in the structure, involving the chloride atom Cl(1), the hydro-
gens at the carbon atoms of the terpyridine ligand (C(12) and C(25)) and the chloride
atom Cl(2) and the hydrogens at the carbon atoms of the terpyridine ligand (C(27)) with
a range of distances in 2.73–2.80 Å. The structure of 1c shows two kinds of π-ring (Y-
H...Cg) interactions, including one between one hydrogen at C27 and the ring formed by
C(20)–C(21)–C(22)–C(23)–C(24)–C(25) of the naphthalen-1-yl, and the other one involving
another hydrogen atom at C27 and the ring formed by C(16)–C(17)–C(18)–C(19)–C(20)–
C(21) of the naphthalen-1-yl with atom-centroid distances (X..Cg) of 3.733(3) and 3.679(3)
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Å. Due to the specific arrangements of the ligands in 1c, the compound molecules present
two kinds of intermolecular π–π interactions, including one between the two pyridyl rings
of the ligand and the other one between the ring formed by Mn(1)–N(1)–C(5)–C(6)–N(2)
and one terminal pyridyl ring with centroid distances of 3.641 and 3.687 Å.
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Figure 2. Thermal ellipsoid plot, drawn at the 50% probability level, of [MnCl2L3]·CH3CN (3·CH3CN)
with atomic numbering scheme. Selected bond lengths (Å) and angles (◦): Mn(1)-N(2) 2.2028(13),
Mn(1)-N(1) 2.2541(15), Mn(1)-N(3) 2.2595(15), Mn(1)-Cl(1) 2.3603(6), Mn(1)-Cl(2) 2.3558(5), N(2)-
Mn(1)-N(1) 71.51(5), N(2)-Mn(1)-N(3) 71.71(5), N(1)-Mn(1)-N(3) 141.23(5), N(2)-Mn(1)-Cl(1) 108.08(4),
N(1)-Mn(1)-Cl(1) 103.45(4), N(3)-Mn(1)-Cl(1) 99.15(4), N(2)-Mn(1)-Cl(2) 137.27(4), N(1)-Mn(1)-Cl(2)
100.29(4), N(3)-Mn(1)-Cl(2) 98.33(4), Cl(1)-Mn(1)-Cl(2) 114.57(2).

Similar to compound 1c, complexes 1a, 2a–2c, 2f and 2g are also mononuclear species
crystallized in the space groups P21/n for 1a, P21/n for 2a, P21/n for 2b, P-1 for 2c, P21/n
for 2f and C2/c for 2g. The asymmetric units of the compounds present half of the molecule
in 2g and one molecule in the other compounds, because of the symmetry of the molecules.
The atoms Mn1, N2, C9, C10, C13 and N3 are located on the twofold axis in 2g. The
coordination environment around the manganese ion in these compounds displays an
irregular square-based pyramid (τ = 0.23 for 1a, 0.24 for 2a, 0.26 for 2b, 0.13 for 2c, 0.14
for 2f and 0.08 for 2g) [67], which results from the penta-coordination of manganese by
three nitrogen atoms from the substituted terpyridine ligands and two chloride atoms as
the auxiliary ligands in a monodentate mode. The average contacts between the central
metal ion and the chloride atoms (Mn–Cl) is 2.360 Å in 1a, being longer than those in
1c (2.358 Å), 2c (2.352 Å), 2f (2.341 Å) and 2g (2.326 Å), but shorter than those in 2a
(2.363 Å) and 2b (2.365 Å). Such bond lengths are not only affected by the electrophilicity
of the substituents, but also by other factors, including hydrogen bonds or even spatial
environments determined by the positions of the substituent groups at the phenyl rings.

Hydrogen bonds are observed in compounds 1a, 2a–2c, 2f and 2g, and the bond
lengths are 2.81, 2.73, 2.80 and 2.78 Å for 1a; 2.33 Å for 2a; 2.31, 2.81 and 2.82 Å for 2b;
2.02, 1.83 and 1.82 Å for 2c; 2.57, 2.47, 2.45 and 2.68 Å for 2f; and 2.82, 2.59 and 2.60 Å
for 2g. Several π-ring interactions exist in the structure of compound 9, but there was
no such interaction in 2a–2c and 2g. In 2f, there are two kinds of π-ring (Y-X . . . Cg)
interactions, one between an oxygen at S(1) of the methylsulfonyl and the rings formed
by Mn(1)–N(1)–C(5)–C(6)–N(2) with atom-centroid distances (X . . . Cg) of 3.399 Å, and
another between a hydrogen at C(22) of the methylsulfonyl and the terminal pyridyl ring
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N(1)–C(1)–C(2)–C(3)–C(4)–C(5) with atom-centroid distances (X . . . Cg) of 2.990 Å. In these
structures, the different packing patterns lead to the different π–π stackings: two in 1a, 2a
and 2b (in the range of 3.538–3.646, 3.572–3.736 and 3.561–3.718 Å, respectively), three in 2c
(3.684–3.773 Å) and one for 2f and 2g (with a distance of 3.610 Å and 3.668 Å, respectively),
involving the ring formed by Mn(1)–N(1)–C(5)–C(6)–N(2) and a terminal pyridyl ring or a
terminal and a middle pyridyl ring.

2.3. Antiproliferative Properties against Tumor Cells

Five human carcinoma cell lines, including A549, Bel-7402, Eca-109, HeLa and MCF-7,
were treated with various concentrations of compounds 1a–1c and 2a–2h (0.125–4 µM
for A-549, Bel-7402, Eca-109 and MCF-7 cells or 0.25–8µM for HeLa cell line) to evaluate
the in vitro antiproliferative activities of the eleven compounds. Figure 3 shows the live-
cell images treated with different concentrations of compound 1a, and the microscopic
photographs of the five cells treated with various concentrations of compounds 1b, 1c
and 2a–2h were collected in the supporting information as Figures S25–S34. With the
increasing concentrations of the compounds, the number of cancer cells observed by
microscope decreased significantly. Notably, different kinds of cells respond differently
to these compounds. For A549 cells, slight swelling of the cell body to nuclei shrinkage
and blurring of cell boundaries were observed as the concentrations of the compounds
increased, which showed the death of the cells. Regarding the Bel-7402 cell line, the obvious
swelling of the cell body was observed at low concentrations of the compounds. As the
concentrations of the compounds increased, a further increase in the volume of the single
cell, followed by shrinkage of the nuclei and the fragmentation of the cells can be observed,
suggesting the necrosis of Bel-7402 cells. Swelling of the cell body at low concentrations of
the tested compounds was also observed for Eca-109 cells, with cell contraction, blurring of
cell boundaries and fragmentating of the cell body being observed at high concentrations
of the compounds. At low concentrations, there was no significant change in the cell
morphology of HeLa cells. However, as the concentration of the compounds increased,
some cells changed from a fusiform to a spherical shape with shrinkage of the nucleus.
Significant swelling of the cell body was also observed in MCF-7 cells, but the higher
concentration of the compounds led to cell contraction, the blurring of cell boundaries and
nuclei shrinkage.

Cell viability of the five cell lines was determined by the CCK-8 assay. The plots of the
cell viability vs. the concentration of compounds 1a–1c and 2a–2h against the Eca-109 cell
line (Figure 4) showed that all the compounds exhibited a strong antiproliferative effect
against the selected cell lines. The viability of Eca-109 cells decreases with the increase in
the compound concentrations, exhibiting a dose-dependent manner. For the A549, Bel-7402,
HeLa and MCF-7 cell lines, similar trends were observed and are shown in the curves of
the antiproliferative activities (Figures S35–S38).

The half-maximal inhibitory concentrations (IC50) of the eleven compounds against
the carcinoma cells were calculated and are listed in Table 1. The IC50 values of compounds
1a–1c and 2a–2h against the A549, Bel-7402, Eca-109, HeLa and MCF-7 cell lines were
much lower than the widely used anti-tumor drug cisplatin. In the results, compound
2d presented the lowest IC50 value against both A549 and HeLa cells; the values were
0.281 µM and 0.356 µM, respectively. Compound 2h showed the best results (0.523 µM) on
Bel-7402 cells, 2g gave the lowest IC50 value (0.514 µM) against Eca-109 cells and 2c had
the lowest value (0.249 µM) on MCF-7 cells.
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Figure 4. Plots of cell viability vs. the concentration of compounds 1a–1c and 2a–2h in different
concentrations against Eca-109 cell line.

Table 1. IC50 values (µM) from the dose-response assay of compounds 1a–1c and 2a–2h and the
reference compound cisplatin in the A549, Bel-7402, Eca-109, HeLa and MCF-7 cell lines, after an
incubation time of 48 h.

Compounds

A549 Bel-7402 Eca-109 HeLa MCF-7

IC50
(µmol/L)

95%
Confidence

Intervals
(µmol/L)

IC50
(µmol/L)

95%
Confidence

Intervals
(µmol/L)

IC50
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Confidence
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(µmol/L)

IC50
(µmol/L)

95%
Confidence

Intervals
(µmol/L)

IC50
(µmol/L)

95%
Confidence

Intervals
(µmol/L)

1a 2.858 2.142–3.813 2.667 0.455–0.718 3.115 2.575–3.769 7.249 6.118–8.589 1.229 0.980–1.540
1b 3.052 1.628–5.724 3.631 0.434–0.650 2.927 2.222–3.857 4.566 3.857–5.406 1.594 1.244–2.042
1c 2.811 2.034–3.883 2.751 0.308–0.450 2.196 1.818–2.652 2.935 1.765–4.883 0.850 0.671–1.077
2a 0.567 0.398–0.808 2.088 1.329–1.590 1.153 0.714–1.863 1.486 1.086–2.031 0.284 0.227–0.355
2b 0.754 0.519–1.096 0.730 0.616–0.796 0.579 0.486–0.688 1.583 1.085–2.310 0.525 0.399–0.691
2c 0.409 0.242–0.692 1.510 1.043–1.227 0.614 0.488–0.774 1.160 0.969–1.389 0.249 0.207–0.301
2d 0.281 0.217–0.364 1.382 0.304–0.471 0.645 0.502–0.829 0.356 0.280–0.452 0.819 0.583–1.151
2e 0.334 0.287–0.390 1.720 0.656–0.876 2.690 2.452–2.950 6.047 5.304–6.894 1.610 1.240–2.090
2f 0.723 0.538–0.970 1.011 0.441–0.605 0.886 0.717–1.094 2.889 1.815–4.600 0.501 0.360–0.698
2g 0.453 0.313–0.655 0.626 0.616–0.796 0.514 0.414–0.638 0.412 0.266–0.639 0.304 0.249–0.372
2h 0.626 0.455–0.862 0.523 1.043–1.227 0.868 0.677–1.111 2.648 1.683–4.167 0.379 0.317–0.454

Cisplatin 4.832 3.501–6.669 19.34 16.27–22.98 7.594 5.879–9.809 20.30 17.87–23.06 19.00 16.19–22.30

A comparison of the antiproliferative activity of the compounds against different
cell lines is shown in Figure 5. Among the five cell lines, A549, Bel-7402, MCF-7 and
Eca-109 were more susceptible, and HeLa was more tolerant for the tested compounds.
Among the eleven compounds, 2g with the nitro group performed the best antiproliferative
activities against the five cell lines on the whole, usually showing much lower IC50 values
in the tested cells than the others. Since the compounds differ from each other only in the
4-substituents at the terpyridyl group, the relationship between the anticancer activity of
all the compounds and their structures was further analyzed.
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As shown in Figure 6, when A549 cancer cells were used, the anticancer activity of
the 2-naphthyl and 1-naphthyl-substituted terpyridine compounds was close to that of 4′-
phenyl-terpyridine. When the substituent at terpyridine was an oxygen-containing group,
more than four times higher anticancer activities were obtained in comparison with those
of 4′-phenyl-terpyridine compounds. The electronegativity and stereochemical effects of
the oxygen-containing substituents are critical for the anticancer activity of the complexes;
they showed an increase in bioactivity with the increase in the electronegativity of the
substituent and a decrease in bioactivity with the increase in steric hindrance, resulting in
anticancer activity as 4-OMe-Ph– > 4-COOH-Ph– > 2-OH-Ph– > 4-NO2-Ph– > 4-OH-Ph >
4-(furan-2-yl)– > 4-Ms-Ph– > 3-OH-Ph. For the four other cell lines, Bel-7402, Eca-109, HeLa
and MCF-7, the compounds with oxygen-containing substituents showed significantly
better anticancer activity.
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In order to clarify the effect of oxygen-containing substituent modification on the
anticancer activity of terpyridine complexes, we summarized the anticancer activities of
a total of 28 substituted terpyridine complexes against different cancer cells in Figure 7
from this work and previously reported works [44,65]. When the average activity of the
non-oxygen-containing substituent-modified terpyridine complexes is compared with that
of the terpyridine complexes modified with oxygen-containing substituents, we can clearly
find that oxygen-containing substituents brought a significant increase in anticancer activity.
Although the electronegativity, steric hindrance and ability to form hydrogen bonds of
substituents can also affect the order of anticancer activity of compounds, modification
with oxygen-containing substituents is still an effective strategy to enhance the anticancer
activity of terpyridine complexes.
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Figure 7. The in vitro anticancer activity of substituted 2,2′:6′,2′′-terpyridine(tpy) complexes
1a–1c, 2a–2h, 3a–3k [65] and 4a–4f [44] against different cancer cell lines, including A549, Bel-
7402, Eca-109, HeLa and MCF-7. The heights of the blue and red blocks on the background repre-
sent the average performance of the anticancer activity of the non-oxygen-containing substituents
and oxygen-containing substituent-modified complexes, respectively. Here, 3a = [Cu(tpy)Cl2],
3b = [Cu(4′-(4′-cyano-phenyl)-tpy)Cl2], 3c = [Cu(4′-(4′-iodo-phenyl)-tpy)Cl2], 3d = [Cu(4′-(4′-bromo-
phenyl)-tpy)Cl2], 3e = [Cu(4′-(4′-chloro-phenyl)-tpy)Cl2], 3f = [Cu(4′-(4′-fluoro-phenyl)-tpy)Cl2],
3g = [Cu(4′-(p-hydroxyl-phenyl)-tpy)Cl2], 3h = [Cu(4′-(m-hydroxyl-phenyl)-tpy)Cl2], 3i = [Cu(4′-(o-
hydroxyl-phenyl)-tpy)Cl2], 3j = [Cu(4′-(methoxyl-phenyl)-tpy)Cl2], 3k = [Cu(4′-(4′-methylsulfonyl-
phenyl)-tpy)Cl2], 4a = [Zn(4′-(4′-methyl-phenyl)-tpy)Br2], 4b = [Zn(4′-(4′-methyl-phenyl)-tpy)I2],
4c = [Zn(4′-(4′-methylsulfonyl-phenyl)-tpy)Br2], 4d = [Zn(4′-(4′-methylsulfonyl-phenyl)-tpy)I2],
4e = [Zn(4′-(4′-methoxyl-phenyl)-tpy)Br2], 4f = [Zn(4′-(4′-methoxyl-phenyl)-tpy)I2].

2.4. Circular Dichroism Spectroscopic Studies

CD spectroscopy is one of the most sensitive techniques for monitoring structural
changes in DNA in solution [68–70]. The reliance on CD spectroscopy to study DNA
conformations has stemmed from the sensitivity and ease of CD measurements, the non-
destructive nature of such measurements, the fact that conformations can be studied in
solution and the requirement for relatively small amounts of material [71].

The CD spectra of CT-DNA with increased concentrations of compounds 1a–1c and
2a–2h were measured and are shown in Figures 8 and S39–S47. For reference, when no
compound was added, the CD spectrum of CT-DNA showed two peaks at 277 nm and
246 nm, respectively. The two bands are the known features of a right-handed B-form
DNA. Specifically, the positive band at 277 nm is due to base stacking, and the negative
band at 246 nm is from the right-handed helicity. When the different concentrations of the
compounds were added and incubated with CT-DNA, obvious changes in both positive
and negative bands were observed. All the CD spectral bands of the DNA with the different
concentrations of the compounds are tabulated in Table S1.
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Figure 8. (a) Circular dichroism spectra of CT-DNA (6.0 × 10−4 mol/L) in the presence or absence
of compound 1a in Tris-HCl buffer (pH 7.2) at 20 ◦C. (b) Circular dichroism spectra of CT-DNA
(6.0 × 10−4 mol/L) in the presence or absence of compound 2c in Tris-HCl buffer (pH 7.2), at 20 ◦C.

As the concentrations of the compounds increase to 300 µmol/L, the intensities of the
positive bands decrease by 12–62% compared to CT-DNA, with slight shifts in the λmax, and
the intensities of the negative bands decrease by 5–46%. Notably, when compound 2h at a
concentration of 60 µmol/L interacts with CT-DNA, the band attributed to base stacking (at
277 nm) shows a 10% increase in positive ellipticity with no considerable shift in its position.
For compound 1c, the positive band shows a 26% increase as the compound concentration
increases, which may be due to the participation and facilitation of the compounds with
high planarity in the π–π stacking of the base pairs of DNA.

The changes in the ellipticity and wavelength of the CD signals around 277 nm are
important for elucidating their ability to intercalate between DNA base pairs [72,73]. By
comparing the hypochromism caused by compounds 1a–1c and 2a–2h at the same ratio,
compound 2c exhibited the strongest intercalation ability. This indicates that the different
substituents at the terpyridine significantly affect the interaction between the compound
and DNA, and the o-hydroxyl group seems to promote the intercalation.

2.5. Molecular Docking Studies

Molecular docking techniques have shown great promise as a new tool in the dis-
covery of novel small-molecule drugs for predicting the plausible interactions between
the drug and nucleic acid in a non-covalent fashion. Most anti-tumor drugs have func-
tions by incorporating into the base pairs of the DNA of tumor cells to interrupt their
replication and transcription [74,75]. The syntheses of important proteins is terminated
or disrupted, resulting in the termination of cell division and growth, cell swelling, cell
necrosis, etc., which was observed in this study. In order to explore the mechanism of
their anticancer activity, the DNA interaction with the compounds was studied using the
molecular modeling method.

2.5.1. Molecular Docking with DNA

In this study, the AutoDock program was used to examine the compound–DNA
interactions by investigating the potential binding modes and calculating the binding
energies. At first, rigid molecular docking studies of compounds 1a–1c and 2a–2h with
the DNA duplex of sequence d(CGCGAATTCGCG)2 dodecamer (PDB ID: 1BNA) were
performed in order to predict the binding site along with the preferred orientation of the
ligand. Detailed simulations of the compound–DNA interactions were carried out and are
presented in Figures 9 and S48–S57. The free energies of the binding were calculated and
are shown in Table 2.
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Table 2. The calculated free energy of binding of compounds 1a–1c and 2a–2h with B-DNA (1BNA),
oligonucleotide (4JD8M) and DNA-Topo I complex (1SC7).

Compounds

Affinity (kcal/mol)

B-DNA
(1BNA)

Oligonucleotide
(4JD8)

DNA-Topo I Complex
(1SC7)

1a −9.11 −9.32 −9.97
1b −10.34 −9.61 −10.23
1c −10.27 −9.93 −10.89
2a −9.07 −9.28 −9.58
2b −9.21 −8.78 −10.26
2c −9.29 −8.97 −10.39
2d −9.16 −8.41 −9.97
2e −8.55 −8.07 −9.75
2f −10.86 −10.23 −12.34
2g −9.38 −9.20 −10.53
2h −8.67 −8.11 −9.06

It was observed that the ligand fits into the minor groove perfectly, involving outside
edge interactions without disrupting the double-helical structure of the DNA. The bindings
were stabilized by van der Waals interaction and hydrophobic contacts with DNA functional
groups, which define the stability of groove, and the binding energies were between –8.55
and –10.86 kcal mol−1. Hydrogen bonds were found between the compounds and the
DNA, and the detailed bond distances and bond energies are listed in Table 3. Compounds
2a–2c, 2f and 2g formed hydrogen bonds with B-DNA benefitting from the presence of the
substituent groups, whereas the other compounds showed no hydrogen bond formation in
their most favorable orientations.

Furthermore, compounds 1a–1c and 2a–2h were docked onto an oligonucleotide
(ds(ATGCAT)2, PDB ID: 4JD8) to explore the potential binding mode and energy. The
binding energies of the eleven compounds were calculated and are listed in Table 2. They
were in the range between −8.07 and −10.23 kcal mol−1, and the detailed docking poses
are presented in Figures 10 and S58–S67. The results indicate that the docked compounds
intercalate into the base pairs of the DNA, involving π–π stacking, van der Waals interaction
and hydrophobic and hydrogen bonding. Compounds 2a–2c, 2f and 2g formed hydrogen
bonds with the oligonucleotide by the hydroxyl group. No hydrogen bond was detected in
the most favorable poses of 1a–1c, 2d, 2e and 2h.
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Table 3. Hydrogen bond interactions for compounds 2a–2c, 2f and 2g.

Compounds Receptor Bonds Formed Bond Distance (Å) Bond Energy (kcal/mol)

2a B-DNA (1BNA) O–H . . . O (DA18) 2.105 −4.619
Oligonucleotide (4JD8) O–H . . . O (DT2) 1.993 −0.824
DNA-Topo I complex (1SC7) O–H . . . O (ASN722) 2.133 −3.223

2b B-DNA (1BNA) O–H . . . O (DT19) 2.175 −4.074
Oligonucleotide (4JD8) O–H . . . O (DT2) 2.073 −4.052
DNA-Topo I complex (1SC7) O–H . . . O (ASN722) 2.081 −0.401
DNA-Topo I complex (1SC7) O . . . H–N (ASN722) 1.956 −3.016

2c B-DNA (1BNA) O–H . . . O (DT7) 1.804 −1.485
Oligonucleotide (4JD8) O–H . . . O (DG3) 2.231 −5.235
DNA-Topo I complex (1SC7) O–H . . . O (TGP11) 2.134 −6.073

2f B-DNA (1BNA) O . . . H–N(DG16) 2.061 −5.108
Oligonucleotide (4JD8) O . . . H–N(DA5) 2.130 −4.107
DNA-Topo I complex (1SC7) O . . . H–N (MET428) 1.990 −4.015
DNA-Topo I complex (1SC7) O . . . H–N (ALA351) 2.204 −1.600

2g B-DNA (1BNA) O . . . H–N (DG14) 2.079 −1.999
Oligonucleotide (4JD8) O . . . H–N(DA5) 2.201 −2.900
DNA-Topo I complex (1SC7) O . . . H–N (LYS425) 1.877 −4.568
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Figure 10. (a) The most favorable orientation and (b) enlarged view of compound 2f intercalating
with the DNA (4JD8). The formed hydrogen bond and distance have been marked.

2.5.2. Molecular Docking with Topoisomerase I

To elucidate the interaction and locate the exact binding site between the compounds
1a–1c and 2a–2h and Topo-I, molecular docking studies were performed using the Human-
DNA Topo-I complex (PDB ID: 1SC7). As seen in Figures 11 and S68–S77, the terpyridyl
group was intercalated into the base pairs of the DNA, and the substituents at the ter-
pyridyl group formed hydrogen bonds with the residues of Topo-I. An in silico molecular
docking experiment revealed that the docked compounds fit into the Topo I-DNA complex
perfectly and resulted in the binding energy between −9.06 and −12.34 kcal mol−1. No
hydrogen bond was detected in the most favorable pose of compounds 1a–1c, 2d, 2e and
2h. Meanwhile, compounds 2a–2c, 2f and 2g showed a binding energy value from –9.58 to
–12.34 kcal mol−1 with one or two hydrogen bonds. For compound 2a, the O–H formed
a hydrogen bond with an oxygen of the ASN722, and the bond length was 2.133 Å. The
hydroxyl of compound 2b formed two hydrogen bonds with the ASN722, and the O–H
of 6 formed a hydrogen bond with an oxygen of the phosphate. For compound 2f, one
N–H at the MET428 and one N–H at the ALA351 interacted with the two oxygen atoms
at the methylsulfonyl group to form two hydrogen bonds with bond lengths of 1.990 and
2.204 Å, respectively. For 2g, one N–H at the LYS425 interacted with the oxygen at the
nitro group and formed a hydrogen bond with a bond length of 1.877 Å. The details of
the hydrogen bonds have been summarized in Table 3. The results proved that the sub-
stituents at the terpyridyl group contribute to forming a stable complex in the DNA–Topo I
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active site through π–π stacking with the purine ring of DNA, van der Waals, hydrophobic
bonding and hydrogen bonding with the residues of Topo-I. It can be inferred from the
present docking studies that some subtle change in the structure of the drug molecule
alters the ligand-binding domain in the drug target. These phenomena are very interest-
ing, as well as desirable for drug designing, because repeated application of the same
drug/compound leads to the development of resistance to the action of the drug, due to
unavoidable conformational modifications in the drug target.
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3. Methods and Materials
3.1. Chemicals and Reagents

All common reagents employed in this work were of analytical grade.

3.2. Instruments and Apparatus

The infrared spectra were obtained with a Thermo Scientific Nicolet iS10 spectropho-
tometer, and elemental analyses (C, H, N) were performed on an Elementar vario EL cube.

3.3. Synthesis of the Compounds

The methanol solution of MnCl2 was added to dichloromethane solutions of the corre-
sponding ligands, and the mixture was stirred for 24 h. The separation was performed by
filtering the compound powders from the mother solution and drying them in a desiccator.
Recrystallization from a methanol/acetonitrile solution upon slow evaporation led to the
formation of crystals that were suitable for X-ray analysis of complexes 1a, 1c, 2a–2c, 2f
and 2g.

[MnCl2L1a] (1a). Orange crystals. Yield: 0.30 g, 69%. Anal. calcd for C21H15Cl2N3Mn:
C, 57.96; H, 3.47; N, 9.66%. Found: C 56.55, H 3.44, N 9.47%. IR (KBr disc, cm−1, s = strong,
m = medium, w = weak): 3052 (m, νC–H), 2988 (m, νC–H), 2900 (w, νC–H), 1600 (s, νC=C),
1549 (m, νC=C), 1475 (s, νC=C), 1434 (m, νC=C), 1401 (m, νC=C), 1303 (m), 1232 (m, βC–H),
1163 (m, βC–H), 1077 (m, βC–H), 1066 (m, βC–H), 1014 (m, βC–H), 898 (m, γC–H), 886 (m,
γC–H), 832 (m, γC–H), 791 (m, γC–H), 773 (m, γC–H), 746 (s, γC–H), 731 (m, γC–H), 695 (m,
γC–H), 657 (m), 638 (m), 619 (m), 581 (m) and 560 (m).

[MnCl2L1b] (1b). Yield: 0.27 g, 56%. Anal. calcd for C25H17Cl2N3Mn·0.5H2O: C, 60.75;
H, 3.67; N, 8.50%. Found: C 60.71, H 3.45, N 8.42%. IR (KBr disc, cm−1): 3057 (m, νC–H),
1608 (s, νC=C), 1570 (m, νC=C), 1545 (m, νC=C), 1475 (s, νC=C), 1440 (m, νC=C), 1417 (m, νC=C),
1250 (m, βC–H), 1160 (m, βC–H), 1131 (m, βC–H), 1067 (m, βC–H), 1012 (s, βC–H), 896 (m,
γC–H), 869 (m, γC–H), 824 (m, γC–H), 794 (s, γC–H), 785 (m, γC–H), 769 (m, γC–H), 741 (s,
γC–H), 728 (m, γC–H), 686 (m, γC–H), 657 (m), 638 (m), 604 (m), 566 (m) and 556 (m).

[MnCl2L1c] (1c). Yellow crystals. Yield: 0.28 g, 58%. Anal. calcd for C25H17Cl2N3Mn:
C, 61.88; H, 3.53; N, 8.66%. Found: C 61.64, H 3.49, N 8.53%. IR (KBr disc, cm−1): 3099 (m,
νC–H), 3065 (m, νC–H), 3022 (m, νC–H), 1606 (m, νC=C), 1595 (m, νC=C), 1567 (m, νC=C), 1541
(m, νC=C), 1468 (m, νC=C), 1439 (m, νC=C), 1413 (m, νC=C), 1293 (m), 1244 (m, βC–H), 1011
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(m, βC–H), 911 (m, γC–H), 886 (m, γC–H), 868 (m, γC–H), 802 (s, γC–H), 791 (s, γC–H), 781 (s,
γC–H), 741 (m, γC–H), 734 (m, γC–H), 689 (w, γC–H), 664 (m), 651 (m), 639 (m), 632 (m) and
589 (m).

[MnCl2L2a] (2a). Orange crystals. Yield: 0.30 g, 66%. Anal. calcd for
C21H15Cl2N3Mn·H2O·CH2Cl2: C, 47.68; H, 3.46; N, 7.58%. Found: C 47.91, H 3.16, N
7.28%. IR (KBr disc, cm−1): 3419 (m, νO–H), 3273 (m, νC–H), 1598 (s, νC=C), 1586 (s, νC=C),
1573 (m, νC=C), 1547 (m, νC=C), 1522 (m, νC=C), 1475 (s, νC=C), 1442 (s, νC=C), 1410 (m, νC=C),
1362 (m, δO–H), 1279 (m), 1245 (s, νC=C), 1218 (m, βC–H), 1182 (m, νC–OH), 1120 (m, βC–H),
1068 (m, βC–H), 1012 (m, βC–H), 850 (m, γC–H), 824 (m, γC–H), 790 (m, γC–H), 748 (m, γC–H),
730 (m, γC–H), 658 (m), 638 (m), 623 (m), 573 (m).

[MnCl2L2b] (2b). Brown crystals. Yield: 0.28 g, 62%. Anal. calcd for
C21H15Cl2N3OMn·2H2O·CH2Cl2: C, 46.18; H, 3.70; N, 7.34%. Found: C 46.03, H 3.63,
N 7.05%. IR (KBr disc, cm−1): 3419 (s, νO–H), 3285 (m, νC–H), 2935 (m, νC–H), 2841 (m, νC–H),
1650 (m, νC=C), 1599 (s, νC=C), 1571 (m, νC=C), 1545 (m, νC=C), 1520 (m, νC=C), 1475 (s, νC=C),
1416 (s, νC=C), 1364 (m, δO–H), 1283 (m), 1243 (s, νC=C), 1187 (m, νC–OH), 1164 (m, βC–H),
1103 (m, βC–H), 1070 (m, βC–H), 1012 (s, βC–H), 892 (m, γC–H), 839 (m, γC–H), 791 (s, γC–H),
781 (s, γC–H), 729 (m, γC–H), 685 (m, γC–H), 658 (m), 638 (m) and 576 (m).

[MnCl2L2c] (2c). Orange crystals. Yield: 0.27 g, 60%. Anal. calcd for
C21H15Cl2N3OMn·H2O·CH2Cl2: C, 47.68; H, 3.46; N, 7.58%. Found: C 47.41, H 3.16,
N 7.76%. IR (KBr disc, cm−1): 3478 (s, νO–H), 2960 (m, νC–H), 2926 (m, νC–H), 2852 (m, νC–H),
1608 (s, νC=C), 1598 (s, νC=C), 1570 (m, νC=C), 1546 (m, νC=C), 1475 (m, νC=C), 1456 (m, νC=C),
1411 (s, νC=C), 1307 (m), 1263 (m, νC=C), 1244 (m, νC=C), 1163 (m, βC–H), 1097 (m, νC–OH),
1013 (s, βC–H), 889 (s, γC–H), 859 (m, γC–H), 789 (s, γC–H), 764 (s, γC–H), 750 (m, γC–H), 731
(m, γC–H), 657 (m), 637 (m), 621 (m) and 547 (m).

[MnCl2L2d] (2d). Yield: 0.34 g, 73%. Anal. calcd for C22H17Cl2N3OMn·H2O: C, 54.68;
H, 3.96; N, 8.70%. Found: C 54.28, H 3.65, N 8.56%. IR (KBr disc, cm−1): 3058 (m, νC–H),
2937 (m, νC–H), 2840 (m, νC–H), 1598 (s, νC=C), 1545 (m, νC=C), 1520 (m, νC=C), 1475 (s, νC=C),
1433 (m, νC=C), 1406 (m, νC=C), 1363(m, δC–H), 1309 (m), 1285 (m), 1240 (s, νC–O–C), 1186 (m,
βC–H), 1240 (m, βC–H), 1240 (m, βC–H), 1186 (m, βC–H), 1069 (m, βC–H), 1013 (m, βC–H), 891
(m, γC–H), 839 (m, γC–H), 791 (s, γC–H), 748 (m, γC–H), 729 (m, γC–H), 658 (m), 639 (m) and
576 (m).

[MnCl2L2e] (2e). Yield: 0.23 g, 48%. Anal. calcd for C22H15Cl2N3O2Mn·H2O·CH2Cl2:
C, 47.45; H, 3.29; N, 7.22%. Found: C 47.39, H 3.25, N 7.55%. IR (KBr disc, cm−1): 3445 (s,
νOH), 2987 (m, νC–H), 2970 (m, νC–H), 2901 (m, νC–H), 1726 (m, νC=O), 1609 (m, νC=C), 1598
(s, νC=C), 1571 (m, νC=C), 1544 (m, νC=C), 1476 (s, νC=C), 1429 (s, νC=C), 1397 (m, δO–H), 1251
(m, νC–O), 1187 (m, βC–H), 1121 (m, βC–H), 1105 (m, βC–H), 1068 (s, βC–H), 1013 (s, βC–H),
893 (m, γC–H), 857 (m, γC–H), 795 (s, γC–H), 769 (s, γC–H), 729 (m, γC–H), 694 (m, γC–H), 659
(m) and 638 (m).

[MnCl2L2f] (2f). Orange crystals. Yield: 0.28 g, 55%. Anal. calcd for
C22H17Cl2N3O2SMn·H2O·1.5CH2Cl2: C, 42.85; H, 3.37; N, 6.38%. Found: C 42.56, H
3.07, N 6.33%. IR (KBr, cm−1): 3058 (w, νC–H), 2936 (w, νC–H), 2908(w, νC–H), 2841(w, νC–H),
1598 (s, νC=C), 1520 (m, νC=C), 1475 (s, νC=C), 1433 (m, νC=C), 1407 (m, νC=C), 1308 (s, νSO2),
1297 (s, νSO2), 1241 (m, βC–H), 1187 (m, βC–H), 1147 (s, νSO2), 1092 (m, βC–H), 1069 (m, βC–H),
1012 (m, βC–H), 965 (m, γC–H), 890 (m, γC–H), 835 (m, γC–H), 801 (s, γC–H), 793 (s, νS–O), 768
(m, γC–H), 729 (m, γC–H), 673 (m, γC–H), 657 (m), 638 (m), 577 (s, δSO2) and 549 (s, δSO2).

[MnCl2L2g] (2g). Orange crystals. Yield: 0.22 g, 46%. Anal. calcd for
C21H14Cl2N4O2Mn·H2O: C, 50.63; H, 3.24; N, 11.25%. Found: C 50.90, H 3.09, N 11.19%.
IR (KBr disc, cm−1): 3059 (m, νC–H), 2937 (w, νC–H), 2840 (m, νC–H), 1597 (s, νC=C), 1571 (m,
νC=C), 1546 (m, νC=C), 1519 (s, νNO2), 1475 (s, νC=C), 1431 (m, νC=C), 1343 (s, νNO2), 1241 (m,
βC–H), 1187 (m, βC–H), 1163 (m, βC–H), 1069 (m, βC–H), 1013 (s, βC–H), 892 (m, γC–H), 858
(m, γCN), 819 (m, γC–H), 791 (s, γC–H), 754 (m, γCNO), 730 (m, γC–H), 658 (m), 638 (m) and
576 (m).

[MnCl2L2h] (2h). Yield: 0.22 g, 52%. Anal. calcd for C19H13Cl2N3OMn·1.5H2O: C,
50.47; H, 3.57; N, 9.29%. Found: C 50.36, H 3.46, N 9.16%. IR (KBr disc, cm−1): 3094 (m,
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νC–H), 3060 (m, νC–H), 3032 (m, νC–H), 1615 (s, νC=C), 1600 (s, νC=C), 1544 (m, νC=C), 1589
(s, νC=C), 1459 (m, νC=C), 1427 (s, νC=C), 1383 (m), 1254 (m, βC–H), 1231 (m, βC–H), 1160 (m,
βC–H), 1072 (m, βC–H), 1030 (m, βC–H), 1012 (s, βC–H), 1003 (s, βC–H), 925 (m), 883 (m, γC–H),
839 (m, γC–H), 790 (s, δC–H), 782 (s, δC–H), 743 (s, γC–H), 727 (s, γC–H), 682 (s, γC–H), 654 (m),
638 (m) and 584 (m).

3.4. Crystallography

Compound 1c was initially crystallized from acetonitrile, and the crystal structure
was found to contain solvent molecules. For cell viability and DNA interaction studies, 1c
was re-synthesized from MeOH/DCM to prevent the incorporation of solvent molecules
into the structure of the complex. Similarly, the crystal structure of compound 2c was
found to contain water molecules, and then the compound 2c was re-synthesized from
MeOH/DCM solution. Single crystals of complexes 1a, 2a–2c and 2f were mounted on
glass fibers, and 1c and 2g were mounted in loops and fixed with Fomblin® Y LVAC 25/6 oil.
Intensity data were collected using a Bruker D8 Quest (for 1c), Bruker AXS KAPPA APEX
II (for 2g) and Agilent SuperNova (for the other complexes) diffractometers with graphite
monochromated Mo-Kα (λ = 0.71073 Å) radiation. The data were collected using phi and
omega scans in a conventional (for 2g) and shutterless (for the other complexes) mode
using 0.5◦ per frame (for the other complexes), and the full sphere of data were obtained.
Cell parameters were retrieved and refined by Bruker SAINT (for 1c and 2g) and Agilent
CrysAlisPro (for the other complexes) software on all of the observed reflections [76].
Absorption corrections were applied using SADABS [77] (for 1c and 2g) and ABSPACK [77]
(for the other complexes). The structures were solved by direct methods using the SHELX-
2018/3 [78] (for 1c and 2g) and SHELX–97 [79] (for the other complexes) packages and
refined with SHELXL–97 [79]. The thermal ellipsoid plots were drawn by Diamond 3.2 [80].
The hydrogen atoms were inserted in calculated positions theoretically. Least square
refinements with anisotropic thermal motion parameters for all of the non-hydrogen
atoms and isotropic for the remaining atoms were employed. CCDC 2062271–2062277 for
compounds 1a, 1c, 2a–2c, 2f and 2g contain the supplementary crystallographic data of this
paper. These data can be obtained free of charge from the Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif, accessed on 1 December 2022. Crystal
data and details of data collections are reported in Table 4.

3.5. Antiproliferative Activity against Tumor Cells

Five different cell lines, human lung carcinoma cell line (A549), human hepatocellular
carcinoma cell line (Bel-7402), human esophageal squamous carcinoma cell line (Eca-109),
human cervix carcinoma cell line (HeLa) and human breast cancer cell line (MCF-7), pur-
chased from the American Type Culture Collection (ATCC), were used to evaluate the
antiproliferative activity of the synthesized compounds. All the cells were cultured with
a completed Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal
bovine serum, 100 U/mL penicillin and 100 U/mL streptomycin in a humidified atmo-
sphere at 37 ◦C with 5% CO2. The cells were seeded in 96-well plates with 3000 cells per
well. After 12 h, series concentrations of compounds 1a–1c and 2a–2h were added into the
predefined wells and then incubated for 48 h. Cell morphology was observed and imaged
with an inverted microscope (Nikon eclipses TS100) equipped with a Nikon digital camera
(DXM 1200F). The cell viability was measured using CCK-8 assay (cell counting kit-8, Bey-
otime Biotechnology, China) following the manufacturer’s instructions. The cell viability (%
of control) was expressed as the percentage of (ODtest − ODblank)/(ODcontrol − ODblank).
GraphPad Prism V5.0 for Windows (Graphpad Software, San Diego, CA, USA) was
used to calculate the 50% inhibitive concentration (IC50) of the tested compounds against
tumor cells.
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Table 4. Hydrogen bond interactions for compounds 1a, 1c, 2a–2c, 2f and 2g.

Compound 1a 1c 2a 2b 2c 2f 2g

Empirical
formula C21H15Cl2MnN3 C27H20Cl2MnN4 C21H15Cl2MnN3O C21H15Cl2MnN3O C21H19Cl2MnN3O C22H17Cl2MnN3O2S C21H14N4O2Cl2Mn

Formula weight 435.20 526.31 451.2 451.2 455.23 513.29 480.2
Temperature 123(2) K 293(2) K 293(2) K 293(2) K 293(2) K 293(2) K 150(2) K
Crystal system Monoclinic Triclinic Monoclinic Monoclinic Triclinic Monoclinic Monoclinic
Space group P21/n P-1 P21/n P21/n P-1 P21/n C2/c
a (Å) 12.1515(5) 8.6474(6) 12.0365(11) 12.2520(15) 8.9693(18) 10.2754(15) 11.1314(16)
b (Å) 9.7548(4) 11.0270(7) 9.8576(10) 9.7098(10) 10.584(2) 18.416(2) 22.013(3)
c (Å) 16.6109(6) 13.3718(10) 17.1166(17) 17.083(2) 12.780(3) 12.7472(17) 8.6607(11)
α (◦) 90.00 85.629(3) 90 90 103.63(3) 90 90
β (◦) 106.581(2) 74.006(3) 107.487(11) 107.349(14) 108.46(3) 110.752(16) 110.471(8)
γ (◦) 90.00 87.326(3) 90 90 96.63(3) 90 90
Volume (Å3) 1887.10(13) 1221.70(15) 1937.1(3) 1939.8(4) 1094.4(4) 2255.7(5) 1988.1(5)
Z 4 2 4 4 2 4 4
Calculated
density
(Mg/m3)

1.532 1.431 1.547 1.545 1.382 1.511 1.604

Absorption
coefficient
(mm−1)

0.993 0.782 0.974 0.973 0.863 0.939 0.96

F(000) 884 538 916 916 466 1044 972
Crystal size
(mm−1)

0.41 × 0.33 ×
0.29

0.40 × 0.36 ×
0.36

0.48 × 0.33 ×
0.31

0.48 × 0.46 ×
0.26

0.41 × 0.23 ×
0.16 0.45 × 0.40 × 0.38 0.26 × 0.22 ×

0.15
θmax, θmin (◦) 30.69, 1.85 26.45, 2.36 29.40, 3.24 29.47, 3.21 29.27, 2.84 29.54, 2.80 30.07, 2.75
Index range h –17→ 17 –10→ 10 –16→ 14 –15→ 14 –8→ 12 –13→ 13 –11→ 15
K –13→ 13 –13→ 13 –13→ 12 –13→ 10 –14→ 13 –25→ 17 –27→ 30
L –23→ 23 –16→ 16 –23→ 22 –16→ 23 –17→ 16 –16→ 17 –11→ 12
Reflections
collected
/unique

36,786/5834
[R(int) = 0.0378]

41,099/5022
[R(int) = 0.0555]

10,821/4560
[R(int) = 0.0214]

11,912/4640
[R(int) = 0.0228]

9493/5049
[R(int) = 0.0164]

12,816/5327
[R(int) = 0.0248]

10,177/2910
[R(int) = 0.0558]

Data/restraints/
parameters 5834/0/244 5022/0/376 4560/0/254 4640/0/253 5049/0/287 5327/0/280 2910/0/177

GOF on F2 1.034 1.003 1.031 1.002 1.034 1.030 1.031
Final R indices
[I>2σ(I)]

R1 = 0.0248
wR2 = 0.0683

R1 = 0.0304
wR2 = 0.0804

R1 = 0.0314
wR2 = 0.0777

R1 = 0.0320
wR2 = 0.0801

R1 = 0.0368
wR2 = 0.0949

R1 = 0.0364
wR2 = 0.0957

R1 = 0.0492
wR2 = 0.1123

R indices (all
data)

R1 = 0.0283
wR2 = 0.0704

R1 = 0.0424
wR2 = 0.0899

R1 = 0.0423
wR2 = 0.0866

R1 = 0.0457
wR2 = 0.0910

R1 = 0.0476
wR2 = 0.1046

R1 = 0.0540
wR2 = 0.1078

R1 = 0.0862
wR2 = 0.1296

Largest diff.
peak
and hole (e Å–3)

0.41 and −0.25 0.19 and −0.32 0.26 and −0.27 0.20 and −0.29 0.38 and −0.41 0.79 and −0.34 0.93 and −0.64

CCDC number 2062271 2062273 2062274 2062275 2062276 2062277 2062272

3.6. Circular Dichroism (CD) Spectropolarimetry

Circular dichroism spectra (differential absorption of left and right circularly polarized
light) of CT-DNA in the presence or absence of compounds 1a–1c and 2a–2h at different
concentrations were recorded using a Chirascan spectropolarimeter (Applied Photophysics,
UK). The CD measurements were carried out using 2 mm Suprasil quartz cells from Hellma
Analytics and maintained at a temperature of 20 ◦C using a TC125 temperature controller
from Quantum Northwestern running on the Chirascan spectrophotometer. The spectra
were recorded between 230 and 400 nm, with a bandwidth of 1 nm and time per point
of 1 s. The spectra of 5 mM Tris-HCl and 50 mM NaCl buffer (pH 7.2) were used as the
baselines, and they were automatically subtracted from the CD spectra of the samples.

3.7. Molecular Docking

The coordination sphere of the manganese compounds was generated from their X-ray
crystal structures as CIF files. Subsequently, the CIF file was converted to the PDB format
using Mercury software (http://www.ccdc.cam.ac.uk/, accessed on 1 December 2022). The
X-ray crystallographic structure of B-DNA dodecamer d(CGCGAATTCGCG)2 (PDB ID:
1BNA) and human DNA–topoisomerase I complex (PDB ID: 1SC7) were retrieved and mod-
ified from the protein Data Bank (https://www.rcsb.org/, accessed on 1 December 2022).
Topo I is bound to the oligonucleotide sequence 5′-AAAAAGACTTsX-GAAAATTTTT-3′,
where ‘s’ is 5′-bridging phosphorothiolate of the cleaved strand, and ‘X’ represents any of
the four bases A, G, C or T. The SH of G11 on the scissile strand was changed to OH, and
the phosphoester bond of G12 in 1SC7 was rebuilt [81]. A molecular docking study was
performed with AutoDock Tools (ADT) version 1.5.6 and AutoDock version 4.2.6 programs
while using the implemented empirical free energy function and the Lamarckian Genetic
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Algorithm. The structures of the receptors were kept rigid during the docking, whereas the
metal compound was allowed to have rotatable bonds. Prior to performing docking, all of
the water molecules were charged, and polar hydrogen atoms were added. The size of the
grid was set to 80 × 80 × 120 or 80 × 80 × 80 with a spacing of 0.375 Å. All of the other
parameters were kept as the defaults. Among them, the conformation having the lowest
energy was selected to depict the mode of interaction between the compounds and DNA.
The results were visualized using the PyMol Molecular Viewer package [82,83].

4. Conclusions

Eight oxygen-containing substituent-modified terpyridine manganese complexes and
three non-oxygen-containing substituent-modified terpyridine manganese complexes were
synthesized, and their structures were characterized by IR, elemental analysis and single-
crystal X-ray diffraction. The in vitro cell viability studies illustrated the anticancer potential
of the compounds, with the lowest IC50 values of 0.281 µM (2d) against A549, 0.523 µM (2h)
against Bel-7402, 0.514 µM (2g) against Eca-109, 0.356 µM (2d) against HeLa and 0.249 µM
(2c) against MCF-7. They were more active than cisplatin against the five tested cell lines
and, compound 2g with a nitro group had the best antiproliferative activities against five
cell lines on the whole. When comparing the complexes with different types of substituents,
we found that complexes modified with oxygen-containing substituents showed lower IC50
values against all five cell lines. Then, the circular dichroism spectroscopy studies revealed
a strong affinity between the compounds and the DNA in an intercalative mode. The CD
spectra showed that the secondary structure of the DNA was changed by the addition of the
compounds, the different substituents at the terpyridine significantly affect the interaction
between the compound and the DNA, and oxygen-containing substituents seem to promote
the intercalation. The molecular docking studies confirmed the interaction between the
compounds and DNA or DNA–topoisomerase I complex, and the models showed that
the interactions were stabilized by π–π stacking and hydrogen bonding. The results of
these experiments indicated that both the steric and electrostatic effects of the compounds
had strong influences on their interactions with DNA. It appears that less steric hindrance
and higher electronegativity can enhance the DNA-binding affinity of the compounds.
The correlation between anticancer activity and DNA-binding affinity suggests that DNA
binding is a plausible mechanism. Notably, in this study and some published anticancer
activity data of complexes with similar structures, the anticancer activity of the non-oxygen-
containing substituent-modified terpyridine complexes was significantly lower than that
of the terpyridine complexes modified with oxygen-containing substituents. Combined
with the results of circular dichroism and molecular docking studies, we believe that
the introduction of oxygen-containing substituents enhances the binding affinity to DNA
through hydrogen bonding and π–π stacking, promotes intercalation and thus enhances
their anticancer activity. Accordingly, the current results propose an effective strategy to
enhance the anticancer activity of terpyridine complexes by introducing oxygen-containing
substituents, which form a promising base for future in vitro and in vivo investigations of
anticancer manganese metallodrugs.
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