Skip to main content
. 2023 Feb 6;9(2):35. doi: 10.3390/jimaging9020035

Table 6.

Performance (Dice) of different approaches in 10 datasets for skin detection. The bold represents the best performance.

DA PRAT MCG UC CMQ SFA HGR SCH VMD ECU VT AVG
H_S DA1 0.903 0.880 0.903 0.838 0.947 0.964 0.793 0.744 0.941 0.810 0.872
H_S DA2 0.911 0.884 0.903 0.844 0.950 0.968 0.776 0.683 0.943 0.835 0.870
H_A DA1 0.913 0.880 0.900 0.809 0.951 0.967 0.792 0.717 0.945 0.799 0.867
H_A DA2 0.909 0.886 0.893 0.848 0.951 0.968 0.775 0.707 0.944 0.832 0.871
FH(2) DA1/DA2 0.920 0.892 0.913 0.859 0.953 0.971 0.793 0.746 0.951 0.839 0.884
FH(4) DA1/DA2 0.920 0.892 0.916 0.862 0.954 0.971 0.795 0.765 0.951 0.831 0.886
PVT DA1 0.920 0.888 0.925 0.851 0.951 0.966 0.792 0.709 0.951 0.828 0.878
PVT DA2 0.923 0.892 0.908 0.863 0.951 0.968 0.776 0.709 0.952 0.848 0.879
PVT(2) DA1/DA2 0.925 0.892 0.925 0.863 0.952 0.970 0.781 0.719 0.954 0.850 0.883
HSN DA1 0.927 0.893 0.920 0.851 0.953 0.966 0.777 0.704 0.951 0.800 0.874
HSN DA2 0.924 0.896 0.889 0.860 0.953 0.969 0.781 0.690 0.953 0.855 0.877
HSN(2) DA1/DA2 0.928 0.897 0.915 0.860 0.955 0.970 0.775 0.671 0.953 0.860 0.879
FH(2) + 2 × PVT(2) DA1/DA2 0.927 0.894 0.932 0.868 0.954 0.971 0.797 0.767 0.955 0.853 0.893
FH(4) + 4 × PVT(2) DA1/DA2 0.926 0.894 0.933 0.869 0.954 0.971 0.798 0.768 0.955 0.847 0.892
ElossMix2(10) DA1/DA2 0.924 0.893 0.929 0.850 0.956 0.970 0.789 0.739 0.952 0.829 0.883
AllM DA1/DA2 0.929 0.895 0.939 0.868 0.956 0.972 0.800 0.770 0.956 0.846 0.893
AllM_H DA1/DA2 0.931 0.897 0.941 0.869 0.956 0.972 0.799 0.773 0.957 0.854 0.895