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Significance

Autophagy is an orderly 
degradation mechanism in 
eukaryotic cells. It is often 
dysregulated in a range of 
human diseases, including 
cancer. Some cancers rely on 
autophagy to survive and 
develop. In particular, tumor cells 
can use autophagy to cope with 
the cytotoxicity of certain 
anticancer drugs. Inhibition of 
autophagy is a promising 
strategy for tumor therapy. 
However, there are currently no 
effective autophagy inhibitors 
available for clinical use. We 
show that targeting the central 
regulatory transcription factor EB 
(TFEB) can effectively inhibit 
autophagy at the transcriptional 
level. And we found that the 
United States Food and Drug 
Administration (FDA)-approved 
drug Eltrombopag is actually a 
potent autophagy inhibitor 
targeting TFEB. This finding may 
help accelerate effective 
inhibition of autophagy in clinical 
practice.
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Autophagy supports the fast growth of established tumors and promotes tumor resist-
ance to multiple treatments. Inhibition of autophagy is a promising strategy for tumor 
therapy. However, effective autophagy inhibitors suitable for clinical use are currently 
lacking. There is a high demand for identifying novel autophagy drug targets and potent 
inhibitors with drug-like properties. The transcription factor EB (TFEB) is the central 
transcriptional regulator of autophagy, which promotes lysosomal biogenesis and func-
tions and systematically up-regulates autophagy. Despite extensive evidence that TFEB 
is a promising target for autophagy inhibition, no small molecular TFEB inhibitors 
were reported. Here, we show that an United States Food and Drug Administration 
(FDA)-approved drug Eltrombopag (EO) binds to the basic helix-loop-helix-leucine 
zipper domain of TFEB, specifically the bottom surface of helix-loop-helix to clash with 
DNA recognition, and disrupts TFEB-DNA interaction in vitro and in cellular context. 
EO selectively inhibits TFEB’s transcriptional activity at the genomic scale according to 
RNA sequencing analyses, blocks autophagy in a dose-dependent manner, and increases 
the sensitivity of glioblastoma to temozolomide in vivo. Together, this work reveals that 
TFEB is targetable and presents the first direct TFEB inhibitor EO, a drug compound 
with great potential to benefit a wide range of cancer therapies by inhibiting autophagy.

autophagy | transcription factor EB | high-throughput screen | Eltrombopag | cancer therapy

Autophagy is an evolutionarily conserved catabolic process by which cellular materials are 
delivered to lysosomes for degradation to support nutrient recycling and metabolic adap-
tion (1–4). Notably, up-regulated autophagy in both the tumor and host cells plays a 
critical role to support tumor growth by providing nutrients, maintaining metabolic 
homeostasis, increasing systemic arginine levels, decreasing p53 and surface major histo-
compatibility complex I, etc. (4–7). In addition, cytotoxic chemotherapy, targeted therapy, 
and radio therapy can activate cytoprotective autophagy and drive tumor resistance in 
multiple cancer types (7). Autophagy inhibition can limit the growth of tumors and 
improve the response to cancer therapeutics (4, 8–11). Therefore, targeting autophagy is 
an attractive therapeutic strategy for a wide range of cancers (2, 5–7, 12).

The antimalarials chloroquine (CQ) and hydroxychloroquine (HCQ) are the only two 
compounds used to inhibit autophagy in clinical trials, showing encouraging antitumor 
results in selected patients. However, the low efficiency and unclear mechanism of CQ 
and HCQ on autophagy hinder their further clinical application (4). The search for novel 
autophagy targets and small molecular modulators has been intensified in recent years  
(SI Appendix, Table S1). Novel autophagy inhibitors, like small molecular inhibitors of 
kinase vacuolar protein sorting-associated protein 34 (VPS34), Unc-51-like kinase 1 
(ULK1), or cysteine protease autophagy-related gene 4B (ATG4B), were developed to 
suppress autophagy at the nucleation, elongation, fusion, or degradation phases with sig-
nificantly increased efficiency (2). Because these targets also have multiple autophagy-in-
dependent functions (13), it was reasonably questioned whether it is possible to identify 
fully selective autophagy regulators (14). The safety of potential side effects is an important 
factor to be evaluated while developing autophagy inhibitors against these targets. In 
addition, it is of fundamental importance to identify novel therapeutic targets for autophagy 
and to discover corresponding drug-like compounds that effectively inhibit autophagy.

Transcription factor EB (TFEB) is a central transcriptional regulator of autophagy. A 
palindromic GTCACGTGAC motif, known as the Coordinated Lysosomal Expression 
and Regulation (CLEAR) element, is present in the promoter region of most known 
lysosomal genes (15). TFEB specifically binds the CLEAR element through the basic 
helix-loop-helix-leucine zipper (bHLH-LZ) domain and promotes lysosomal biogenesis 
and function (15, 16). Therefore, TFEB has a systemic role in up-regulation of autophagy 
(17). Consistent with the role of autophagy in supporting tumor growth and therapy 
resistance, TFEB is highly expressed, constitutively activated in multiple cancer types and 
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has been indicated as the potential pharmacodynamic biomarkers 
to evaluate activation of autophagy in cancer patients (7). TFEB 
is a promising target for autophagy inhibition, but no small-mol-
ecule TFEB inhibitors have been reported.

Here, we developed a high-throughput assay and screened a library 
of drug molecules to identify TFEB inhibitors. Eltrombopag (EO), 
an United States Food and Drug Administration (FDA)-approved 
drug for thrombocytopenia treatment, was discovered to be a potent 
TFEB inhibitor. In this study, we show EO treatment inhibits the 
TFEB transcriptional activity at the genomic scale, blocks the star-
vation-induced autophagy response, and increases the sensitivity of 
glioblastoma to temozolomide (TMZ) in vivo. These results demon-
strate a novel and potent autophagy inhibitor EO with pharmaceu-
tical properties and highlight TFEB as a druggable target for 
autophagy inhibitor development.

Results

EO Inhibits TFEB-CLEAR DNA Interaction. TFEB plays its role in 
autophagy regulation by recognizing CLEAR DNA. To screen 
for TFEB inhibitors, we designed a quantitative fluorescence 

anisotropy-based assay that monitoring the interaction between 
the bHLH-LZ domain of TFEB (TFEBbHLH-LZ) and the 
fluorophore FAM labeled CLEAR DNA (FAM-CLEAR DNA). The 
interaction of TFEBbHLH-LZ increased the fluorescence anisotropy 
of FAM-CLEAR DNA with a dissociation constant (Kd) of 47.3 nM 
(Fig. 1A). Unlabeled CLEAR DNA blocked the anisotropy signal 
with a medium inhibitory concentration (IC50) of 61.6 nM, while 
unlabeled mutant CLEAR DNAs had no effect (SI Appendix,  
Fig. S1A), indicating the validity of this assay. We screened a 
library of drug molecules that had been approved by the FDA 
or were undergoing clinical trials (Fig. 1B). The screening had a 
signal-to-background ratio of 25.41 and a Z’ factor of 0.83 (SI 
Appendix, Fig. S1 B and C).

EO, an FDA-approved drug for thrombocytopenia treatment 
(18), was identified to inhibit the TFEB-CLEAR DNA interaction 
in the fluorescence anisotropy assay with an IC50 of 281.9 nM (Fig. 1 
C and D). The two substructures bisected from EO (SI Appendix, 
Fig. S1D) were inactive with IC50 values exceeding 10 µM (Fig. 1D), 
indicating that the complete structure of EO is required for the 
activity. We further verified the activity of EO by electrophoretic 
mobility shift assays (EMSAs). The amount of TFEB-CLEAR DNA 
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Fig. 1. EO binds to TFEB and inhibits TFEB’s recognition of CLEAR DNA in vitro and in cells. (A) Serial diluted (0 to 2,560 nM) MBP-TFEB or MBP control was 
titrated to 10 nM FAM labeled CLEAR DNA element (denoted as FAM-CLEAR), and the fluorescence anisotropy was measured. Binding with MBP-TFEB caused an 
increase in polarization of the fluorescently labeled DNA. The calculation formula of Kd is provided in the method section. Error bars represent the SDs of three 
repeats. (B) Design of the quantitative fluorescence anisotropy-based assay for agents that inhibit TFEB-CLEAR DNA interaction. (C) Chemical structure of EO. (D) 
Serial diluted (0 to 10 μM) EO or two substructures of EO (1,3-methyl-1-p-tolyl-5-pyrazolone; 2,3′-amino-2′-hydroxy-[1,1′-biphenyl]-3-carboxylic acid) was titrated 
to a solution containing 50 nM TFEB and 5 nM FAM-CLEAR DNA element, and the fluorescence anisotropy was measured. Error bars represent the SEMs of four 
repeats. (E) The disruption of the MBP-TFEB/Cy3-CLEAR complex by EO was examined by EMSA. (F) ChIP analysis of the effect of EO (10 µM) on the occupancy 
of TFEB on the promoters of lysosomal genes in HeLa cells. Error bars represent the SDs of three repeats. Student’s t test (unpaired); P* < 0.05, P** < 0.01,  
P*** < 0.001, P**** < 0.0001, and no significant (n.s.).
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complexes decreased in a dose-dependent manner after the addition 
of EO (Fig. 1E and SI Appendix, Fig. S2), confirming that EO pre-
cluded TFEB from binding DNA. To assess if EO can disrupt the 
interaction between TFEB and CLEAR DNA in cells, we performed 
chromatin immunoprecipitation (ChIP) analysis. The addition of 
EO significantly disrupted the starvation-induced interaction 
between TFEB and the chromatin DNA (Fig. 1F). Together, these 
results indicate that EO inhibits the binding of TFEB to its target 
genes in both biochemical and cellular levels.

EO Directly Binds to TFEB Both In  Vitro and in Cells. To 
quantify the TFEB-EO interaction, we synthesized a biotin-
labeled EO (EO-Biotin) which maintained the TFEB-CLEAR 
DNA disrupting ability (Fig.  2 A and B) and performed 
surface plasmon resonance (SPR) experiments with the EO 
immobilized on a chip through the Biotin tag and TFEB protein 
as the flow-through analyte. The results showed that maltose-
binding protein (MBP)-TFEBbHLH-LZ interacted with EO with 
a Kd of 345.7 nM, while MBP control had no binding signal 
(Fig. 2 C and D). Using different truncations, we found that 
the interaction between EO and TFEB required the integrate 
HLH-LZ scaffold region of TFEB, but not the basic region  
(SI Appendix, Fig. S3).

To further validate the interaction between EO and endogenous 
TFEB, we performed pull-down assays with EO-Biotin in U87 cell 
lysate. The result showed that EO interacted with the endogenous 
TFEB but not with transcription factor binding to IGHM enhancer 
3 (TFE3), both of which belong to the MI/TFE family (SI Appendix, 
Fig. S4). Unlabeled EO disrupted the interaction between TFEB 
and EO-Biotin in a dose-dependent manner, validating the specific 
engagement of EO with endogenous TFEB in the cellular environ-
ment (Fig. 2E). Together, these results confirm that small-molecule 
EO is capable of binding the HLH-LZ region of TFEB and pre-
venting TFEB from binding to target DNAs.

EO Selectively and Potently Inhibits TFEB Transcriptional 
Activity. Next, we examined if EO could suppress autophagy-
lysosomal genes expression. Using RT-PCR analysis, EO 
treatment dose-dependently reduced the mRNA levels of TFEB 
target lysosomal genes, which was activated by Earle’s Balanced 
Salt Solution (EBSS) starvation, but not the house keeping gene 
HPRT (Fig. 3A). Of note, the 2.5 to 10 µM EO treatment blocked 
lysosomal gene transcription to pre-starvation levels or even lower 
levels (Fig. 3A). The potency of EO to inhibit lysosomal gene 
expression was also observed in Hank’s Balanced Salt Solution-
starved condition (SI Appendix, Fig. S5A). In addition, EO 
treatment also reduced the messenger RNA (mRNA) levels of 
TFEB downstream lysosomal genes under normal condition, 
implying that EO can affect the TFEB transcriptional activities 
under basal autophagy (SI Appendix, Fig. S5B). TFEB is reported 
to be regulated by multiple signaling pathways like the mammalian 
target of rapamycin (mTOR) and extracellular signal-regulated 
kinase (ERK) pathways. Pharmacological inhibition of mTOR 
by rapamycin promotes the TFEB transcriptional activity and 
further up-regulates autophagy (19). We also observed that EO 
treatment dose-dependently reduced the mRNA levels of TFEB 
target lysosomal genes under the condition of co-treatment with 
rapamycin (SI Appendix, Fig. S6). These results suggest that the 
TFEB inhibitor has systematic effects to inhibit autophagy under 
different signaling inputs.

Upon starvation, TFEB is dephosphorylated and translocates to 
nucleus for transcriptional activation (15, 16). It has been reported 
that changes in the phosphorylation state of TFEB are accompa-
nied by shift of electrophoresis bands (16). And we found no sig-
nificant shift of the electrophoresis band of TFEB in EO-treated 
cells, suggesting that EO treatment had no significant effect on the 
phosphorylation state of TFEB (Fig. 3B). And consistently, EO 
had no effect on the cytoplasmic and nuclear distribution of TFEB 
(Fig. 3C). Therefore, EO inhibits the expression of TFEB 
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downstream genes primarily by preventing the binding of TFEB 
to DNA, rather than by altering its phosphorylation and subcellular 
localization. Because the phosphorylation and dephosphorylation 
of TFEB do not occur in the EO-binding region, the bHLH-LZ 

domain (20), EO may bind to both phosphorylated TFEB in the 
cytoplasm and dephosphorylated TFEB in the nucleus.

To assess the specificity of EO at the genome scale, we per-
formed RNA sequencing (RNA-Seq) of the HeLa transcriptome. 
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According to Ingenuity Pathway Analysis (IPA), 21 out of total 
29 TFEB target genes were significantly up-regulated upon star-
vation (Fig. 3D). TFEB was the third significantly up-regulated 
transcription factor out of a total of 289 transcription factors in 
the starvation group compared to the normal group according to 
IPA analysis (P = 8.2E−06, Fig. 3E). Importantly, adding 10 µM 
EO into the starved condition, the increase of TFEB downstream 
genes was completely blocked (Fig. 3D). And TFEB was the sec-
ond significantly down-regulated transcription factor out of a total 
of 359 transcription factors in the EO-treated group compared to 
the dimethylsulfoxide (DMSO)-treated group (P = 4.7E−09, 
Fig. 3F). Together, these results demonstrate that EO treatment 
systematically and selectively inhibits the TFEB transcriptional 
activity at the genomic scale.

Mechanism of Action of EO on TFEB. No crystal structure of 
TFEB has been previously reported. To explore the mode of 
action (MOA) of EO on TFEB, we solved the crystal structure of 

human HLH-LZ region of TFEB (residues 248 to 319, isoform 
1, SI Appendix, Fig. S7A) to a resolution of 2.0 Å (SI Appendix, 
Table S2). The structure of TFEB contains two crystallographically 
independent molecules, chains A and B, to form a compact dimer. 
The first helix of TFEB started from R248 and ended at L261 
(helix 1). Residues W272 to L319 formed an extended second 
helix consisting of helix 2 and the following leucine zipper (LZ) 
(SI Appendix, Fig. S7B). A hydrophobic four-helix bundle was 
constituted by residues on helix 1 and helix 2 from both chains 
(SI Appendix, Fig. S7C). The typical heptad repeats of leucine 
residues and other residues including I316, N309, H301, and 
E306 formed hydrophobic interactions or H-bonds in the LZ  
(SI Appendix, Fig. S7 D and E).

Then, we docked EO on the TFEB structure through the 
molecular dynamics simulations using Desmond. According to 
the docking model, EO binds to the bottom surface of the TFEB 
which contains a hydrophobic pocket formed by the helix 
1-loop-helix 2 bundle (Fig. 4A). The I251, I255, V270, I277, and 
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L278 formed hydrophobic interactions with EO. The carboxyl 
group of EO was recognized by N252 on helix 1 and R271 on 
the loop region through hydrogen bonds. In addition, the alkyl 
chain of R271 formed hydrophobic interactions with the benzene 
ring of EO (Fig. 4A). The model suggests that the carboxyl group 
of EO was crucial. To test this, we synthesized compound 3 which 
lacks carboxyl group compared with EO (Fig. 4B). Consistently, 
compound 3 significantly reduced the ability to disrupt TFEB-
CLEAR interaction (Fig. 4C).

We also performed orthogonal alanine scanning mutagenesis to 
explore the binding site of EO on TFEB. Since the carboxyl group 
of EO is required for TFEB interaction, we focused our mutagen-
esis studies on the basic arginines and lysines located on the outer 
surface of TFEB. Fifteen R/K residues were classified into four 
groups (MutCom_1 to 4) based on their distribution on the surface 
of TFEB (SI Appendix, Fig. S7 F–I). The interactions between EO 
and TFEB wild type (WT) were monitored using pull-down assays 
with EO immobilized on streptavidin beads through the biotin tag 
(SI Appendix, Fig. S8). The following pull-down assay between EO 

and TFEB mutants showed that only MutCom_1 lost the ability 
to bind EO, while mutation combos 2, 3, and 4 maintained the 
ability to bind EO as the TFEB WT (Fig. 4D). Next, we carried 
out point mutations within MutCom_1. R271A on the loop region 
is the most robust mutation to disrupt TFEB-EO interaction 
(Fig. 4E). Consistently, R271 is also the key residue to bind EO 
according to the docking model (Fig. 4A). Therefore, both molec-
ular docking and alanine scanning mutagenesis converged to show 
that EO binds the bottom surface of HLH four-helix bundle, and 
the R271 on the loop is crucial for interaction. Superimposing the 
complex structure of DNA and microphthalmia associated tran-
scription factor (MITF, which is the family member of TFEB) onto 
the TFEB, we observed that EO binding on the bottom surface of 
HLH region induces significant steric hindrance, preventing fur-
ther DNA binding (Fig. 4F).

EO Blocks Starvation-Induced Autophagy in a Dose-Dependent 
Manner. It’s known that knocking-down TFEB inhibited the 
starvation-induced autophagy response (15, 16). Consistently, 
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EO treatment systematically reversed this starvation-induced 
transcriptional activation of lysosomal genes, indicating the ability 
of EO to inhibit autophagy (Fig. 5A). Light chain 3 (LC3)-II 
is the lipidated form of microtubule-associated protein 1A/1B 
LC3 and is accumulated during autophagy (16, 21). The adaptor 
protein sequestosome 1 (SQSTM1, also known as p62 protein) 
binds directly to LC3 and is also used as a marker to study 
autophagic flux, whose amount decreases with autophagy (22). 
EO dose-dependently induced p62 accumulation in starved HeLa 
cells upon EO treatment (Fig.  5B). Importantly, EO potently 
inhibited the formation of LC3-II in a dose-dependent manner 
with an IC50 less than 1.2 μM, and the formation of LC3 was 
completely blocked under the treatment of 10 μM EO (Fig. 5B). 
This efficiency is comparable to the VPS34 inhibitor—SAR405, a 
highly potent autophagy inhibitor being developed by Sanofi (23).

Bafilomycin A1 (BafA1) is a vacuolar-type ATPase (V-ATPase) 
inhibitor that prevents the re-acidification of synaptic vesicles, 
thereby blocking the fusion of autophagosomes and lysosomes. 
BafA1 treatment induced an accumulation of LC3-II in starved 
cells by disrupting autophagic flux (Fig. 5C). We found that EO 
treatment significantly inhibited the LC3-II formation in starved 
cells with or without BafA1, confirming that the attenuated 
LC3-II formation under EO treatment is caused by decreased 
autophagy, but not enhanced autophagic degradation (Fig. 5C). 

The ability of EO to inhibit the formation of LC3-II was further 
assessed through flow cytometry. Consistently, 10 µM treatment 
of EO reduced LC3-II in starved cells to the level of normal cells 
(Fig. 5D).

LC3-II exhibits puncta phenotype during autophagy, and the 
amount of LC3-II puncta reflects the number of autophagosomes 
(16, 21). To visualize the effect of EO to inhibit autophagy, we 
assessed the fluorescent signal generated by green fluorescent pro-
tein (GFP)-LC3 in HeLa cells (24). Upon starvation, GFP-LC3 
formed puncta in cytoplasm indicating the formation of autopha-
gosome (Fig. 5E). EO treatment blocked this starvation-induced 
LC3 puncta formation (Fig. 5 E and F) and induced a typical 
nucleus distribution of LC3 as observed in nutrient cells (Fig. 5E) 
(25, 26). These data confirm that EO is a potent autophagy 
inhibitor.

EO Increases the Sensitivity of Glioblastoma to TMZ Treatment. 
As a thrombopoietin receptor agonist to increase platelet number, 
EO has been employed to treat thrombocytopenia in patients with 
malignant hematologic disorders (27). With the potency to inhibit 
autophagy, EO may benefit a wide range of cancer treatments. We 
tested the potential usage of EO on glioblastoma, one of the most 
aggressive and intractable brain tumors (28). TMZ is the first-line 
chemotherapeutic drug to treat glioblastoma, while autophagy 
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accounts for the high incidence of TMZ resistance and tumor 
recurrence (29). Suppressing autophagy to sensitize glioblastoma 
to TMZ treatment has been considered as a promising strategy 
(29). Here, we first assessed if EO is effective in LN229 and U87 
glioblastoma cells. The result showed that treatment with EO 
decreased the mRNA levels of lysosomal genes in a dose-dependent 
manner, without affecting the house keeping gene HPRT (Fig. 6 A 
and B). The similar effect was also observed in U87 glioma 
cell line that overexpresses epidermal growth factor receptor 
variant III (U87-EGFRvIII), which confers radiation resistance  
(SI Appendix, Fig. S9A) (30). Consistently, the formations of 
LC3-II were attenuated by 5 to 20 μM EO treatment, indicating 

that EO decreased the autophagy levels in glioblastoma cells (SI 
Appendix, Fig. S9B). In the same concentration range, we observed 
that the sensitivity of glioblastoma cells U87 and LN229 to TMZ 
was significantly increased in the EO-treated cells (Fig. 6 C and 
D). Combining EO and TMZ showed a significant synergy 
with Bliss synergy scores of 8.58 and 11.24 in U87 and LN229 
cells, respectively (Fig. 6 E and F). In contrast, CQ in the same 
concentration range had little effect on improving the sensitivity 
of glioblastoma cells to TMZ (SI Appendix, Fig. S10).

To evaluate the effect of EO in autophagy inhibition and tumor 
growth of glioblastoma in vivo, we transplanted U87 cells into 
the brains of athymic nude mice to establish an orthotopic 
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glioblastoma xenograft model (Fig. 7A). EO combined with TMZ 
treatment significantly decreased the protein levels of the TFEB 
target genes LAMP1, CTSF, and HEXA, supporting that TFEB is 
directly engaged by EO in these xenografts (Fig. 7B). Of note, the 
LAMP1 is a classic lysosomal marker, and the decreasing of 
LAMP1 upon EO treatment indicates that EO impairs the lyso-
somal and autophagic pathways. The decreased LC3-II formation 
after EO treatment further confirmed that EO decreased the auto-
phagy level in vivo (Fig. 7C). Consistent with the synergistic 
effects observed in cell experiments, Ki-67 staining showed that 
EO combined with TMZ treatment decreased tumor proliferation 
rate compared to TMZ alone (Fig. 7 B–D). Lastly, EO combined 
with TMZ significantly extended the survival time of mice bearing 
intracerebral glioblastoma (Fig. 7E). These results demonstrate 
the potency of EO to inhibit autophagy in vivo and the potential 
to benefit chemotherapy for glioblastoma treatment.

Discussion

In summary, the FDA-approved drug EO directly binds to the 
autophagy central transcriptional regulator TFEB, disrupts its 
interactions with CLEAR DNA without affecting its phosphoryl-
ation and nuclear localization, selectively inhibits TFEB’s tran-
scriptional activity at a genomic scale, and eventually blocks 
autophagy (Fig. 7F).

EO inhibits the high autophagy level of glioblastoma in vitro and 
in vivo and increases the sensitivity of glioblastoma to TMZ. The 
cytotoxicity of EO alone against glioblastoma cells U87, LN229, 
and the non-cancerous normal human astrocytes (NHA) cell of the 
same origin is not significant, and the IC50s are around 20 to 30 μM 
(SI Appendix, Fig. S11). On the other hand, when the concentration 
was higher than 1.2 to 5 μM, EO showed significant inhibition of 
autophagy (Fig. 5B and SI Appendix, Fig. S9B). Therefore, the effect 
of EO is mainly manifested by inhibiting autophagy rather than 
selectively killing tumor cells. When it was used in combination with 
the chemotherapy drug TMZ, its inhibition on autophagy enhanced 
the therapeutic effect of TMZ (Fig. 7 B–E).

As an FDA-approved drug, EO has been used in patients with 
chronic immune thrombocytopenia for a long time. The safety of 
EO has been evaluated. Its side effects have been well-documented 
clinically, but no serious neurological side effects have been 
reported. This is an advantage of the clinical use of EO to inhibit 
autophagy. In the animal experiment, we also did not observe 
mental and behavioral abnormalities of mice in all groups except 
in the final course of diseases. The H&E staining on the other side 
of the brains from all groups showed normal neuronal appearances 
(SI Appendix, Fig. S12). There were no significant pathological 
changes such as cell body shrinkage, pyknotic nuclei, edema, or 
vacuolar alteration. These results suggest that EO is an effective 
and safe autophagy inhibitor and also highlights TFEB as a valu-
able target for autophagy inhibitor development.

Throughout the past decade, autophagy has attracted consid-
erable attention for the development of new therapies (2, 31). 
Translational efforts to inhibit autophagy have predominantly 
focused on an antimalarial drug CQ or HCQ, which blocks lys-
osome acidification and autophagosome degradation (32). 
Extensive studies showed that autophagy inhibition with HCQ 
can augment the efficacy of DNA-damaging therapy, mTOR inhi-
bition, histone deacetylases (HDAC) inhibition, and mitogen-ac-
tivated protein kinase (MAPK) pathway inhibition; the 
combination therapies lead to enhancement of tumor shrinkage 
in patients with advanced solid tumors (8, 33–37). However, 
HCQ could only produce modest lysosomal inhibition observed 
in patients treated with the highest FDA-allowed dose (up to 

1,200 mg/d) (38). Due to the limited efficiency and the related 
cytotoxicity, the identification of next-generation autophagy 
inhibitors is critical.

TFEB is the master regulator of lysosomal function and auto-
phagy by orchestrating the expression of a broad range of genes 
involved in lysosome biogenesis and autophagic pathway, includ-
ing autophagosome formation, autophagosome-lysosome fusion, 
and substrate degradation (15, 16, 39). TFEB inhibitor will have 
systematic and synergistic effects to inhibit autophagy.

Autophagy is central to the adaption to stresses induced by nutri-
tional deprivation, infections, and metabolic, and physical and chem-
ical challenges (1–3). Specifically, tumor cells are challenged by 
significantly elevated stresses from the deprivation of nutrient and 
oxygen and also the high metabolic demand of cell proliferation (32). 
As malignant tumors develop, autophagy is induced both in the 
tumor microenvironment and systemically in distant tissues to evade 
lethal metabolic stress and to maintain metabolic homeostasis  
(32, 40). Importantly, autophagy has also been considered as a key 
immune escape mechanism. Autophagy inhibition restricts cancer 
growth through its effects on the tumor microenvironment and on 
host immunity that myeloid cells found in the tumor microenviron-
ment rely on autophagy to shut down the activity of anticancer T 
cells in the vicinity (41). Autophagy inhibition enhances pro-
grammed death-ligand 1 (PD-L1) expression in gastric cancer (42). 
Further, autophagy is up-regulated in response to chemotherapy and 
radiotherapy supporting the survival of the treatment resistant cancer 
cells (2). Using EO, a new potent and safety autophagy inhibitor, a 
goal of future research will be the development of combination strat-
egy to benefit a wide variety of cancer treatments.

Materials and Methods

Protein Preparation. The MBP tagged TFEB constructs were generated with the 
pHis-MBP-tobacco etch virus protease (TEV) vector. All the plasmids were induced 
to be expressed in the bacterial strain Rosetta and purified to homogeneity with 
a Ni-HiTrap affinity column and a size exclusion S200 column (GE Healthcare). 
Further details on protein preparation are provided in SI Appendix.

High-Throughput Screening. A library of FDA-approved compounds was 
screened using the quantitative fluorescence anisotropy-based assay. The assay 
was performed using a 96-well plate. Each plate included negative control wells 
with signal that was generated by adding DMSO (1 %) to the system and positive 
control wells with signal that was generated by MBP. Compounds were tested 
in triplicate at a final concentration of 10 μM (1 % DMSO). A total of 54 plates 
were used for this assay.

Biochemical Experiments. The measurements of the fluorescence anisotropy 
of FAM-CLEAR DNA were carried out using an EnVision® Multimode Plate Reader 
(PerkinElmer). EMSA was done by using Cy3 labeled CLEAR DNA. The DNA–protein 
complex and free DNA were separated by a 6% non-denaturing polyacrylamide 
gel. The gel was photographed with Amersham™ Imager 600 (GE Healthcare). 
To measure the affinity between EO and TFEB, a biotin conjugated EO was syn-
thesized. The binding affinity between EO-Biotin and TFEB was measured using 
a Biocore T200 (GE Healthcare). EO analogs were synthesized to analyze the key 
pharmacophore. Complete protocols of chemical synthesis, fluorescence anisot-
ropy assay, EMSA, and SPR assay are included in SI Appendix.

Cell Experiments. HeLa, U87, and LN229 cell lines were purchased from the 
American Type Culture Collection. NHA cell line was kindly provided by Key 
Laboratory of Aging and Neurological Disorder Research of Zhejiang Province. 
HeLa cell line stably expressing GFP-LC3-(ATG4 cleavage site)-red fluorescent 
protein (RFP) was kindly provided by Lifeng Pan. U87 EGFRvIII cell line that 
overexpress exogenous EGFRvIII was established by transducing EGFRvIII into 
U87 cells and characterized by immunoblotting (43). These cells were cultured 
in Dulbecco’s Modified Eagle’s Medium (HyClone™), all supplemented with 10% 
of fetal bovine serum (Gibco) and 1% Penicillin-Streptomycin (BIOAGRIO). All 

http://www.pnas.org/lookup/doi/10.1073/pnas.2213670120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2213670120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2213670120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2213670120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2213670120#supplementary-materials
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cell culture was performed in a 37 °C and 5% CO2 incubator. Complete protocols 
of ChIP, pull-down, RT-PCR, RNA-Seq, western blotting, flow cytometry, confocal 
microscopy, cell viability, and drug synergy assays are included in SI Appendix.

Structure Determination and Analysis. Crystallization of TFEB_HLH-LZ was 
performed by the sitting-drop vapor-diffusion method at 18 °C. X-ray diffraction 
data were collected on beamline 19U1 at the Shanghai Synchrotron Radiation 
Facility using a PILATUS detector (44). Further details on crystallization, data col-
lection, structure refinement, docking calculations, and molecular dynamics are 
provided in SI Appendix.

Tumorigenicity Studies. All xenograft studies were approved by the Shanghai 
Jiao Tong University Institutional Animal Care and Use Committee. Athymic nude 
mice aged 5 to 6 wk (SLAC) were randomly divided into 5 to 6 per group. In total, 
5 × 105 cells of U87 were stereotactically implanted into the mouse brain as previ-
ously described (45). Treatment schemes were described in the corresponding fig-
ure legends. Mice were euthanized when neuropathological symptoms developed. 
Individuals who were blinded measured tumor volumes as (W2 × L)/2, W < L.

Immunohistochemistry (IHC). Expression of Ki-67, LAMP1, CTSF, and HEXA 
on xenograft tumors was evaluated on 6-μm-thick optimum cutting temper-
ature (O.C.T.) compound-embedded fresh-frozen tissue sections. Briefly, the 
tissue sections were separately stained with hematoxylin and eosin (H&E) 
or antibodies against Ki-67 (Invitrogen, MA5-14520), LAMP1 (Proteintech, 
21997-1-AP), CTSF (Proteintech, 11055-1-AP), and HEXA (Proteintech, 11317-
1-AP) as previously described (45). Images were captured using an Olympus 
BX53 microscope equipped with an Olympus DP73 digital camera. Ki-67 
were quantified by calculating the percentage of Ki-67 positive cells. Two 
individuals blinded to the slides examined and scored the samples.

Statistical Analysis. The statistical significance in the ChIP experiment (Fig. 1F), 
RT-PCR experiment (Figs. 3A and 6 A and B and SI Appendix, Figs. S5, S6, and 
S9A), quantification of the percentage of LC3 puncta-positive cells (Fig. 5F), and 
quantification of Ki-67 positive cells (Fig. 7D) was assessed by unpaired Student’s 
t test (two-tailed). The statistical significance of Kaplan–Meier survival curves in 
animal experiments (Fig. 7E) was assessed by log-rank test.

Data, Materials, and Software Availability. The reported crystal structure 
has been deposited in the Protein Data Bank under the accession number 7Y62.
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