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Abstract: In the last years, nanoparticles based on cyclodextrins have been widely investigated for
the delivery of anticancer drugs. In this work, we synthesized nanoparticles with a hyaluronic acid
backbone functionalized with cyclodextrins under green conditions. We functionalized hyaluronic
acid with two different molecular weights (about 11 kDa and 45 kDa) to compare their behavior as
doxorubicin delivery systems. We found that the new hyaluronan-cyclodextrin conjugates increased
the water solubility of doxorubicin. Moreover, we tested the antiproliferative activity of doxorubicin
in the presence of the new cyclodextrin polymers in SK-N-SH and SK-N-SH-PMA (over-expressing
CD44 receptor) cancer cells. We found that hyaluronan-cyclodextrin conjugates improved the uptake
and antiproliferative activity of doxorubicin in the SK-N-SH-PMA compared to the SK-N-SH cell
line at the ratio 8/1 doxorubicin/polymer. Notably, the system based on hyaluronan (45 kDa) was
more effective as a drug carrier and significantly reduced the IC50 value of doxorubicin by about 56%.
We also found that hyaluronic acid polymers determined an improved antiproliferative activity of
doxorubicin (IC50 values are on average reduced by about 70% of free DOXO) in both cell lines at the
ratio 16/1 doxorubicin/polymer.

Keywords: cyclodextrins; doxorubicin; CD44; hyaluronic acid; hyaluronan-cyclodextrin conjugate;
nanoparticles; nanomedicine; SK-N-SH

1. Introduction

In the last years, the development of nanoparticles (NPs) has gained interest due to
their application in nanomedicine and biotechnological fields [1]. The NPs can improve
drug solubility and stability and increase drug uptake, bioavailability, and efficacy. Nowa-
days, there are a variety of NPs studied as smart drug delivery systems [2]. NPs can
penetrate tissues offering advantages including long circulation time, an improved target-
to-non-target concentration ratio, an increased concentration at the target site, and increased
cellular internalization due to the EPR (enhanced permeability retention) effect [3,4].

Cyclodextrin chemistry has been exploited in the building of NPs [5–8]. Cyclodextrins
(CyD) are cyclic D-(1)-glucopyranose oligosaccharides that can encapsulate lipophilic drugs
and enhance their water solubility, stability, and bioavailability. For this reason, CyDs have
been used as excipients in many pharmaceutical preparations [9].

CyDs can form aggregates in water at a millimolar concentration of about 200–300 nm
in size, but their applicability in pharmaceutical preparations is very limited by their low
physical stability [10].

Various CyD derivatives have been designed for many application fields [11] and
for building nanomaterials, spanning from hybrid to organic nanosystems [12–18]. Great
interest is focused on the CyD-based polymers that can form water-soluble and stable
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NPs [19]. Furthermore, CyD-based NPs have been functionalized with vitamins, sugars,
and peptides to actively target cancer cells and increase tumor internalization [15,20–25].

Among the targeting biomolecules, hyaluronic acid, or hyaluronan (HA), has been ex-
ploited because it possesses many advantages, such as biocompatibility, non-immunogenicity,
and possible chemical modification [26,27].

HA is an endogenous polymer of the disaccharide of D-glucuronic acid and N-acetyl-
D-glucosamine [28,29]. It is the principal component of the extracellular matrix (ECM) and
is involved in different biological processes, such as cell proliferation, cell migration, and
regulation of the ECM inflammatory state. The biological activities depend on the molecular
weight of the polymer [30]. Most commonly, HA is synthesized as a high-molecular-weight
polymer (HMW approximately 1000–8000 kDa). Exogenous HA fragments of low molecular
weight (LMW < 200 kDa) have been shown to affect cell behavior through binding to
proteins such as CD44 and RHAMM receptors.

In particular, the CD44 receptor belongs to a family of cell adhesion molecules [31]. It
is a widely distributed transmembrane glycoprotein that plays a critical role in malignant
cell activities, including adhesion, migration, invasion, and survival; it is also strongly
implicated in the cell signaling cascades associated with cancer initiation and progression.
CD44 is a crucial component in the internalization and metabolism of HA and is endoge-
nously expressed at low levels on various cell types in normal tissues. Tumor-derived
cells, however, express CD44 in a high-affinity state that can promote the binding and
internalization of HA [31].

HA-based NPs can take advantage of the CD44 receptor-mediated endocytosis uptake
in tumor tissues [32–35]. Among the designed systems, the nanoprodrug HA-paclitaxel
conjugate (ONCOFID™-P) is under Phase II clinical trial for the treatment of bladder and
ovarian cancers [36].

Recently, CyDs have been functionalized with HA, grafting one or more cavities on HA
backbone [37–39]. In some conjugates, cross-linked polymers have been synthesized [38,40].
The CyD conjugates have mainly been studied to entrap drugs or biomolecules.

Based on the considerable interest in HA derivatives [41], we synthesized new β-CyD
grafted HA polymers, starting from HA backbone with two different molecular weights
(about 11 kDa and 45 kDa) (Figure 1) under green conditions to compare the two systems
in the doxorubicin (DOXO) delivery. DOXO is a powerful anthracycline anticancer drug,
widely employed in the treatment of a broad spectrum of cancer types, including breast
cancer, Kaposi’s sarcoma, non-Hodgkin’s and Hodgkin’s lymphoma and acute lymphocytic
leukemia, neuroblastoma, and bladder cancer despite the severe side effects and emerging
multidrug resistance [42]. Many strategies, including nanostructure encapsulation, have
been studied to overcome the DOXO side effects and resistance [43]. Among these, Doxil®

was the first nanosized (nanoliposome) drug delivery system approved for clinical use
in 1995, which showed an improved safety profile and superior efficacy compared to
DOXO [44].

Nevertheless, new formulations of DOXO are still of enormous interest [45]. DOXO
has also been covalently linked to HA with low efficacy due to the covalent bond [46].
For this reason, we used DOXO as a model drug to investigate the new conjugates as
drug carriers.

The new hyaluronan-CyD conjugates can encapsulate DOXO exploiting the proper-
ties of CyD and the carboxylate groups of HA. The HA backbone could increase DOXO
accumulation in tumor cells by exploiting the CD44-mediated uptake.

Here we characterized the new conjugates HAHβCyD and HALβCyD (NMR and
DLS) and tested the affinity for DOXO. We determined the antiproliferative activity of
DOXO in the presence of HAHβCyD and HALβCyD at two drug/polymer molar ra-
tios in cancer neuroblastoma cell lines SK-N-SH and SK-N-SH-PMA (overexpressing
CD44 receptors).

Neuroblastoma was chosen as a tumor model because DOXO is one of the chemother-
apeutics administrated in high-risk neuroblastoma [47].
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Figure 1. HA β-Cyclodextrin conjugates HAHβCyD and HALβCyD.

2. Materials and Methods
2.1. Materials

All reagents commercially available were used without further purification. 4-(4,6-
dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) and 3A-amino-3
A -deoxy-2 A (S),3A (R)-β cyclodextrin (CyD3NH2) were purchased from TCI EUROPE
(Zwijndrecht, Belgium). Hyaluronic acids sodium salt (8000–15,000 and 40,000–50,000 Dal)
were purchased from Carbosynth (Thal, Switzerland).

Dialysis was carried out with a membrane molecular weight cut-off of 3 KDa (Spec-
trum Chemical, VWR distributor, Milan, Italy).

Thin Layer Chromatography (TLC) was carried out on silica gel plates (Merck 60-
F254). Carbohydrates derivatives were detected on TLC by UV and the anisaldehyde or
iodine test.

2.2. Synthesis of HAHβCyD

DMTMM (37 mg, 0.1 mmol) and CyD3NH2 (126 mg, 0.1 mmol) were added to HA
(100 mg, 2 µmol) in 10 mL water in three aliquots (every 30 min). The reaction mixture was
stirred at 25 ◦C for 24 h.

The final product was dialyzed against water.
1H NMR: (500 MHz, in D2O) δ(ppm):1.9 (s, CH3 of N-Acetyl), 3.03–4.00 (m, H-3, -6, -5,

-2, -4 of CyDs and HA), 4.17 (m, H-3-A of CyD), 4.36–4.45 (d, H-1 of glucuronic acid and
glucosamine), 4.83–5.02 (m, H-1 of CyD).

Size (DLS, Z-average, d): 424 ± 40 nm.

2.3. Synthesis of HALβCyD

The synthesis was carried out as reported for HAHβCyD starting from HA (100 mg,
9.1 µmol), DMTMM (126 mg, 0.46 mmol) and CyD3NH2 (310 mg, 0.28 mmol).

1H NMR: (500 MHz, in D2O) δ(ppm): 1.90 (s, CH3 of N-Acetyl), 3.20–3.90 (m, H-3, -6,
-5, -2, -4 of CyDs and HA), 4.17 (m, H-3-A of CyD), 4.30–4.50 (d, H-1 of glucuronic acid and
glucosamine), 4.83–5.02 (m, H-1 of CyD).

13C NMR: (125 MHz, D2O) δ (ppm): 30.4 (CH3), 101.2 (H-1 CyD), 60.4 (C-6 CyD and
HA), 70.0–74.0 (C-2, 3, 5, CyD and HA), 80.9 (C-4 CyD); 175.8 (COCH3); 178.0 (COOH);
172.0 (NHCO).

Size (DLS, Z-average, d): 176 ± 15 nm.
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2.4. NMR Spectroscopy
1H and 13C NMR spectra were recorded at 25 ◦C with a Varian UNITY PLUS-500

spectrometer at 499.9 and 125.7 MHz respectively. 2D NMR spectra (COSY, TOCSY, HSQC)
were performed using 1K data points, 256 increments.

2.5. UV-Vis Spectroscopy

UV-Vis spectra were recorded with an Agilent Cary 8500 spectrophotometer equipped
with a Peltier cell holder.

2.6. Dynamic Light Scattering (DLS)

Dynamic light scattering (DLS) measurements were performed at 25 ◦C with Zetasizer
Nano ZS (Malvern Instruments, London, UK) operating at 633 nm (He–Ne laser). The mean
hydrodynamic diameter (d) of the NPs was calculated from the intensity measurement
after averaging the five measurements. The samples (1 mg/mL) were diluted in phosphate
buffer (pH = 7.4) in ultrapure filtered water (0.2 µm filter).

2.7. Experiments of Solubility

DOXO hydrochloride (50 µL, 0.017 M, water solution) was added to 0.200 mL of
eight solutions of the CyD polymers in phosphate buffer (100 mM, pH 7.4) at different
concentrations as reported elsewhere [32]. The suspensions, formed due to the DOXO
precipitation at 7.4 pH, were sonicated for 10 min and incubated at 25 ◦C in the dark.
After 18 h, suspensions were centrifuged at 10,800 rpm for 10 min at 25 ◦C. The DOXO
concentration of the samples was determined in the supernatant with UV/Vis spectroscopy
at the wavelength of maximum absorbance (λmax) 482 nm. A linear calibration plot for free
DOXO in phosphate buffer at pH 7.4 was previously obtained to obtain the DOXO molar
absorptivity ε 10,858 (mol−1 L cm−1). The CE (complexation efficient) was calculated from
the straight-line slope obtained. CE = Slope/(1 − Slope). The apparent stability constant
K11 = CE/S0 was calculated for S0 = 3.75 × 10−5 M.

2.8. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide) Evaluation of the
Antiproliferative Activity of Hyaluronic Acid Complexes

The human cell line SK-N-SH (neuroblastoma) and its derivative, stimulated for seven
days with 10 nM phorbol myristate acetate (PMA) in order to allow cells to overexpress
CD44 receptor [48], SK-N-SH-PMA were plated in 180 µL into flat-bottomed 96-well
microliter plates at 2.22 × 104 cells/mL in complete DMEM added with 10% fetal calf
serum (FCS). After 6–8 h, cells were administered with 20 µL containing five concentrations
of DOXO alone or in the presence of CyD polymers at 8/1 and 16/1 DOXO/polymer molar
ratio diluted in PBS. Plates were then processed as described elsewhere [49].

The compound concentrations inhibiting 50% cell growth (IC50) were calculated based
on the analysis of the concentration-response curves. Each experiment was repeated
5–7 times.

2.9. Immunofluorescence Study of CD44 Expression

SK-N-SH and SK-N-SH-PMA cells were harvested and washed twice with PBS plus
2% FCS. We then pelleted 2.0 × 105 cells that were incubated at 22 ◦C for 30 min with 50 µL
(1:1000) of an anti-CD44 monoclonal antibody (ab254530, Abcam, Cambridge, UK). Cells
were then washed twice with phosphate-buffered saline (PBS) plus 2% FCS and incubated
again with 50 µL FITC (Fluorescein) AffiniPure F(ab’)2 fragment goat anti-mouse IgG+IgM
(H+L) 1:200 dilution (Jackson ImmunoResearch, Ely, UK). After being rewashed twice,
cells were evaluated by flow cytometry (Cytoflex-S, Beckman Coulter, Milan, Italy) and
analyzed by FlowJo software v10.8 (BD).



Pharmaceutics 2023, 15, 374 5 of 11

2.10. Cytofluorimetric Study of Intracellular Accumulation of DOXO and Hyaluronic
Acid Complexes

SK-N-SH and SK-N-SH-PMA cells were plated in 96-well plates in 180 µL medium
4 × 104 cells/well. After incubation at 37 ◦C for 24 h, once reached 75 – 85% confluence,
cells were treated with 2 µM DOXO alone or in the presence of CyD polymers at 8/1
and 16/1 DOXO/polymer molar ratio. After 1 h, cells were washed twice with 200 µL of
PBS and fixed with 100 µL of 3.7% paraformaldehyde in PBS (containing 2% sucrose) for
15 min [50]. Cells were rewashed with PBS and resuspended in 100 µL PBS containing 2%
FCS. Untreated cells were assayed as well.

The intracellular mean fluorescence intensity (MFI) of cells was determined directly in
plates by a Glomax Discover microplate reader (Promega Italia, Milan, Italy), using 475 nm
excitation and 580–640 nm emission wavelengths. Values were normalized as absolute MFI
calculated as MFI of treated cells—MFI of control cells.

2.11. Statistical Analysis

Student’s t test for independent means was used for the analysis of data.

3. Results
3.1. Synthesis and Characterization

The synthesis of the HA conjugates with CyD3NH2 was carried out in a water solution.
DMTMM was used as the activating agent. HA at both molecular weights was obtained
in a good yield (50%). The conjugate of HA with the higher molecular weight (45 kDa)
was obtained with a lower degree of substitution (DS) (15% of COOH groups) than HA
with lower MW (30% of COOH). It has been reported that free HA in water solution forms
a duplex secondary structure involving H-bonds between COOH and amido group [51].
The stability of this structure depends on the molecular weight [51]. For this reason, the
availability of COOH groups may depend on the HA molecular weight in the condensation
reaction in water.

1H NMR spectra of HAHβCyD and HALβCyD (Figures 2, S1 and S2) show common
patterns, H-1 of CyD resonates at about 5 ppm, and the broad signals between 3 and 4 ppm
are due to the protons of HA and CyD sugar rings. The peaks observed at 4.3–4.4 ppm are
due to the Hs-1 of the glucuronic acid and glucosamine units of HA. The singlet peak at
1.9 ppm corresponds to CH3 of the HA N-acetyl group.
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The number of CyD grafted to HA polymers was calculated from the ratio between
the integral of the CH3 signal and CyD Hs-1 (Figures S1 and S2). About 15% of car-
boxylic groups of HAHβCyD were functionalized with CyD (about 16 units), while 30% of
carboxylic groups of HALβCyD were functionalized with CyD units (about 8 units).

3.2. Solubility Experiments

The interaction of DOXO with the polymers was investigated using the phase solu-
bility method [52]. The method has been widely used for determining apparent stability
constants of drug/CyD complexes in the case of drugs with low water solubility and also
for polymeric hosts [53–56]. The CyD polymers can be considered multi-cavity systems
and the cavities can be assumed equivalent and independent binding sites. Solubility
experiments were carried out for the HAHβCyD and HALβCyD at pH 7.4 (Figure S3). The
solubility phase diagrams were obtained by plotting the DOXO concentration versus the
polymer concentrations, expressed as the concentration of CyD units, for a clear comparison
among the polymers. Data are reported in Figure 3.
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A linear correlation between DOXO solubility and CyD concentration was obtained,
with a slope <1 (AL type graph). The diagrams were fitted with the following equation,
where CyD is the concentration of the cavities:

SDOXO = SoDOXO + [K11So/(1 + K11So)] × [CyD]

Complexation efficiency (CE) values, calculated from the slope of the solubility dia-
gram, and the apparent stability constant of the CyD unit in the two polymers are reported
in Table 1. Data reported in Table 1 showed that CyD in HAHβCyD (DS = 16) is more
effective than CyD in HALβCyD (DS = 8). This behavior is in keeping with the general
trend reported for CyD grafted to dextrans [57]. It has been reported that in CyD-based
polymers that CE is inversely proportional to DS [57]. In fact, for higher DS the cavity
becomes less accessible due to steric hindrance of the binding site [57].

Table 1. CE and apparent stability constant (K) values for the inclusion of DOXO with HAHβCyD
and HALβCyD (25 ◦C, Phosphate buffer, pH 7.4).

Host CE K11 (M−1) Slope Sint

HALβCyD 0.018 480 (± 50) 0.018 3.50 × 10−5

HAHβCyD 0.034 971 (± 80) 0.033 3.78 × 10−5
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The CE and K11 values are in the same range as those obtained for other β-CyD
systems [24,25,58].

CyD polymers have many binding sites, which we assumed to be identical and
independent; the apparent stability constant (K) can be calculated K = nK11 (n is the
number of CyDs in the polymer) [56]. We found that K is 3840 (M−1) for HALβCyD and
15,536 (M−1) for HAHβCyD. Carboxylate groups can also contribute to the affinity for
DOXO, which is protonated at physiological pH.

3.3. Expression of CD44

We stimulated SK-N-SH cells with PMA at a concentration of 10 nM for 7 days to over-
express the CD44 receptors [48]. In these culture conditions, SK-N-SH cells overexpressed
CD44 receptors (becoming SK-N-SH-PMA cells) with a relative increase in the percentage
of CD44+ cells from 53.1 ± 0.7% to 81.0 ± 1.0% (+53%).

The derivative cell line was used to better evaluate the transmembrane passage of
DOXO complexes with HAHβCyD and HALβCyD through the CD44 receptor.

3.4. Antiproliferative Activity

The antiproliferative activity of DOXO alone and in the presence of HALβCyD and
HAHβCyD was studied in SK-N-SH and its derivative SK-N-SH-PMA (Table 2, Figure S4).

Table 2. Antiproliferative activity (IC50, nM) of DOXO and CyD polymers in SK-N-SH and PMA
stimulated SK-N-SH-PMA cells.

Cell Line DOXO
DOXO/

HALβCyD
8/1

DOXO/
HAHβCyD

8/1

DOXO/
HALβCyD

16/1

DOXO/
HAHβCyD

16/1

SK-N-SH 79.3 ± 23.5 83.5 ± 21.4 92.3 ± 13.4 22.1 ± 9.8 a 24.6 ± 8.5 a

SK-N-SH-PMA 82.7 ± 11.9 58.8 ± 13.4 b 40.7 ± 13.8 a,c 25.3 ± 8.7 a 26.2 ± 3.9 a

a p < 0.001 vs. DOXO, b p < 0.021 vs. DOXO, c p < 0.001 vs. cells SK-N-SH treated with DOXO/HAHβCyD 8/1.

Data in Table 2 showed that all complexes had an antiproliferative activity signif-
icantly higher than free DOXO in both cell lines, except for DOXO/HAHβCyD and
DOXO/HALβCyD complexes 8/1 molar ratio in SK-N-SH, which displayed an antiprolif-
erative activity similar to DOXO. Data suggested that antiproliferative activity depended
on the DOXO/polymer molar ratio and the CD44 receptor expression.

SK-N-SH-PMA, which overexpresses CD44 receptors, seems to have a higher sensi-
tivity to the treatment with the DOXO/HAHβCyD and DOXO/HALβCyD complexes
8/1. We hypothesized the CD44 receptor-mediated endocytosis of the complexes, deter-
mining a lower IC50 in cells overexpressing the CD44 receptor. The lower IC50 value for
DOXO/HAHβCyD may be due to the higher affinity of HAHβCyD for DOXO.

The highest DOXO/polymer ratio determines a considerable reduction in IC50 values
(on average reduced by about 70% of free DOXO) and no selectivity for cells overexpressing
the CD44 receptor. The highest molar ratio can increase the concentration of the DOXO
inclusion complex and improve its uptake in cancer cells.

3.5. Intracellular Accumulation of DOXO and Hyaluronic Acid Complexes

In order to establish whether the difference in antiproliferative activity between SK-N-
SH and SK-N-SH-PMA treated with DOXO/HAHβCyD and DOXO/HALβCyD was due
to a differential DOXO accumulation in target cells, we evaluated DOXO uptake in these
cells after administration of DOXO (2 µM) alone or complexed with the CyD polymers.

Our data confirmed that, in general, the higher antiproliferative activity correlates
(n = 10, r2 = 0.670, p < 0.004) with a higher DOXO accumulation in the cells (Figure 4).
Furthermore, the higher DOXO uptake was also linked to CD44 overexpression in SK-N-
SH-PMA cells but only after treatment with DOXO/HAHβCyD and DOXO/HALβCyD
complexes 8/1 (Table 3). This trend may suggest that DOXO complexes at the highest
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molar ratio studied (16/1) are probably per se sufficient to reach the highest possible
antiproliferative activity being able to saturate DOXO molecular targets also in the SK-N-
SH cells, which do not overexpress CD44 (only 53% of CD44 receptors).
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Table 3. Correlation between IC50 of complexes DOXO/HALβCyD 8/1 and DOXO/HAHβCyD 8/1
and their DOXO uptake.

Cell Line
MTT DOXO/
HALβCyD

8/1 (IC50, nM)

MFI DOXO/
HALβCyD

8/1 a

MTT DOXO/
HAHβCyD/

8/1 (IC50, nM)

MFI DOXO/
HAHβCyD

8/1 a

SK-N-SH 83.5 ± 21.4 2.8 ± 1.6 92.3 ± 13.4 3.7 ± 0.7
SK-N-SH-PMA 58.8 ± 13.4 b 4.2 ± 1.0 40.7 ± 13.8 c 4.8 ± 2.0

a Values were normalized as absolute MFI calculated as MFI of treated cells—MFI of control cells. b p = 0.0536
vs. SK-N-SH cells, as evaluated by the Student’s t-test for independent means.c p = 0.0008 vs. SK-N-SH cells, as
evaluated by the Student’s t-test for independent means.

4. Conclusions

We functionalized hyaluronic acid (HA) with two different molecular weights
(11 kDa and 45 kDa) with β-cyclodextrin (CyD) to study and compare new conjugates
as doxorubicin (DOXO) delivery systems. The conjugates were synthesized in water,
unlike other cyclodextrin conjugates synthesized in an organic solvent, with a good
conjugation degree.

We found that the CyD grafted to HA with the highest molecular weight showed a
better affinity for DOXO due to the higher number of binding sites (16) and a lower degree
of substitution (15%).

We tested doxorubicin as a model drug in the presence of two cyclodextrin polymers in
neuroblastoma cell lines, SK-N-SH and SK-N-SH-PMA (overexpressing the CD44 receptor).
Notably, systems based on hyaluronic acid at the drug/polymer 8/1 ratio improved the
antiproliferative activity of doxorubicin selectively in SK-N-SH-PMA with an IC50 reduction
of up to 56% in the case of CyD grafted to HA at the higher molecular weight. We found that
the IC50 values correspond to a higher uptake of DOXO in SK-N-SH-PMA (overexpressing
CD44), confirming the importance of HA as a target molecule and strongly suggesting the
receptor-mediated endocytosis of the complexes. When the drug/polymer 16/1 molar
ratio was administrated, the IC50 values of DOXO were, on average, reduced by about 70%
of free DOXO, although there was no selectivity for SK-N-SH-PMA.
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Even if other in vitro and in vivo experiments are needed to explore the capability of
the new polymers, the results suggest that they are promising nanoplatforms for doxoru-
bicin delivery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15020374/s1, Figure S1: 1H NMR spectrum of
HALβCyD; Figure S2: 1H NMR spectrum of HAHβCyD; Figure S3: UV-Vis spectra of saturated solu-
tion of DOXO in the presence of an increasing concentration of the polymer; Figure S4. Dose-response
curves of SK-N-SH (top) and SK-N-SH-PMA (bottom) cells treated with DOXO, DOXO/HALβCyD,
or DOXO/HAHβCyD.
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