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Abstract: Biofilm-related nosocomial infections may cause a wide range of life-threatening infections.
In this regard, Pseudomonas aeruginosa biofilm is becoming a serious health burden due to its capability
to develop resistance to natural and synthetic drugs. The utilization of nanoparticles that inhibit
biofilm formation is one of the major strategies to control infections caused by biofilm-forming
pathogens. Hydroxyapatite (HA) is a synthetic ceramic material having properties similar to natural
bones. Herein, a co-precipitation method followed by microwave treatment was used to synthesize
HA nanoparticles (HANPs). The resulting HANPs were characterized using X-ray diffraction and
transmission electron microscopy. Then, their antibiofilm properties against P. aeruginosa ATCC 10145
were examined in vitro. The needle-shaped HANPs were 30 and 90 nm long in width and length,
respectively. The synthesized HANPs inhibited the biofilm formation of P. aeruginosa ATCC 10145
in a concentration-dependent manner, which was validated by light and confocal laser scanning
microscopy. Hence, this study demonstrated that HANPs could be used to control the biofilm-related
infections of P. aeruginosa.
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1. Introduction

Nanotechnology provides an excellent opportunity to explore the versatility of ma-
terials at the nanoscale compared to the bulk material. Nanoscale-level materials have
shown superior properties in medicine, electronics, energy, and the environment. Many
methods, such as physicochemical, biological, and blended methods, have been adopted
to synthesize nanomaterials [1–3]. However, generally, there are limitations in the use of
metallic, bimetallic, and composite materials in biological systems. Employing bio-mimetic
nanoparticles allows the display of biocompatible and bioactive components, such as those
based on biopolymer and hydroxyapatite [4,5].

Biofilms are multi-cellular, surface-attached microbial communities with distinct phys-
iologic and architectural characteristics, which confer resistance to different classes of
antibiotics [6]. Biofilm is a critical virulence factor for many bacterial pathogens that can
cause chronic infections and are responsible for more than 80% of human microbial infec-
tions [7]. Most Gram-positive and Gram-negative bacteria can form biofilms, including
Escherichia coli, Klebsiella pneumoniae, Vibrio vulnificus, Enterococcus faecalis, Staphylococcus
aureus, Streptococcus viridans, Proteus mirabilis, and Pseudomonas aeruginosa [7,8].
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The prevention of bacterial biofilm formation in nosocomial settings is very impor-
tant. Biofilm-related nosocomial infections may cause a wide range of potentially fatal
illnesses, threatening people in terms of health and cost [7,9]. Researchers worldwide have
synthesized various kinds of metallic nanoparticles (NPs) and assessed their efficacy in
treating bacterial infections, including those by antibiotic-resistant strains [3,10,11]. Most
NPs made of silver, gold, copper, or zinc can inhibit biofilm formation [8,10–12]; however,
these metallic NPs have exhibited cytotoxicity at elevated concentrations [13,14].

P. aeruginosa biofilm is becoming a serious issue due to its ability to develop resistance
to natural and synthetic drugs [15]. Patients with cystic fibrosis are prone to biofilm-related
infections by P. aeruginosa [15]. The use of NPs is a significant strategy to avoid biofilm-
related infections. Antibiofilm applications of metallic NPs made of silver [16], copper [11],
and other metals [5] have been practiced against bacterial and fungal infections. Still, the
cost and toxicity of the metallic NPs are the major issues in utilizing them [17]. The chemical
and biological similarities of hydroxyapatite (HA) to the natural components of bones and
teeth make them suitable to exploit its potential as an alternative method for treating
biofilm-related infection. In this regard, HANPs, either alone or in combination with other
materials, has shown potential against various bacterial pathogens [5,18]. HANPs are
also used as materials for implants and coating due to their potential to inhibit adverse
inflammatory reactions and bacterial adherence [19,20]. Based on these postulations, this
study is focused on the inhibition of the P. aeruginosa biofilm using HANPs at various
concentrations.

2. Materials and Methods
2.1. Materials

Calcium hydroxide [Ca(OH)2], phosphoric acid (H3PO4), and Luria–Bertani (LB)
medium were purchased from Himedia Co. (Mumbai, India), and the reagents used in this
study (99.9% purity) were purchased from Sigma Aldrich (St. Louis, MO, USA).

2.2. Synthesis and Characterization of HANPs

HANPs were synthesized using the microwave-assisted co-precipitation method re-
ported previously [21]. Briefly, calcium hydroxide [Ca(OH)2] and phosphoric acid (H3PO4)
were used as precursors for HANP preparation at a concentration of 1 mM and 90%, respec-
tively. Each solution of H3PO4 and Ca(OH)2 was stirred for two hours. Then, the H3PO4
solution was added dropwise to the Ca(OH)2 solution while stirring. The solution mixture
was left undisturbed for 2 h to obtain a precipitate. The precipitate was then washed with
distilled water twice, and the pH of the precipitate was adjusted to 9 using liquid ammonia.
The solution was dried for 10 min using a microwave oven (20PG3S, IFB, Kolkata, India)
(Figure 1). The dried HANP powder was used for X-ray diffraction (XRD: SmartLAB,
Rigaku Co., Tokyo, Japan) and transmission electron microscopy studies (TEM, JSM-JEOL,
Tokyo, Japan).

2.3. Bacterial Strain and Culture Conditions

Pseudomonas aeruginosa ATCC 10145 was used in this study. The pathogen was cultured
on Luria–Bertani agar plates (Bacto tryptone 0.5%, yeast extract 1.0%, NaCl 0.5%, agar
1.5%; pH 7.0) at 37 ◦C overnight and kept at 4 ◦C. For the biofilm assay, the bacteria were
cultured for three hours overnight. Then, OD600 of the test broth was adjusted to 0.08
to 1.0 (McFarland standard, 1.5 × 108 CFU mL−1) using the standard cell suspension
(1 × 106 CFU mL−1) and used for all biofilm-related experiments [22].
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2.4. Antibiofilm Property of HANPs
2.4.1. Static Biofilm Assay

The rate of biofilm inhibition was determined using a static biofilm assay. The biofilm
of P. aeruginosa ATCC 10145 was treated with HANPs at various concentrations (10, 25, and
50 µg mL−1) in a 24-well polystyrene plate. Following the method reported previously [22],
the standard cell suspension of P. aeruginosa ATCC 10145 was inoculated in 1 mL of LB
broth containing various concentrations of HANPs and incubated at 37 ◦C for 24 h. After
incubation, the planktonic cells from the wells were removed and thoroughly rinsed with
distilled water twice. The biofilm was stained by adding an equal volume of crystal violet
solution (0.4%, w v−1) to the wells and was left to stand for 10 min. Then, the dye was
removed, and the wells were washed with distilled water to remove the excess stain. For
the quantitative assay, an equal volume of absolute ethanol or 30% glacial acetic acid was
added to dissolve the biofilm stained by crystal violet [23]. Then, the optical density of
the solution was measured at 570 nm. The biofilm inhibition rate was calculated using
Formula (1),

Biofilm inhibition (%) = ([Control OD570 − Test OD570]/Control OD570) × 100 (1)

2.4.2. In Situ Analysis of Biofilm Formation

The effect of HANPs on the P. aeruginosa ATCC 10145 biofilm architecture according
to the HANP concentrations was studied using a light microscope (Micros, Ansfelden,
Austria) and a confocal laser scanning microscope (CLSM; LSM 710, Carl Zeiss, Jena,
Germany). HANPs at various concentrations (10, 25, and 50 µg mL−1) were assessed
for antibiofilm activity against P. aeruginosa. The pathogen was inoculated into a 24-well
microtiter plate containing glass slides (1 × 1 cm) dipped in LB broth with and without
HANPs. The pathogen was allowed to form the biofilm on the glass slides by incubating
at 37 ◦C for 24 h. Following incubation, the glass slides were taken from the wells and
washed with phosphate-buffered saline (PBS, pH 7.4) to remove the planktonic cells. For
the light microscopic analysis, the glass slides were stained with crystal violet as described
in Section 2.4.1, and the biofilm was observed under a light microscope at 400× (Micros,
Austria) [24].
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For CLSM analysis, the biofilm-embedded glass slides were stained using 0.1% acri-
dine orange (w v−1) for 5 min in the dark. Then, they were washed with distilled water
briefly and air-dried in the dark. Morphological changes in the biofilm architecture formed
on the glass slides were observed and documented using a CLSM [25,26].

3. Results and Discussion
3.1. Synthesis and Characterization of HANPs

HANPs were synthesized using the microwave-assisted method, as illustrated in
Figure 1, by observing precipitation formation. HR-TEM analysis revealed that the synthe-
sized HANPs had a needle-like shape with an average of width of 30 nm and length of 90
(Figure 2a,b). Other studies have reported the synthesis of HANPs from stimulated body
fluid and CaP Tris solutions using the precipitation method, wherein the HR-TEM images
showed that average particle sizes of the HANPs synthesized from stimulated body fluid
and CaP Tris solutions were 90–600 nm and 950–2000 nm, respectively [27]. The result of the
XRD analysis of the synthesized HANPs is shown in Figure 2c. A strong diffraction peak
was observed around 2θ values of 25 and 34, corresponding to the orientation plane (111)
and (110), respectively. HA synthesized using Klebsiella pneumoniae that could solubilize
phosphate showed a similar XRD pattern to that obtained in this study [21].
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Figure 2. Characterization of HANPs prepared using the microwave method: HRTEM images
showing the needle-shaped nanoparticles of 30 nm width and 90 nm length (a,b) and arrow indicate
the needle shapted nanoparticles; XRD analysis of HANPs showing the crystalline nature of the
particle with planes at (111) and (110) (c).

3.2. Quantitative Analysis of P. aeruginosa ATCC 10145 Treated with HANPs

The capability of the HANPs to reduce the risk of P. aeruginosa ATCC 10145 attachment
to the surface of the polystyrene microtiter plate was determined using the crystal violet
staining method. The HANPs showed dose-dependent biofilm inhibitory activity against
P. aeruginosa ATCC 10145. The HANPs showed a maximum of 78.2% antibiofilm activity
against P. aeruginosa ATCC 10145 at a concentration of 50 µg mL−1 (Figure 3). In contrast
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to the negative control, which contains only HA at the higher concentration used in this
study (data not shown), HANPs significantly reduced the biofilm formation in P. aeruginosa
ATCC 10145. This result indicated that the HANPs could prevent the initial colonization
of P. aeruginosa ATCC 10145 on the polyvinyl surface. Similarly, a recent study by Beyene
and Ghosh [28] showed the antibiofilm properties of nanocomposite containing green
synthesized zinc oxide and HANPs. Compared to the HANPs alone, the nanocomposite
showed pronounced activity against the biofilm formation of S. aureus and E. coli. Likewise,
another study also proved the antibiofilm activity of HANPs against Staphylococcus aureus,
Bacillus subtilis, K. pneumoniae, Candida albicans, and Escherichia coli [29].
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Figure 3. Antibiofilm property of HANPs against P. aeruginosa biofilm ATCC 10145 treated with
various concentrations of HANPs for 24 h (p ≤ 0.05).

Similarly, recent work by Higuchi et al. (2022) reported that biomaterials containing
HANPs and nano zinc oxide–silver sonicated on electrospun fibers of poly (D, L-lactic
acid)/poly (lactic-co-glycolic acid) proliferated the growth of osteoblast cells [30]. Poly (D, L-
lactic acid)/poly (lactic-co-glycolic acid) sonicated with nano zinc oxide–silver biomaterial
inhibited bacterial growth with a high toxicity profile towards osteoblasts. The addition of
HANPs to poly (D, L-lactic acid)/poly (lactic-co-glycolic acid) sonicated with nano zinc
oxide–silver biomaterial decreased the toxicity towards osteoblasts. These results show the
biocompatibility of HANPs towards osteoblast cells. However, the biomaterial containing
HANPs and nano zinc oxide–silver did not exhibit antibacterial activity against S. aureus
and E. coli. Similarly, in another study, samarium-doped hydroxyapatite coatings render
antibiofilm activity without inhibiting the growth of S. aureus and P. aeruginosa [31]. Hence,
these data suggest HANPs as a biocompatible material with antibiofilm potential against
bacterial pathogens and necessitate a deeper understanding of the action mechanism of
HANPs against the biofilm formation of bacterial pathogens, especially P. aeruginosa.

3.3. Qualitative Analysis of P. aeruginosa ATCC 10145 Treated with HANPs

Light microscopy analysis revealed the ability of HANPs to inhibit the biofilm of P.
aeruginosa on the surface of the glass. The biofilm matrix formed in the presence of HANPs
was more distorted than the control. The gradual and visible reduction in the biofilm
matrix was observed with the increasing concentration of HANPs (Figure 4). CLSM is a
sophisticated microscopy that provides a detailed analysis of biofilm morphology using 2D
and 2.5 D detection. CLSM imaging revealed that HANP treatment changes the structural
morphology of the P. aeruginosa biofilm, such as the biofilm density and multilayered biofilm
formation represented by its height (Figure 5 (2.5D)). The result proved the potential of
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HANPs as surface modulators inhibiting the initial attachment of the P. aeruginosa cells,
which might modulate the rigidity of biofilms and allow easy permeability of antimicrobial
agents. Therefore, the microscopy analysis clearly stated that the change in the morphology
of the biofilm was due to the biofilm inhibitory effect of HANPs.
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P. aeruginosa biofilm remains a significant menace to people enduring acute diseases
such as cystic fibrosis, diffuse panbronchiolitis, and chronic obstructive pulmonary dis-
ease [15]. Moreover, P. aeruginosa infection, especially biofilm formation, is frequent in
immunocompromised patients and people with implants such as catheters and contact
lenses [32]. Therefore, conventional treatment with antibiotics has become useless against
the P. aeruginosa biofilm, and a higher concentration of antibiotics is required for effective
treatment [33,34]. The use of NPs for treating biofilm-related infections has recently been
on the rise. The present study elucidated HANP synthesis and its capability to inhibit P.
aeruginosa biofilm formation.

HA is a bioceramic material with excellent biocompatibility, osteoconductivity, and
bioactivity [28,35,36]. Clinically, HA possesses a wide range of medical applications, such
as serving as a filling material for obstructing tooth cavities or bone fractures [37], and a
coating material [38]. So far, the efficacy of HANPs against the biofilm of clinically relevant
bacterial pathogens has been evidenced alone or in combination with other nanoparticles
and antibiotics [13,28,29,39]. Hanning et al. [40] utilized HA microcrystals to prevent the
accumulation of Staphylococcus mutans biofilm in vitro. The results obtained in this study
are the first and foremost work revealing the capability of HANPs to inhibit the biofilm of
Gram-negative bacteria P. aeruginosa via qualitative and quantitative analysis. Only a small
number of investigations have been carried out to analyze the activity of HANPs against
bacterial biofilm. Further, HA possesses more extended stability, revealing the potential of
HA as an effective coating material over different surfaces [41]. Thus, further incorporating
metallic NPs and antibiotics with the HANPs synthesized at 10 min might increase the
biofilm inhibitory potential against P. aeruginosa and other pathogenic bacteria.

4. Conclusions

HANPs can effectively impede the biofilm formation of P. aeruginosa ATCC 10145.
Clear evidence has shown that HANP treatment significantly reduced biofilm develop-
ment and rendered apparent morphological changes in the biofilm architectures of P.
aeruginosa ATCC 10145. We believe that the findings of this study will attract more re-
searchers to exploit the application-oriented use of HANPs to combat biofilm-associated
P. aeruginosa infections.
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