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Abstract: An aromatic substrate for hydroxylation by hydroxyl radicals (•OH) was investigated. The
probe, N,N’-(5-nitro-1,3-phenylene)-bis-glutaramide, and its hydroxylated product do not bind either
iron(III) or iron(II), and so they do not interfere with the Fenton reaction. A spectrophotometric assay
based on the hydroxylation of the substrate was developed. The synthesis and purification methods
of this probe from previously published methodologies were improved upon, as well as the analytical
procedure for monitoring the Fenton reaction through its use, enabling univocal and sensitive •OH
detection. The assay was utilised to demonstrate that the iron(III) complexes of long-chain fatty acids
lack Fenton activity under biological conditions.
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1. Introduction

Redox-active metals such as iron and copper are believed to play major roles in diseases
such as inflammation and β-thalassaemia [1,2]. These metal ions are capable of generating
the highly damaging hydroxyl radical (•OH) via the Fenton reaction (Equation (1)):

Fe2+ + H2O2 → Fe3+ + −OH + •OH (1)

The •OHs generated by the Fenton reaction react with most biomolecules, inducing
hydroxylation, hydrogen and/or other substituent abstraction and replacement, or electron
transfer reactions. Moreover, they may in turn lead to the formation of secondary radi-
cals, which cause the chemical modification and subsequent damage of proteins, lipids,
carbohydrates, and nucleotides [3]. Iron(III) in solution tends to aggregate as insoluble
polynuclear complexes at physiological pH values; water-soluble ligands are therefore
required to keep iron(III) in solution. Iron chelated to ligands such as citrate, amino acids,
and organic phosphates may induce •OH formation in vivo.

Because of the high reactivity of •OH, its detection in biological systems is extremely
difficult. A number of biochemical assays are available for •OH detection. These methods
include the production of formaldehyde from dimethylsulfoxide [4], the production of
ethylene from methional [5], the oxidation of formate to carbon dioxide [6], the bleaching
of p-nitrodimethylaniline [7], the formation of hydroxylated aromatic products [8–11], the
use of the spin trap labels [12], and the application of fluorescent probes [13,14]. With the
exception of aromatic hydroxylation, these methods are either non-specific for •OH or
dependent on elaborate instrumentation.

With regard to aromatic substrates, the •OH reacts predominantly by addition to
the ring and not by interaction with the substituents [15,16]. The position of attack on
the ring may not always be univocal and is usually influenced by the specific molecular
features [17,18]. In general, it depends on the electron-donating/withdrawing properties of
other substituents present [19]. Theoretically, due to the electrophilic character of •OH, an
attack occurs at positions on the ring that are activated by electron-donating substituents,
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i.e., ortho and para positions. In contrast, in the case of nitrobenzene, the nitro group is
instead a so-called ‘deactivating substituent’, which would favour •OH electrophilic substi-
tution in the meta position. Nonetheless, the possible formation of various hydroxylation
products (including mono-hydroxylated and di-hydroxylated species) via nonspecific and
nonstoichiometric reactions has also been reported for the reaction of •OH with aromatic
substrates [18,20]. Thus, there are a number of assays which take advantage of the ability
of •OH to attack aromatic rings, for example, salicylate hydroxylation (Equation (2)) [9],
but these would require a strict control of experimental conditions to limit analytical bias
and/or artefacts.
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Although such assays are useful, they suffer from several disadvantages. For instance
in the case of the salicylate hydroxylation assay, it can lead to the formation of catechol
species, which, under incubation conditions, will bind iron(III) to form 2:1 complexes [20].
The binding of iron to the newly formed catechol may produce additional •OH and will
certainly perturb the reaction under observation. A further problem with salicylate is that
it has a relatively high affinity for iron(III), and such complexation will inevitably perturb
the analysis [21]. Clearly, the binding of iron by either the substrate or the hydroxylated
products is undesirable, as both will influence the hydroxyl-radical-generating ability of a
given system.

A strategy to avoid these difficulties was previously reported [22]; however, we
found difficulty in following both the synthesis and the analytical procedure described
in this communication. We now report a reliable method for the synthesis of the reagent
N,N-(5 nitro-l,3-phenylene)-bis-glutaramide (NPBG) and the conditions for its use for
•OH detection.

2. Results
2.1. Design and Synthesis of the Probe

In order to overcome the problems associated with iron chelation by either the probe or
its hydroxylated product, Singh and Hider [22] designed a novel substrate. This substrate
(NPBG, Scheme 1) is substituted in such a manner as to prevent the formation of an ortho
dihydroxy function in the oxidised product (as in the case of salicylate hydroxylation).
1,3,5-trisubstitution avoids this possibility. The nitro group enhances the sensitivity of the
UV absorbance spectral change, due to its strong electron withdrawing character and the
capability of resonance stabilisation provided to the hydroxylated products.
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Scheme 1. Synthetic route for NPBG. Reagents and conditions: (a) NH4Cl, EtOH, H2O, 50 ◦C, 5 min,
and then Na2S·9H2O, H2O, 60–70 ◦C, 30 min; (b) glutaric anhydride, MeCN, reflux, 1 h.

We experienced difficulty in achieving the previously reported yields [22], and so
the synthesis (Scheme 1) was modified as detailed in the Materials and Methods section.
Briefly, the reaction time for the synthesis of 3,5-diaminonitrobenzene was extended to
30 min, and the isolation of the product was achieved by extraction into ethyl acetate,
followed by column chromatography. This procedure ensured the removal of traces of the
starting material from the product. Conversion of 3,5-diaminonitrobenzene into NPBG was
achieved using the reported method [22].



Int. J. Mol. Sci. 2023, 24, 4162 3 of 9

2.2. Development of the Assay for the Detection of •OH

Initially, we adopted the previously published conditions [22] but experienced a
number of complications. The sequence of the addition of reagents to the borate buffer
proved to be critical. It is essential to dissolve the iron salt in unbuffered water initially,
followed by the ligand under investigation. Only then should the solution be adjusted
to pH = 8.0, with the addition of borate buffer. Otherwise, the variable extent of iron
hydroxide formation leads to a non-consistent spectrum. Indeed, even using the following
sequence, we obtained reproducible data only after brief centrifugation of the samples:
dissolution of chelator first, followed by the addition of the iron salt. These modifications
led to a reliable assay which produced UV–visible spectra with a maximum of 435 nm
(Figure 1A). There was a linear increase in absorbance (R2 = 0.99) over the period of 1 h
(Figure 1B). A fixed timed assay was adopted for the study.
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Figure 1. (a) UV–visible spectra recording the hydroxylation of NPBG at 10 min intervals of incubation
times over a period of 1 h. (b) Variation of the yield of hydroxylated product of NPBG with time.
H2O2 was added to a solution of NPBG (1 mM) and iron(III)-EDTA (0.5 mM) in sodium tetraborate
(25 mM, pH = 8.0) to obtain a final concentration of H2O2 of 5 mM.

The hydroxylated products were resolved by semi-preparative HPLC, as reported in
the original reference [22]. Further details and spectral data are reported in Sections 6 and 7
of the Supplementary Materials. The predominant products formed upon hydroxylation
are the ortho- and para-hydroxy nitro-compounds. The two isomers were characterised
by measuring their molar absorption coefficient and λmax values, o-hydroxy product,
λmax = 330 nm (ε = 2700), and the p-hydroxy product λmax = 300 nm (ε = 8500). Only the
mono-hydroxylated derivatives where detected, and they are formed at an approximate
ration of 6:1.

2.3. Comparison of the •OH Generating Ability of Various Complexing Agents

The following ligands were compared: EDTA (ethylenediaminetetraacetic acid),
DTPA (diethylenetriamine pentaacetate), NTA (nitrilotriacetic acid), citrate, maltol, and
deferiprone (Figure 2). The range of log affinity constants for iron(III) fell between 35.7
and 11.4, and for iron(II), it fell between 16.4 and 4.4 (Table 1). Under the conditions of the
study, the rates of hydroxylation ranged from 13.59 to 0.37 mol h−1.
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Figure 2. Structures of iron(III) chelators.

Table 1. Rate of NPBG hydroxylation by different iron complexes.

Chelator Molar Ratio
Chelator: Fe

Rate of Hydroxylation
(10−7 mol/h)

Stability Constant of
Complexes (Log K1)

FeIII FeII FeIII FeII

EDTA 2 13.57 ± 0.38 13.45 ± 0.13 25.1 14.2
DTPA 2 0.43 ± 0.09 10.14 ± 1.40 27.3 16.4
NTA 1 13.52 ± 0.17 13.59 ± 0.50 15.9 8.8
NTA 2 12.20 ± 1.03 9.46 ± 2.06 15.9 8.8
NTA 5 2.08 ± 0.73 2.73 ± 1.12 15.9 8.8

Citrate 5 0.37 ± 0.18 1.30 ± 0.71 11.4 4.4
Maltol 5 3.39 ± 0.55 3.72 ± 2.86 28.7 1 /

Deferiprone 5 1.72 ± 0.34 1.58 ± 0.64 35.7 1 /
1 Refers to Log β3 [23,24].

The iron(III) complex of EDTA, which is well established to generate Fenton chemistry,
was observed to produce one of the highest rates, as did NTA. In contrast, citrate, which
forms oligodentate iron(III) complexes [25], did not. In a similar fashion, deferiprone, a
widely used clinical iron chelator [26], also failed to produce high rates of hydroxylation.
It is well established that the 3:1 deferiprone–iron(II) complex is not Fenton active [27].
Maltol, which is a similar bidentate ligand to deferiprone [26], but with a weaker affinity for
iron(III) (Table 1), was found to induce a low rate of hydroxylation, albeit higher than that of
deferiprone. The gradual decrease in the rate of hydroxylation with NTA as the molar ratio
is increased from 1:1 to 5:1 is consistent with the predominance of the [NTA·Fe] complex at
low ligand:Fe ratios and the predominance of the [(NTA)2Fe] complex at high ligand:Fe
ratios. The coordination sphere of iron in the [NTA·Fe] complex is more accessible to H2O2
(i.e., the 1:1 complex would have a vacant coordination site for attack) than that of the
[(NTA)2Fe] complex. Thus, the trends in the changes observed in the rates of hydroxylation
can be readily explained in terms of the established properties of the iron(III) chelators.

The marked difference in the rate of hydroxylation induced by iron(II) and iron(III)
in the presence of DTPA was surprising. DTPA probably binds iron(III) in a septadentate
mode, preventing the access of H2O2, in contrast to the analogous EDTA, which binds
iron in hexadentate mode, thereby leaving part of the iron coordination sphere exposed
to attack by H2O2 (similarly to [NTA·Fe] complex) [24]. The enhanced kinetic lability of
iron(II) accounts for the much higher Fenton activity of the iron(II) DTPA complex.
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2.4. Comparison of the •OH-Generating Ability of Various Fatty Acids

Fatty acids are established to enhance the absorption of iron(III) [28,29], and, as they
are a major food source, it is an attractive concept to consider fatty acid iron(III) complexes
as a vehicle for the oral administration of iron in various types of anaemia. The advantage
of using iron(III) salts in the place of iron(II) salts is that, generally, preparations with the
former are less Fenton active than those with the later and are therefore generally less
toxic [30]. However, the bioavailability of iron when supplied in the iron(III) oxidation
state is generally lower than when provided in the iron(II) state [31]. As there are reports of
fatty acids facilitating the intestinal absorption of iron [32,33], it was decided to investigate
the Fenton activity of a range of fatty acids, namely stearic acid, oleic acid, and palmitic
acid, which are all present in the human diet, together with the shorter-chained, myristic,
lauric, and hexanoic acids.

Fatty acids possess low solubility in water, so it was decided to use a detergent
to facilitate the dissolution of the various fatty acids under investigation. Initially, we
selected sodium dodecyl sulfate (SDS; 2.5 mM), but we observed that the presence of SDS
reduced the efficiency of Fe(III) EDTA to produce •OH; furthermore, there were some
light-scattering effects resulting from the SDS micelles. We reasoned that the sulphate
groups on the surface of the micelles were chelating a proportion of the iron(III) in the
reaction medium, so we investigated several non-charged detergents, namely triton-X100,
Brig-58, and polyoxymethylene sorbitan monooleate. Again, with each detergent, we
experienced variable degrees of light scattering in the 430 nm region of the spectrum.
We then selected CTAB (cetyltrimethylammonium bromide) for investigation, reasoning
that the positively charged detergent would not bind iron(III) and that the relatively low
molecular weight would generate small micelles. Indeed, we discovered that CTAB (10 mM)
did not interfere with the Fenton activity of Fe(III)EDTA, and so we adopted this detergent
for the investigation into the Fenton activity of fatty acids in the presence of iron(III).

It was clear from the results (Table 2) that the iron(III) complexes of fatty acids lack
Fenton activity. Their activity was found to be similar to that of the oligodentate complexes
of citric acid (Table 1 and Figure 2).

Table 2. Rate of NPBG hydroxylation by fatty acids in the presence of iron(III).

Chelator Molar Ratio Chelator: Fe(III) Rate of Hydroxylation
(10−7 mol/h)

EDTA 2 13.42 ± 0.34
Stearic acid 5 <0.5

Myristic acid 5 <0.5
Lauric acid 5 <0.5

Hexanoic acid 5 <0.5

3. Discussion

As indicated in the Introduction section, there is a need for a relatively simple assay for
the Fenton activity of metal complexes. Such a method was proposed in 1988 [22], but the
assay has not been widely adopted. Recently, our group became interested in the potential
application of iron(III) complexes for the treatment of anaemia and, as a consequence,
reinvestigated the potential of NPBG as a probe for Fenton activity. We report here several
modifications to the original synthesis of NPBG and more precise guidelines for the assay.

The application of UV/visible spectroscopy for monitoring Fenton activity is straight-
forward when using NPBG; the method can be used for a fixed-time assay, monitoring
the solutions at 435 nm. Neither NPBG nor its hydroxylated products bind iron(III) at pH
8.0, so the probe does not compete for iron(III) present in the iron complexes under the
conditions of the assay.

Regarding NPBG synthesis (Scheme 1), we were unable to achieve the reported
yields by using the previously published method [22]. However, by extending the re-
action time and changing the workup for the isolation of the intermediate, 3,5-diamino-
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nitrobenzene, we achieved much improved yields. The subsequent conversion of 3,5-
diaminonitrobenzene to NPBG was achieved as previously reported [22].

The precise procedure for the assay was not described in detail in the 1988 publication,
and the sequence of additions to the assay solution proves to be critical. If the iron complex
is formed in situ, this should be undertaken in unbuffered water: iron(III) chloride or
iron(III) nitrate are dissolved in water (0.5 mL), and when the iron salt is completely
dissolved, the chelator can be added. When the solution is complete, 9.5 mL of sodium
borate buffer (25 mM, pH 8.0) is added, yielding a final iron(III) concentration of 0.5 mM.
This solution is maintained at room temperature for 30 min and then briefly centrifuged.
At this stage, H2O2 can be added in order to initiate the hydroxylation of NPBG. Using
this procedure, we confirmed the previously reported results, using a range of chelators
(Table 1). Overall, we improved the synthetic method for the production of NPBG and
the analytical procedure for monitoring Fenton activity over and above that previously
reported [22].

With fatty acids, the presence of detergents was necessary in order to completely
dissolve the iron(III) complexes. CTAB was found to be applicable in the NPBG-based
assay. Having confirmed that the presence of CTAB (10 mM) did not influence the Fenton
activity of Fe(III)EDTA, we investigated a small range of fatty acids in the same system.
To our surprise, no Fenton activity was detected with the iron(III) complexes of stearic
acid (C18), myristic acid (C14), lauric acid (C12), and hexanoic acid (C6) (Table 2). Indeed,
the fatty acids behaved like citric acid (Table 1). It has been demonstrated that citric acid
forms stable oligo-iron(III) complexes [25], and it seems likely that fatty acids also form
stable oligodentate complexes with iron(III). Indeed, such complexes have been reported
for acetic and stearic acids [34,35]. The lack of Fenton activity of the iron(III) complexes of
fatty acids renders them an attractive proposition for the oral treatment of anaemia.

4. Materials and Methods
4.1. Reagents and General Procedures

3,5-Dinitroaniline was purchased from Fluorochem. Sodium sulfide nonahydrate, glu-
taric anhydride, ethanol, ethyl acetate, hexane, acetonitrile, methanol, dimethyl sulfoxide-
d6, hydrogen peroxide solution (30% w/v), ethylenediaminetetraacetic acid, ferric nitrate
nonahydrate, fatty acids, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, citric acid,
maltol, and deferiprone were purchased from Sigma-Aldrich. Ammonium chloride and
silica gel (0.006–0.200 mm, 60 Å) were purchased from Acros Organics. Sand for solid-phase
extraction, sodium tetraborate decahydrate, and boric acid were purchased from Fisher
Scientific. All detergents were purchased from Sigma-Aldrich. Reaction extracts were
dried over anhydrous Na2SO4, and the solvents were removed under reduced pressure.
Reactions were monitored by thin-layer chromatography (TLC), using commercial plates
(Merck) precoated with silica gel 60 F-254. Visualisation was performed by UV fluores-
cence (λmax = 254 nm). Chromatographic separations on silica gel columns (Kieselgel 40,
0.040–0.063 mm; Merck) were performed by flash chromatography. Yields refer to chromato-
graphically and spectroscopically pure compounds, unless otherwise stated. Compounds
are named following IUPAC rules as applied by Beilstein-Institut AutoNom 2000 (4.01.305)
or CA Index Name. All melting points were determined on a microscope hot-stage Büchi
apparatus and are uncorrected. 1H-NMR and 13C-NMR spectra were obtained on a Bruker
AVANCE 400 spectrometer at 400 MHz and 101 MHz, respectively, using an internal deu-
terium lock at ambient probe temperatures, in 5 mm i.d. glass tubes. Chemical shift (δ)
values are quoted as parts per million (ppm) to the nearest 0.01 ppm (for 1H NMRs) or
0.1 ppm (for 13C NMRs), and they are referenced according to the residual non-deuterated
solvent peak (i.e., DMSO-d6 at 2.50 ppm for proton and 39.5 ppm for carbon). The coupling
constants (J) are reported in Hz. Data are reported as follows: chemical shift, multiplicity
(br = broad, s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, quin = quintet,
or as a combination of these, e.g., dd, dt, etc.), integration, assignment, and coupling
constant(s). Assignments were determined either on the basis of an unambiguous chemical
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shift or coupling pattern, or by analogy to fully interpreted spectra for related compounds.
UV–Vis spectra of the probes were recorded using a Perkin-Elmer Lambda 25 UV–Vis
spectrophotometer. For HPLC analysis, a Hewlett-Packard Hypersyl RPC18 column (5 µm,
10 cm × 4.6 mm ID) was used to resolve NPBG and its ortho- and para-hydroxylated iso-
mers. A linear gradient (0–10 of B) was used, where A = 20 mM phosphate buffer (pH = 7)
and B = acetonitrile. Diode array detection allowed for monitoring over the range of 220 to
450 nm, with fixed channels at 232 and 430 nm. For MS analysis, stock solutions (1 mg/mL
in MeOH) where diluted with 0.1% HCOOH in MeOH/H2O (50:50) to a final concentration
of 50 µg/mL prior to being analysed. The instrument used consisted of a Thermo Accela
LC system interfaced to a Thermo TSQ Access triple quadrupole mass spectrometer with
a HESI source. The data were processed with Xcalibur™ Software (version 2.0). Then
10 µL of sample was analysed in flow injection: flow, 0.2 mL/min; and mobile phase, 0.1%
HCOOC in MeOH/H2O (50:50). The parameters used for the analysis in the negative-ion
mode were as follows: spray voltage, 3500 V; vaporizer temperature, 300 ◦C; sheath gas
pressure, 50 au; and capillary temperature, 350 ◦C; capillary offset, -35. Microanalyses (C,
H, and N) were performed by Medac Ltd. (Surrey, UK), and the results are within ±0.4%
of the theoretical values.

4.2. Synthesis of N’N-(5-Nitro-1,3-phenylene)-bis-glutaramide (NPBG)

There were two steps to synthesise N′N-(5-nitro-1,3-phenylene)-bis-glutaramide (NPBG),
i.e., the preparation of 3,5-diaminonitrobenzene and the subsequent amidation reaction
between 3,5-diaminonitrobenzene and glutaric anhydride to produce NPBG (NMR and MS
spectra are reported in the Supporting Materials).

3,5-Diaminonitrobenzene. 3,5-Dinitroaniline (460 mg) was dissolved in 5 mL of hot
ethanol, forming a bright yellow solution. Ammonium chloride (500 mg) was dissolved
into 1.5 mL of water. Sodium sulfide nonahydrate (1.54 g) was also dissolved into 1.5 mL
of water. The ammonium chloride solution was slowly added to the dinitroaniline solution
over the period of 5 min. The sodium sulfide solution was then added dropwise into
the stirred mixture, which was maintained between 60 and 70 ◦C for a period of 30 min.
In the process of adding sodium sulfide, the colour of the solution turned a brownish
red with a yellow solid precipitating. After 30 min, the source of heating was removed.
The pH of the mixture was adjusted to 8.0 with 2M hydrochloric acid, and the mixture
was cooled to room temperature. The product was extracted with 15 mL of ethyl acetate,
yielding an orange solution. The removal of the solvent by rotary evaporation under 40 ◦C
and 240 mbar yielded an orange-red solid. This product was purified by flash column
chromatography (hexane: ethyl acetate—1:3, silica gel). Rotary evaporation yielded red
needle shaped crystals of 3,5-diaminonitrobenzene. The crystals were recrystallised from
water and dried over P2O5 to yield 3,5-diaminonitrobenzene (70%). Mp 143–144 ◦C. 1H
NMR (400 MHz, DMSO-d6) δ 6.59 (qd, 2H, ArH, J = 1.3 Hz, J = 0.8 Hz), 6.13 (dq, 1H,
ArH, J = 2.7 Hz, J = 1.1 Hz), 5.40 (s, 4H, NH2). 13C NMR (101 MHz, DMSO-d6) δ 150.2 (1C,
amine-ArC), 149.5 (1C, nitro-ArC), 104.1 (1C, ArC), 96.5 (2C, ArC).

5,5′-[(5-nitro-1,3-phenylene)bis(azanediyl)]bis(5-oxopentanoic acid) (= N′N-(5-nitro-1,3-
phenylene)-bis-glutaramide, NPBG). Glutaric anhydride (45.3 mg) and 3,5-diaminonitrobenzene
(285 mg) were dissolved in 15 mL of acetonitrile and heated under reflux for 1 h. The
solvent was removed by rotary evaporation, giving a yellow-orange solid. The product
was recrystallised from water, producing 490 mg (yield: 69%) of yellow fluffy powder.
Mp 191–192 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.08 (s, 2H, COOH), 10.38 (s, 2H, NH),
8.25 (d, 3H, ArH, J = 1.0 Hz), 2.39 (t, 4H, amide-CH2, J = 7.4 Hz), 2.28 (t, 4H, COOH-CH2,
J = 7.3 Hz), 1.81 (quin, 4H, CH2CH2CH2, J = 7.4 Hz). 13C NMR (101 MHz, DMSO-d6) δ
174.1 (2C, COOH), 171.5 (2C, amide), 148.1 (1C, nitro-ArC), 140.4 (2C, amide-ArC), 114.6
(1C, ArC), 107.8 (2C, ArC), 35.4 (2C, amide-CH2), 32.9 (2C, COOH-CH2), 20.2 (1C, CH2). El-
emental analysis calculated for C16H19N3O8 with 50.39% C, 5.02% H, and 11.01% N; found
50.05% C, 4.94% H, and 11.02% N. MS (ESI−) calculated for C16H19N3O8 381.12, found
380.03 (m/z) [M-H]−, 402.01 (m/z) [M+Na-2H]−, and 266.02 [M(- CO(CH2)3COOH)-H]−.
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IR: vmax (neat)/cm−1 3400 (O-H stretching), 3300 (N-H stretching), 1679 (C=O stretching),
1553 (NO2 asymmetric stretching), and 1335 (NO2 symmetric stretching). UV–Vis (water):
λmax at 230 nm (ε = 31,536 L·mol−1·cm−1), λ at 290 nm (ε = 3818 L·mol−1·cm−1).

4.3. Hydroxylation assay for N’N-(5-Nitro-1,3-phenylene)-bis-glutaramide (NPBG)

The solution adopted for the assay was buffered with sodium tetraborate (25 mM,
pH 8.0) and contained NPBG (1 mM), iron complex (0.5 mM), and H2O2 (5 mM). H2O2
was excluded in the blank reference solution. The preparation of the iron complex and the
sequence of additions are both critically important. The iron salt (either iron(III) or iron(II))
is dissolved in water (0.5 mL); when completely dissolved, the chelator can be added at the
prescribed molar ratio to that of iron. When the chelator is completely dissolved, sodium
borate buffer (25 mM, pH 8.0, 9.5 mL) containing NPBG (1.05 mM) is added, yielding a
final iron concentration of 0.5 mM. The solution is maintained at room temperature for
30 min and then centrifuged (3000 rpm) for 5 min. The supernatant fluid is decanted. The
hydroxylation is initiated by the addition of H2O2. The absorption at 435 nm is recorded
after 1 h.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms24044162/s1: full spectral data of NPBG and HPLC/UV
characterisation of the hydroxylated products.
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