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Abstract: Vitamin D is necessary for the normal functioning of many organs, including the thyroid
gland. It is, therefore, not surprising that vitamin D deficiency is considered a risk factor for the
development of many thyroid disorders, including autoimmune thyroid diseases and thyroid cancer.
However, the interaction between vitamin D and thyroid function is still not fully understood. This
review discusses studies involving human subjects that (1) compared vitamin D status (primarily
determined by serum calcidiol (25-hydroxyvitamin D [25(OH)D]) levels) with thyroid function
assessed by thyroid stimulating hormone (TSH), thyroid hormones, and anti-thyroid antibody levels;
and (2) evaluated the effect of vitamin D supplementation on thyroid function. Due to the many
inconsistencies in the results between the studies, it is still difficult to draw a definite conclusion
on how vitamin D status affects thyroid function. Studies in healthy participants observed either a
negative correlation or no association between TSH and 25(OH)D levels, while the results for thyroid
hormones showed high variability. Many studies have observed a negative association between
anti-thyroid antibodies and 25(OH)D levels, but equally many studies have failed to observe such
an association. Regarding the studies that examined the effect of vitamin D supplementation on
thyroid function, almost all observed a decrease in anti-thyroid antibody levels after vitamin D
supplementation. Factors that could contribute to the high variability between the studies are the use
of different assays for the measurement of serum 25(OH)D levels and the confounding effects of sex,
age, body-mass index, dietary habits, smoking, and the time of year when the samples were collected.
In conclusion, additional studies with larger numbers of participants are needed to fully understand
the effect of vitamin D on thyroid function.

Keywords: vitamin D; thyroid; thyroid stimulating hormone (TSH); anti-thyroid antibodies; thyroid
hormones; autoimmune thyroid diseases

1. Introduction

This review aims to investigate the relationship between vitamin D and thyroid
function. Since vitamin D has an important role in normal thyroid function, studies that
are trying to understand the complex background of vitamin D and thyroid interaction
are of utmost importance. In this review, we included studies involving human subjects
that (1) compared vitamin D status with thyroid function, and (2) evaluated the effect of
vitamin D supplementation on thyroid function. A literature search was performed by
two independent researchers and completed on December 31, 2022. It was performed
in Medline using the keywords “vitamin D”, “thyroid”, “25-hydroxyvitamin D”, and
“25(OH)D” and was not limited by publication date.

2. Vitamin D

Different types of vitamin D are fat-soluble secosteroids (vitamin D1-D5). The most im-
portant types of vitamin D for humans are vitamin D3 (cholecalciferol) and vitamin D2 (er-
gocalciferol). Most vitamin D is synthesized in the skin after exposure to sunlight (vitamin
D3), while only 5–10% is taken from food (vitamin D2 and D3) [1]. Exposure of skin to sun-
light causes the transformation of 7-dehydrocholesterol into vitamin D3. Vitamin D3 is then
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transformed in the liver by the action of vitamin D 25-hydroxylase into 25-hydroxyvitamin
D (25(OH)D, also known as calcidiol or calcifediol). The active form of vitamin D3, 1α,25-
dihydroxyvitamin D (1,25(OH)2D, also known as 1,25-dihydroxycholecalciferol, 1α,25-
dihydroxyvitamin D3 or calcitriol), is produced from the 25(OH)D in the kidneys by the
action of the enzyme 1α-hydroxylase encoded by the CYP27B1 gene [2]. Vitamin D status
is mainly determined by measuring serum 25(OH)D.

The main role of calcitriol (the active form of vitamin D3) is the regulation of calcium
and phosphate concentrations. Calcitriol increases intestinal and renal absorption of
calcium and phosphate. It is also crucial for bone mineralization [3]. Additionally, calcitriol
is involved in the regulation of cell growth, and immune and neuromuscular functions. Its
anticancer and immunosuppressive effects have also been shown [4,5].

Calcitriol binds to the vitamin D receptor (VDR) which belongs to the nuclear receptor
superfamily. After calcitriol binding, VDR dimerizes with the retinoid X receptor (RXR),
translocates to the nucleus, and binds to vitamin D response elements within DNA [6].
VDR is involved in the regulation of the expression of more than 1000 genes [7,8] and is
found in almost all tissues [9].

3. Thyroid Function

The thyroid gland synthesizes thyroid hormones that are crucial for the normal func-
tioning of physiological systems. The hypothalamus-pituitary-thyroid (HPT) axis orches-
trates thyroid hormone synthesis by feedback mechanisms. In other words, when the
levels of thyroid hormones decrease, the hypothalamus synthesizes thyrotropin-releasing
hormone (TRH). TRH stimulates the anterior pituitary, causing an increase in thyroid-
stimulating hormone (TSH) secretion. Finally, TSH stimulates thyrocytes which increases
the production of thyroid hormones [10]. The synthesis of thyroid hormones requires
the active uptake of iodide through sodium/iodide symporter (NIS), production of thy-
roglobulin (Tg), and iodination of Tg by the enzyme thyroid peroxidase (TPO). When Tg
is proteolyzed, thyroid hormones triiodothyronine (T3) and thyroxine (T4) are released.
Although the thyroid releases more T4 than T3 (in a ratio of approximately 14:1) [11], the
majority of T4 converts to T3 in the tissues [12]. This conversion is mediated by the enzymes
type 1 and type 2 iodothyronine deiodinases (Dio1 and Dio2) [12]. When secreted in plasma,
thyroid hormones are bound to plasma proteins; only 0.03% of thyroid hormones are in an
unbound or free form (fT4 and fT3) that is biologically active [13].

4. Vitamin D in Thyroid Disorders
4.1. Vitamin D in Autoimmune Thyroid Diseases

Autoimmune thyroid diseases are characterized by an immune attack of the thyroid
gland. These conditions are the most common autoimmune disorders in general, with a
prevalence of approximately 5% [14]. Hashimoto’s thyroiditis, characterized by hypothy-
roidism, and Graves’ disease, characterized by hyperthyroidism, are the two main types of
autoimmune thyroid diseases. Both conditions are T-cell-mediated autoimmune disorders
characterized by thyroid lymphocytic infiltration [14].

Vitamin D supplementation has been shown to be beneficial in animal models of
Graves’ disease [15] and thyroiditis [16]. To date, many human studies have also been
conducted to evaluate the role of vitamin D in autoimmune thyroid diseases. Genetic
studies have found that polymorphisms in VDR and other genes involved in vitamin D
signaling are associated with an increased risk of autoimmune thyroid diseases [17–19].
A recent meta-analysis by Štefanić and Tokić, which included 25 studies (2695 cases with
Hashimoto’s thyroiditis and 2263 controls), detected significantly decreased levels of
25(OH)D in patients with Hashimoto’s thyroiditis [20]. Additionally, a meta-analysis
by Xu et al., which included 26 studies (1748 cases with Graves’ disease and 1848 controls),
noted that patients with Graves’ disease were more likely to be vitamin D deficient [21].
However, a recent meta-analysis by Taheriniya et al., which included 42 studies analyz-
ing patients with autoimmune thyroid diseases (1886 with autoimmune thyroid disease,
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372 with hypothyroidism, 1375 with Hashimoto’s thyroiditis, and 604 with Graves’ disease),
showed that vitamin D deficiency is associated with the development of autoimmune thy-
roid diseases, Hashimoto’s thyroiditis, and hypothyroidism. For Graves’ disease, however,
association with vitamin D levels was shown only among older subjects [22].

In addition to its association with autoimmune thyroid diseases, vitamin D deficiency
has also been observed in other autoimmune diseases such as multiple sclerosis, diabetes
mellitus, systemic lupus erythematosus, and others [23,24]. Both VDR and 1α-hydroxylase
are expressed in immune cells, T and B lymphocytes, dendritic cells, neutrophils, and
monocytes [25,26]. Therefore, these cells can produce calcitriol, the active form of vitamin
D3 [27]. Vitamin D can modulate the activity of various immune system cells and is
involved in the regulation of the immune system. Vitamin D inhibits the production
of proinflammatory cytokines such as IL-6, IL-8, IL-9, IL-12, IFN-γ, and TNF-α. It also
enhances the production of anti-inflammatory cytokines such as IL-10, IL-5, and IL-4. The
overall effect of vitamin D is considered to be anti-inflammatory [26]. Despite the numerous
studies conducted to clarify the role of vitamin D in the development of autoimmune
thyroid diseases, it is still unclear whether vitamin D deficiency is an important factor in
the pathogenesis or the consequence of autoimmune thyroid diseases [28].

4.2. Vitamin D in Thyroid Cancer

The incidence of thyroid cancer is increasing. In 2017, 255,490 new cases of thyroid
cancer were detected worldwide, while only 95,030 new cases were detected in 1990 [29].
In thyroid cancer, both follicular thyroid cells and neuroendocrine cells can be affected.
Differentiated thyroid cancer (papillary thyroid cancer, Hurthle cell thyroid cancer, and
follicular thyroid cancer), poorly differentiated thyroid cancer, and anaplastic (undifferenti-
ated) thyroid cancer arise from thyroid follicular cells. Medullary thyroid cancer is caused
by malignant changes in parafollicular neuroendocrine cells [30]. Differentiated thyroid
carcinomas are the most common types of thyroid cancer with 85% of all cases having
papillary thyroid cancer [29–31].

Both in vitro and in vivo studies have shown a beneficial effect of vitamin D in treating
thyroid cancer. In vitro studies have shown that calcitriol and its analogue (MART-10) can
inhibit the proliferation [32] and metastatic potential [33] of anaplastic thyroid carcinoma
cells, respectively. In addition, the expression levels of VDR and other genes involved in
vitamin D signaling are increased in malignant thyroid cells [34–36], suggesting a potential
antitumor response of vitamin D in cancer [35]. In vivo studies have shown that treatment
with calcitriol reduced tumor size in both mouse models of follicular thyroid cancer [37]
and metastatic follicular thyroid cancer [38].

As for human studies, in a large randomized clinical trial involving 25,871 participants
(including patients with lung, breast, prostate, and colorectal cancer), vitamin D3 supple-
mentation was shown to reduce the risk of developing advanced cancer in individuals
without a diagnosis at the beginning of the study [39]. Regarding thyroid cancer, a meta-
analysis by Zhao et al. showed that vitamin D deficiency may be a risk factor for thyroid
cancer [40]. Some studies, however, have found no association between vitamin D status
and risk of developing thyroid cancer [41,42].

5. The Effect of Vitamin D on Secretion of TSH, Thyroid Hormones and
Anti-Thyroid Antibodies
5.1. Evidence from Animal/Cell Models

There are several insufficiently understood mechanisms by which vitamin D might
alter the levels of TSH and thyroid hormones (reviewed in [43]). Experimental studies have
shown that vitamin D has a direct effect on Dio2, the enzyme necessary for the conversion
of T4 into T3 in target tissues. Specifically, the administration of vitamin D3 in diabetic rats
leads to an increase in Dio2 expression levels in the liver and brain and, consequently, an
increase in fT3 levels and a decrease in fT4 levels [44]. However, the thyroid physiology in
VDR knockout mice did not show significant changes, and the mice had only a moderate
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reduction in TSH levels [45]. In vitro studies have shown that calcitriol administration
suppressed TSH-stimulated adenylyl cyclase activity [46] and iodide uptake [46,47], while
a study in rat pituitary cells has shown that calcitriol administration increases TRH-induced
TSH release [48]. These data indicate that vitamin D could have both central and peripheral
effects on the release of TSH and thyroid hormones. However, further experimental studies
are needed to clarify the underlying mechanisms.

5.2. Evidence from Human Studies
5.2.1. Observational Studies

Many studies have linked 25(OH)D levels with the levels of TSH, thyroid hormones,
and anti-thyroid antibodies (Table 1 and Figure 1). Studies in healthy participants mainly
observed either a negative correlation [49,50] or no association [51,52] between TSH and
25(OH)D levels, and the same pattern was observed in studies involving patients with
thyroid cancer (Table 1). Regarding thyroid hormones, conflicting results were observed in
healthy participants with either positive [53], negative [54], or no association with 25(OH)D
levels detected [55]. Studies involving patients with autoimmune thyroid diseases have
also produced conflicting results. Two-thirds of the studies observed no association, while
one-third of the studies detected a negative association between TSH and 25(OH)D levels
(summarised in Table 1). On the other hand, most of the studies involving patients with
autoimmune thyroid diseases did not observe an association between thyroid hormones
and 25(OH)D levels. Regarding anti-thyroid antibodies, most of the studies observed a
negative association between anti-thyroid antibody levels (anti-thyroid peroxidase antibody
[TPOAb], anti-thyroglobulin antibody [TgAb], or TSH receptor antibody [TSHRAb]) and
25(OH)D levels, but many studies also failed to observe such an association (Table 1).

Table 1. Correlation of 25(OH)D with TSH, thyroid hormones, thyroglobulin and anti-thyroid antibodies.

Reference
Correlation of 25(OH)D with
TSH, Thyroid Hormones and

Thyroglobulin

Correlation of 25(OH)D with
Anti-Thyroid Antibodies

Number of
Participants Diagnosis of Participants

[56] ↔Thyroid function (levels of
TSH, fT4, fT3)

↓iTgAb,
↓iTPOAb

(i-isolated)
1812 Healthy controls

[57] ↓TPOAb 642 Healthy controls

[52] ↔TSH, ↔fT4 ↓TPOAb 4181 Healthy controls

[54] ↔TSH, ↓fT3, ↓fT4 300 Healthy controls

[55] ↓TSH, ↔fT4, ↔fT3 ↓TPOAb, ↓TgAb 1424 Adults (41–78 years)

[58] ↑TSH, ↔fT4, ↔fT3 ↓TPOAb,
↔TgAb 155 Healthy controls

[51] ↔TSH, ↔fT4, ↑fT3 ↓TPOAb, ↔TgAb 168 Elderly participants
(65 years and older)

[59] ↔TSH, ↔fT4 ↔TPOAb, ↔TgAb 2006 Healthy controls

[49]
↓TSH (also measured fT4 and
fT3, but did not compare with

25(OH)D)
294 Healthy controls

[50] ↓TSH (only in younger
participants) ↔TPOAb, ↔TgAb 2582 Healthy controls

[53] ↔TSH, ↑fT4, ↔fT3 123 Healthy controls

[60] ↔TSH, ↔fT4, ↔fT3 2869 Children (6–24 months of age)

[61] ↓TSH, ↑T3, ↑T4, ↑fT4 ↓anti-thyroid antibodies
(TPOAb, TgAb) 153 Pediatric cohort with balanced

bone metabolism
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Table 1. Cont.

Reference
Correlation of 25(OH)D with
TSH, Thyroid Hormones and

Thyroglobulin

Correlation of 25(OH)D with
Anti-Thyroid Antibodies

Number of
Participants Diagnosis of Participants

[62] ↓TSH, ↔fT4, ↔fT3
(also measured TPOAb and
TgAb, but did not compare

with 25(OH)D)
261

Overweight subjects
(216 patients with

autoimmune thyroiditis)

[63]
↔TSH

(also measured fT4 and fT3, but
did not compare with 25(OH)D)

219 Obese Chinese people (118 with
mildly increased TSH)

[64] ↓TSH, ↑fT4, ↑fT3 ↔TPOAb,
↔TgAb 5262

Healthy controls (4889) and
patients with Hashimoto’s

thyroiditis (373)

[65]
↓TSH (in patients with

Hashimoto’s thyroiditis), ↔fT4,
↔T4, ↔T3

↔TPOAb,
↔TgAb 637

Healthy controls (176) and
patients with Hashimoto’s

thyroiditis (461)

[66] ↔TSH ↑TPOAb (in males),
↔TgAb 185

Patients with Hashimoto’s
thyroiditis (97) and healthy

controls (88)

[67] ↔TSH, ↔fT4, ↔fT3 ↓TPOAb
↓TgAb 39

Euthyroid
women with Hashimoto’s

thyroiditis

[68]
(also measured TSH and fT4,

but did not compare with
25(OH)D)

↓TPOAb (in children
with Hashimoto’s thyroiditis) 152

Children
with Hashimoto’s thyroiditis
(78) and healthy controls (74)

[69]
(also measured TSH, fT4 and
fT3, but did not compare with

25(OH)D)
↔TPOAb, ↔TgAb 160 Hypothyroid patients with and

without Hashimoto’s thyroiditis

[70] ↓TSH, ↔fT4 353

Patients with autoimmune
thyroiditis (30%), multinodular

goiter (21.81%),
Basedow disease (1.98%),
postoperative myxedema

(6.52%) and other pathologies
like single thyroid nodule or
partial agenesia (the rest of

the patients)

[71] ↔TSH, ↔fT4, ↔fT3 ↓TPOAb (during winter, but
not during summer) 933 Autoimmune thyroiditis

[72] ↔TSH, ↔fT4, ↔fT3 ↓TPOAb,
↓TgAb 34 Autoimmune thyroiditis

(women)

[73] ↔TSH, ↔fT4, ↔tT4, ↔fT3,
↔tT3

↓TPOAb,
↓TgAb 32

Prediabetic women with
Hashimoto’s

thyroiditis

[74] ↓TSH (in men, n = 2193), ↔fT4 ↓TPOAb (in women, n = 2163) 4356

Euthyroid participants,
euthyroid participants with
TPOAb, participants with

hypothyroidism

[75]

↔TSH, ↑fT4 (in patients with
Hashimoto’s thyroiditis) ↔TSHAb, ↔TPOAb

↔TgAb 159
Patients with Hashimoto’s
thyroiditis (88) and control

subjects (71)↔fT4, ↔TSH in control group



Int. J. Mol. Sci. 2023, 24, 3586 6 of 17

Table 1. Cont.

Reference
Correlation of 25(OH)D with
TSH, Thyroid Hormones and

Thyroglobulin

Correlation of 25(OH)D with
Anti-Thyroid Antibodies

Number of
Participants Diagnosis of Participants

[76] ↔ TSH, ↔ fT4, ↔ fT3 ↓TPOAb 200
Patients with Hashimoto’s

Thyroiditis (100) and heathy
euthyroid controls (100)

[77] ↔T4, ↔T3 21 Hyperthyroid patients

[78] ↔TSH, ↔fT4, ↔fT3 ↔TPOAb, ↔TgAb 226

Patients with Graves’ disease
(51), euthyroid Hashimoto’s
thyroiditis (61), Hashimoto’s

thyroiditis receiving hormone
therapy (63) and healthy

controls (51)

[79] ↓TSH, ↔fT4 ↔TPOAb, ↔TgAb,
↔TSHRAb 776

Patients with Graves’ disease
(148), Hashimoto’s thyroiditis

(221) and participants with
normal thyroid function and

negative thyroid
autoantibodies (407)

[80] ↔TSH, ↔fT4 224

Patients with diagnosed or
suspected thyroid disease

(hypo- and hyperthyroidism,
thyroid nodule,
and/or cancer)

[81]

↓TSH (in patients with
Hashimoto’s thyroiditis)

(also measured T4 and T3, but
did not compare with 25(OH)D)

↔TPOAb 86

Patients with hypothyroid
Hashimoto’s thyroiditis (41)

and healthy euthyroid
persons (45)

[82]
↔TSH (also measured fT4 and

TgAb, but did not compare
with 25(OH)D)

↔TPOAb 136
Children with Hashimoto’s
thyroiditis (68) and healthy

children (68)

[83] ↔TSH, ↔fT4, ↔fT3 ↓TPOAb,
↔TgAb 394

Patients with Hashimoto’s
thyroiditis (194) and healthy

controls (200)

[84] ↓TSH, ↔fT4, ↑tT4, ↔fT3, ↔tT3 ↔TPOAb, ↔TgAb 169
Patients with hypothyroid

Hashimoto’s thyroiditis (90)
and healthy controls (79)

[85]
↔TSH (also measured fT4 and
fT3, but did not compare with

25(OH)D)
↔TPOAb, ↔TgAb, ↓TSHRAb

2 case
control
studies:
(1) 210
(2) 171

2 case control studies:
(1) Patients with Graves’

disease (70), Hashimoto’s
thyroiditis (70) and healthy

controls (70)
(2) Women with post-partum
thyroiditis (57) and euthyroid

mothers as controls (114)

[86]
(also measured TSH, fT4 and
fT3, but did not compare with

25(OH)D)

↓TPOAb (in patients with
autoimmune thyroid disorder),

↔TSHRAb
304

Patients with autoimmune
thyroid disorder (111) and

without autoimmune thyroid
disorder (193)

[87] ↔TSH, ↔T4, ↔T3 25 Infants with congenital
hypothyroidism

[88]
↓fT3 (also measured TSH, fT4,

tT4 and tT3, but did not
compare with 25(OH)D)

108 Patients with hyperthyroidisms
(55) and healthy controls (53)
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Table 1. Cont.

Reference
Correlation of 25(OH)D with
TSH, Thyroid Hormones and

Thyroglobulin

Correlation of 25(OH)D with
Anti-Thyroid Antibodies

Number of
Participants Diagnosis of Participants

[89]
(also measured TSH, fT4 and
T3, but did not compare with

25(OH)D)
↔TBII, ↔TSAb 143 Patients with Graves’ disease

[90] ↔ TSH, ↔ fT4, ↔ fT3 ↑ TSHRAb 188

Patients with Graves’ disease
who received radioiodine
therapy (128) and healthy

controls (60)

[91] ↔TSH, ↔fT4, ↔fT3 ↓TSHRAb, ↔TPOAb, ↔TgAb 140 Patients with Graves’ disease
(70) and healthy controls (70)

[92]
↔ Thyroid function (described
by the levels of TSH, tT4, tT3

and TPOAb)
398

Healthy controls (109) and
patients with thyroid

nodules (289)

[93] ↓TSH, ↔Tg ↔TgAb 1161 Patients with papillary
thyroid cancer

[94] ↔TSH 548
Female

patients with papillary
thyroid cancer

[95] ↓TSH ↓TPOAb 820 Patients with papillary
thyroid cancer

[41] ↔TSH 433 Patients with benign thyroid
nodules and thyroid carcinomas

[96] ↓TSH, ↔fT4, ↑fT3 1706
Patients with papillary thyroid
carcinoma (1578) and benign

thyroid diseases (128)

[97] ↓TSH, ↔fT4, ↔fT3
(also measured TPOAb,

TSHRAb and TgAb, but did
not compare with 25(OH)D)

567
Patients with type 2

diabetes mellitus (389) and
healthy controls (178)

[98] ↔TSH, ↔fT4 151 Patients with
metabolic disorders

[99] ↓TSH, ↑fT4, ↑fT3 ↓TPOAb, ↓TgAb 59

Women with post-partum
thyroiditis; hypothyroid (14),
euthyroid with post-partum

thyroiditis (14), with
non-autoimmune

hypothyroidism (16) and
healthy controls (15)

[100] ↔TSH, ↓fT3, ↔fT4 ↔TPOAb, ↔TgAb 283 Pregnant women with vitamin
D deficiency

[101] ↔TSH, ↔fT4, ↔fT3 132 Women in early pregnancy
(1st trimester)

[102] ↔TSH, ↔fT4, ↔fT3 ↔TPOAb, ↔TgAb 50 Pregnant women

[103] ↑TSH, ↓fT4, ↔tT4, ↓fT3, ↔tT3 277 Women in 2nd trimester
of pregnancy

[104] ↓TSH, ↔fT4 ↓TPOAb, ↓TgAb 200

Pregnant woman with
subclinical hypothyroidism and

gestational diabetes mellitus
(100) and healthy pregnant

woman (100)
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Table 1. Cont.

Reference
Correlation of 25(OH)D with
TSH, Thyroid Hormones and

Thyroglobulin

Correlation of 25(OH)D with
Anti-Thyroid Antibodies

Number of
Participants Diagnosis of Participants

[105] ↔TSH, ↔fT4, ↔fT3 ↔TPOAb, ↔TgAb 50

Women with polycystic ovary
syndrome (autoimmune

thyroid disease detected in
12 patients)

This table includes only studies conducted in human subjects. (↔) no association, (↓) negative association,
(↑) positive association. 25(OH)D, 25-hydroxyvitamin D; fT3, free triiodothyronine; fT4, free thyroxine; T3,
triiodothyronine; T4, thyroxine; TBII, TSH-binding inhibitory immunoglobulin; Tg, thyroglobulin; TgAb, anti-
thyroglobulin antibody; TPOAb, anti-thyroid peroxidase antibody; TSAb, thyroid-stimulating antibody; TSH,
thyroid stimulating hormone; TSHRAb; TSH receptor antibody; tT3, total T3; tT4, total T4.
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5.2.2. Randomised Controlled Trials

Vitamin D deficiency is widespread, and it is estimated that approximately 40% of
Europeans are vitamin D deficient with 13% being severely deficient [106]. Serum 25(OH)D
levels below 50 nmol/L (or 20 ng/mL) and 30 nmol/L (or 12 ng/mL) are considered
vitamin D deficiency and severe deficiency, respectively [107]. Therefore, many scientists
and physicians recommend vitamin D supplementation. An international consensus on
the optimal concentration for vitamin D supplementation has not yet been reached. In
many countries, a daily vitamin D supplementation ranging from 400 to 2000 IU (10–50 µg)
is recommended [107]. However, it is important to take into account that the prevalence
of vitamin D deficiency varies in different ethnic groups. A study in Europeans showed
that European Caucasians are less vitamin D deficient than non-white individuals [106].
Additionally, a study conducted in the USA showed that White individuals show lower
rates of vitamin D deficiency than Black individuals [108]. Vitamin D deficiency is consid-
ered a risk factor for various diseases. It can lead to loss of bone density and increase the
risk of fractures, osteoporosis, osteomalacia, and rickets in children [109]. In addition to
autoimmune diseases, vitamin D deficiency has also been associated with cardiovascular
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diseases, neuropsychiatric disorders, and cancer [23,24]. Vitamin D deficiency may even
contribute to the severity of COVID-19 [110].

Studies investigating the effect of vitamin D (cholecalciferol) supplementation on
thyroid function were mostly conducted in patients with autoimmune thyroid diseases
(Table 2). In almost all studies, vitamin D supplementation caused a significant reduction
in anti-thyroid antibody (TPOAb and TgAb) levels. Results for TSH and thyroid hormones
were conflicting. Some studies have noted a decrease or no change in TSH levels after
vitamin D supplementation, while thyroid hormones remained mostly unchanged after
vitamin D supplementation (Table 2). However, most of these studies were underpowered,
with only four studies including more than 100 individuals [111–114]. The study with the
largest number of participants included 11,017 participants in a wellness program receiving
vitamin D supplementation, of whom 2% had hypothyroidism and 22% had subclinical hy-
pothyroidism. Researchers observed a significant decrease in TPOAb, TgAb, TSH, thyroid
hormone, and thyroglobulin levels in participants after 12 months of vitamin D supplemen-
tation [111]. Moreover, the number of patients with clinical and subclinical hypothyroidism
significantly decreased after 12 months of vitamin D supplementation [111].

Table 2. Changes in the levels of TSH, thyroid hormones, thyroglobulin and anti-thyroid antibodies
following vitamin D (cholecalciferol) therapy/supplementation.

Reference

Vitamin D
Therapy/Supplementation

Caused the Following Changes
in the Levels of TSH, Thyroid
Hormones and Thyroglobulin:

Vitamin D
Therapy/Supplementation

Caused the Following
Changes in the Levels of

Anti-Thyroid Antibodies:

Number of
Participants Diagnosis of Participants

[114] (meta-
analysis) ↔ TSH, ↔ fT4, ↔ fT3 ↓TPOAb, ↔TgAb 258 Hashimoto’s thyroiditis

[111] ↓TSH, ↓fT3, ↓fT4, ↓Tg ↓TPOAb, ↓TgAb 11,017

Participants in wellness
program receiving vitamin D

supplementation (2%
hypothyroid and 22%

subclinical
hypothyroid)

[113] ↓TSH (in autoimmune
thyroiditis positive group) 198

Autoimmune thyroiditis
negative (103) and

autoimmune thyroiditis
positive (95)

[115] ↔TSH, ↔fT4 ↓TPOAb 100 Patients with autoimmune
thyroid disorder

[116] ↔TSH ↔TPOAb, ↔TgAb 34 Female patients with
Hashimoto’s thyroiditis

[112] ↓TSH, ↔T4, ↔T3 201 Hypothyroid patients

[117]
Vitamin D/selenomethionine
combination therapy caused:
↔TSH, ↔fT4, ↔fT3, ↓fT4/fT3

Vitamin D/selenomethionine
combination therapy caused:

↓TPOAb, ↓TgAb
38 Euthyroid women with

Hashimoto’s thyroiditis

[118]

Vitamin
D/dehydroepiandrosterone(DHEA)

combination therapy caused:
↓TSH, ↔fT4, ↔fT3

Vitamin D therapy or vitamin
D/dehydroepiandrosterone

(DHEA) combination therapy
caused: ↓TPOAb,

↓TgAb

35 Women with
Hashimoto’s thyroiditis

[119] ↔TSH, ↔fT4, ↔fT3, ↔fT4/fT3 ↓TPOAb, ↓TgAb 62 Women with
Hashimoto’s thyroiditis
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Table 2. Cont.

Reference

Vitamin D
Therapy/Supplementation

Caused the Following Changes
in the Levels of TSH, Thyroid
Hormones and Thyroglobulin:

Vitamin D
Therapy/Supplementation

Caused the Following
Changes in the Levels of

Anti-Thyroid Antibodies:

Number of
Participants Diagnosis of Participants

[120] ↔TSH ↔TPOAb 56 Hashimoto’s thyroiditis

[121] ↓TSH, ↑T4 12 Hypothyroid patients

[122] ↔TSH, ↔fT4, ↔fT3 ↓TPOAb, ↓TgAb 59

Non-lactating
L-thyroxine-treated women
with postpartum thyroiditis

(38) and matched healthy
postpartum women (21)

[123] ↔TSH, ↔fT4, ↔fT3 ↓TPOAb, ↓TgAb 57

Levothyroxine-treated
euthyroid women with

Hashimoto’s
thyroiditis and vitamin D

insufficiency

[124] ↔TSH, ↔fT4, ↔fT3 ↓TPOAb, ↓TgAb 34 Women with Hashimoto’s
thyroiditis

[125] ↔TSH, ↔fT4, ↔fT3 ↓TPOAb, ↓TgAb 37 Euthyroid men with
autoimmune thyroiditis

[126] ↔TSH, ↔fT4, ↔fT3 ↓TPOAb, ↓TgAb 36
Men with euthyroid

Hashimoto’s thyroiditis and
testosterone deficiency

[73]
Vitamin D/metformin

combination therapy caused:
↓TSH, ↔fT4, ↔fT3

Vitamin D/ metformin
combination therapy caused:

↓TPOAb, ↓TgAb
32

Women with
Hashimoto’s

thyroiditis

[127]
↓TSH (in patients receiving

vitamin D supplementation),
↔T4, ↔T3

↔TPOAb,
↓TgAb (in patients receiving
vitamin D supplementation)

40 Female patients with
Hashimoto’s thyroiditis

This table includes only studies conducted in human subjects. (↔) no effect, (↓) decrease, (↑) increase. fT3,
free triiodothyronine; fT4, free thyroxine; T3, triiodothyronine; T4, thyroxine; Tg, thyroglobulin; TgAb, anti-
thyroglobulin antibody; TPOAb, anti-thyroid peroxidase antibody; TSH, thyroid stimulating hormone; tT3, total
T3; tT4, total T4.

5.2.3. Mendelian Randomization

Only two studies until now have used Mendelian randomization (MR) methodology
to analyze the association between vitamin D and thyroid function. Ye et al., analyzed
the association between serum vitamin D levels with 106 diseases/traits in 326,409 UK
Biobank (UKBB) Europeans using MR analysis [128]. Using MR analysis, they did not
observe a significant association between genetically predicted serum vitamin D levels
and the risk of thyroid cancer, hypothyroidism and hyperthyroidism [128]. In the study
that included 10,636 participants from China, Chen et al., using MR analysis, observed a
causal relationship between genetically predicted decreased serum vitamin D levels and
increased concentration of TPOAb [129]. However, genetically predicted TPOAb levels did
not show an association with serum vitamin D levels [129]. Considering the importance of
vitamin D for normal thyroid function, additional studies assessing the causal relationship
between vitamin D and thyroid function using MR methodology, conducted in different
ethnic groups, are of utmost importance.
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6. Conclusions

In this review, we provided insight into the relationship between vitamin D status
and thyroid function, including studies conducted only in humans. Although considerable
progress has been made in elucidating the effect of vitamin D on thyroid function, it is still
difficult to draw a definitive conclusion on how vitamin D affects thyroid function due
to the high variability between the studies. Even though many studies have correlated
25(OH)D levels with the levels of TSH, thyroid hormones, and anti-thyroid antibodies
(Table 1, Figure 1), there is still a large variability in results between studies. Studies in
healthy participants and in participants with thyroid cancer observed either a negative
correlation or no association between TSH and 25(OH)D levels, while the results for thyroid
hormones showed higher variability. Studies comparing anti-thyroid antibodies (TPOAb,
TgAb, TSHRAb) with 25(OH)D levels mostly observed a negative association between
anti-thyroid antibodies and 25(OH)D levels, but many studies also failed to observe such
an association (Table 1). However, in almost all studies investigating the effect of vitamin
D supplementation on thyroid function, it was observed that vitamin D supplementation
causes a significant decrease in the levels of anti-thyroid antibodies TPOAb and TgAb
(Table 2, Figure 1). Several factors could contribute to the large variability between the
studies. These include the use of different assays for the measurement of serum 25(OH)D
levels between the studies [130], and the possible confounding effects of age, sex, body-mass
index, seasonality, smoking, and dietary habits on 25(OH)D levels that were not taken into
account in all studies [131–133]. Given the important role of vitamin D in normal thyroid
function, additional cross-sectional observational studies and randomized controlled trials
with long follow-ups are needed to understand the complex background underlying the
interaction between vitamin D and thyroid function. Moreover, since only a few studies
until today have used MR methodology to assess the causal relationship between vitamin
D and thyroid function, additional studies using such methodology are crucial. In fact, MR
is revolutionising epidemiological research by removing confounding factors from analyses
and establishing the directionality of the inferred associations.
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