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Abstract: Trichophyton rubrum is the most common dermatophyte, and can cause cutaneous infections
in humans and animals (dermatophytosis). In this study, we investigated the anti-dermatophytic
potential of green synthesized silver nanoparticles using Achillea santolina extract (AS-AgNPs) in
an in vitro and in vivo rat model of dermal T. rubrum dermatophytosis (TRD). The green synthesis
of AS-AgNPs was performed using A. santolina extract and characterized by UV-VIS spectroscopy,
zeta potential, imaging (transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier
transform infrared spectroscopy (FTIR) and Energy dispersive X-ray analysis (EDX). The antifungal
activity of AS-AgNPs was determined by the broth microdilution method, conidial germination,
and hyphal growth inhibition. TEM and SEM were used to study the mode of the antifungal
action of AS-AgNPs. AS-AgNPs inhibited the growth of T. rubrum with an MIC of 128 µg/mL, and
suppressed the conidial germination and hyphal growth by 55.3% 84.6%, respectively. AS-AgNPs
caused modified mycelial structures, increased cell membrane permeability, and cell wall damage.
AS-AgNPs significantly increase the permeability of the fungal membrane, as revealed by reducing
ergosterol biosynthesis. An increase in the intracellular ROS and the induction of apoptosis were
also observed during AS-AgNP treatment. In addition, AS-AgNPs reduced the cell wall integrity, as
shown by the reduction in the β-(1,3)-D-glucan synthase and chitin synthase activities. AS-AgNPs
showed very low toxicity on primary human dermal fibroblasts (HDF) at the MIC. The topical
treatment of the infected skin in the TRD rat model with AS-AgNPs showed a significant reduction
in the fugal burden after 7 days and a complete clearance of fungal conidia, with a high recovery of
epidermal and dermal structures after 14 days, compared to control rats. Interestingly, AS-AgNPs
significantly attenuated the infiltrated inflammatory cells, in association with reducing the tissue
proinflammatory cytokines including TNF-α, IL-1, IL-6, MOP and IL-17. In conclusion, our data
prove AS-AgNPs to be a novel green topical therapy for dermatophytosis caused by T. rubrum.
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1. Introduction

Trichophyton rubrum is the most prevalent filamentous fungus and causes most cases of
cutaneous mycosis and onychomycosis [1,2]. Dermatophytic infections by T. rubrum involve
the adhesion of arthroconidia to the stratum corneum, followed by keratin destruction [3,4].
Infection by dermatophytes induces the production of inflammatory cytokines in the skin
and in the peripheral blood mononuclear cells of the host [5].

Topical and systemic synthetic antifungal drugs, including azoles, allylamines, itra-
conazole and terbinafine, are commonly used for the treatment of dermatophytosis. How-
ever, these medications need long-term adherence, and can cause drug resistance and
toxicity [6,7]. Thus, there is a crucial need for developing novel anti-dermatophytic thera-
pies with lower side effects.
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The Achillea L. (Asteraceae) genus is present mostly in Asia and Europe and there
are around 100 species in this genus [8]. A. santolina, (Qaysoom) grows as a herbal plant
in the Mediterranean region and has traditionally been used as an antihemorrhagic and
healing agent [9]. A. santolina was reported to be rich in flavones and polyphenols, and
thus exerts antimicrobial and anti-inflammatory activities [10]. A. santolina is used in
folk medicine to treat gastrointestinal disorders due its depurative, antispasmodic, and
carminative properties [11]. In addition, A. santolina is used to treat hypoglycemia and
is accepted as an alternative therapy for diabetes; this is due to its proven hypoglycemic
activity in vitro and in vivo, due to the presence of several phenolic compounds [9,12].
However, no study has investigated the antifungal effect of A. santolina extracts against
dermatophyte T. rubrum.

Nanoparticles are particles smaller than 100 nm in diameter. Nanomaterials can easily
cross cellular barriers due to their special properties [13]. In nanotechnology, the biosyn-
thesis of AgNPs attracted great attention due to their unique biophysical characteristics
and improved biocompatibility, in addition to their significant biological properties in
biomedical and environmental fields [14]. The physical and chemical-based synthesis of
nanoparticles require the use of chemical-reducing agents, high temperature, and vacuum
conditions, which are very expensive and hazardous to the environment [15]. Today, there
is a crucial need to develop eco-friendly processes to synthesize nanoparticles with lower
toxicity. Therefore, to avoid the disadvantages of physical and chemical synthesis methods,
the plant extracts have been widely used in the green biosynthesis of AgNPs as reducing
and stabilizing agents. Plants have promising significance, owing to the presence of diverse
bioactive compounds, including flavonoids, phenolic acids, terpenoids, and alkaloids,
which are useful for the biosynthesis of AgNPs to reduce silver ions for synthesizing the
biomolecule of AgNPs [16].

We have recently shown the effective therapeutic potential of green biosynthesized
nanoparticles, using plant extracts, in treating many fungal diseases. These include the
effective inhibition of oral candidiasis by green AgNPs biosynthesized with Erodium glau-
cophyllum extract, Lotus lalambensis aqueous leaf extract, or the leaf extract of Calotropis
gigantean [17–19], using Artemisia sieberi leaf extract against invasive pulmonary Aspergillo-
sis [20].

In this report, we biosynthesized AgNPs, using A. santolina extract for the first time,
and studied their anti-dermatophytic effect against T. rubrum in vitro and in vivo. Our data
demonstrated the powerful antifungal activity of AS-AgNPs against T. rubrum in vitro by
inhibiting its mycelial growth and affecting both cell wall and plasma membrane integrity.
The topical treatment of dermatophytes in rats using AS-AgNPs was shown to significantly
enhance skin healing by reducing the fungal burden and tissue inflammation.

2. Results
2.1. Biosynthesis and Characterization of AS-AgNPs

The change in color of AS-AgNPs, from colorless to dark brown, demonstrates the
synthesis of silver nanoparticles (Figure 1). This change is attributed to the excitation of
surface Plasmon resonance (SPR) within the biosynthesis of AgNPs. The UV–Vis absorption
spectrum of AS-AgNPs showed a strong peak at 448 nm, which is due to the SPR of AgNPs
(Figure 2A, red line). A small peak also appeared at approximately 350 nm. The appearance
of two peaks shows that the particles are of different sizes. The peak at 350 nm is for smaller
nanoparticles. On the other hand, the UV–Vis spectra does not display any evidence of
absorption in the range of 400–800 nm for the plant extract (Figure 2A, green line). The
crystalline nature of AS-AgNPs is examined by the XRD technique. AS-AgNPs showed
four different peaks at 2θ = 38.1, 44.3, 64.5, and 77.7. All peaks corresponded to standard
Bragg reflections (111), (200), (220), and (311) of the face center cubic lattice (Figure 2B).
The FTIR spectrum for A. santolina extract showed absorption bands at 3399, 2932, 1614,
1522, 1445, 1381, 1258, 1072, and 530 cm−1 (Figure 2C, blue line). The peaks ranging from
3200 to 3600 cm−1 are attributed to the hydroxyl and amine stretching vibrations in the A.
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santolina extract. The peak at 2932 cm−1 is related to C-H stretching. The peak at 1614 cm−1

is assigned to NH bending. The peak at 1522 cm−1 is related to the aromatic ring of the
terpenoids. The carboxyle group is verified by the peak at 1445 cm−1. The peak at 1381 cm−1

is assigned to the CH bending of aldehyde groups. The peak at 1258 cm−1 is related to the
stretching of ester [21]. The peak at 1072 cm−1 is associated with C-O stretching. The peak
at 530 cm−1 corresponds to the bonding of oxygen with the hydroxyl groups. However, the
FTIR spectrum for the biosynthesized AS-AgNPs revealed that the peaks at 3399, 2932, 1522,
and 530 cm−1 shifted to 3402, 2925, 1516, and is assigned to hydroxyl and amine stretching,
C-H, C=O stretching, the aromatic ring of the terpenoid, and AgO, respectively [22,23]. The
appearance of a new peak at 1829 cm−1 corresponds to a carboxylate group. The new peak
at 823 cm−1 increased, suggesting that C-H groups could also bonded with the AS-AgNPs.
The disappearance of some peaks at 1445 and 1258 cm−1 has been shown in the AS-AgNPs
FTIR spectrum. The peak intensity at 1621 cm−1 decreased, signifying the association of
N-H bending. The peak intensity at 1384 cm−1 increased, suggesting the C-H bending of
aldehyde groups (Figure 2C, red line). The EDX pattern designates a 63.8% occurrence
of silver metal. Additionally, the EDX spectrum revealed the presence of an oxygen peak
that could be coming from the chamber of EDX (Figure 3A). AS-AgNPs were found to
carry a negative zeta potential of −80.7 mV, which defines the repulsion between AgNPs
and increases the stability of the preparation (Figure 3B). The hydrodynamic diameter
of the AS-AgNPs is determined by the DLS technique (Figure 3C). Regarding the size
and morphology of the AgNPs, TEM and DLS analyses were performed. According to
DLS analysis, the size distribution of AS-AgNPs is centered at 21.9 nm. AS-AgNPs were
mostly spherical in shape, with an average size of 21.9 nm, as assessed by TEM (Figure 3D).
Therefore, TEM and DLS results, as a rule, are in agreement with each other.
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Figure 1. Biosynthesis of AS-AgNPs. Changes in color from yellowish brown to dark brown after the
incubation of the A. santolina leaf extract and silver nitrate at room temperature in the dark.
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Figure 2. Verification of green biosynthesized AS-AgNPs. (A) UV–Vis spectrum of AS-AgNPs
synthesized by A. santolina and A. santolina extract. The absorbance peak is at 448 nm, corresponding
to the surface Plasmon resonance of AS-AgNPs (red line). Plant extract does not display any peak
between 400 and 800 nm (green line). (B) The XRD spectrum of biosynthesized AS-AgNPs showed
distinct diffraction peaks at 38.1◦, 44.3◦, 64.5◦, 77.7◦, and indexed at 2θ (degree) of (111), (200),
(220), and (311) in face center cubic lattices. (C) FTIR spectrum of A. santolina extract: blue line, and
AS-AgNPs synthesized by A. santolina: red line.

2.2. In Vitro Antifungal Activity of AS-AgNPs against T. rubrum

The results of the broth microdilution assay revealed that the MIC of AS-AgNPs against
T. rubrum was 128 µg/mL; meanwhile, the MIC value of terbinafine (positive control) was
256 µg/mL. Additionally, we compared the antifungal activity of plant extract and AS-
AgNPs using a disk diffusion method. The AS-AgNPs displayed a higher antifungal action
where the diameter of the inhibition zone (IZD) was 38 mm, although the extract showed
a lower antifungal activity with an IZD of 25 mm (Supplementary Table S1). The MIC
values of AS-AgNPs and plant extract were 128 and 512 µg/mL, respectively. As shown
in Figure 4A,B, AS-AgNPs displayed a higher inhibitory effect on the mycelial growth
of T. rubrum than terbinafine, as assessed by measuring dry mycelial weight and conidia
germination (Figure 4A,B).
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Figure 3. Characterization of green biosynthesized AS-AgNPs. (A) The EDX spectrum of silver
nanoparticles synthesized by A. santolina showed a pattern of approximately 63.65% occurrence of
Ag metal. (B) Zeta potential of silver nanoparticles synthesized by A. santolina. The value of zeta
potential is −80.7 mV. This value displays the high stability of A. santolina extract to synthesize
AS-AgNPs. (C) The size distribution histogram of the dynamic light scattering (DLS) analysis of
the biosynthesized AS-AgNPs. According to DLS analysis, this size distribution of AS-AgNPs is
centered at 21.9 nm. (D) TEM micrograph of AS-AgNPs biosynthesized from A. santolina leaf extract.
AS-AgNPs appeared spherical in shape with an average size of 21.9 nm.

2.3. In Vitro Studies on the Antifungal Mechanism of AS-AgNPs

To study the mechanism underlying the antifungal activity of AS-AgNPs against
T. rubrum, the effect of As-AgNPs and terbinafine on the cell membrane integrity of
T. rubrum were compared. As shown in Figure 4C, AS-AgNPs significantly increased
the leakage of intracellular material by 200% and 33%, when compared to the control
and terbinafine, respectively, after an 8 h incubation. In addition, AS-AgNPs significantly
inhibited CYP51 (Cytochrome P450 Family 51), a mediator of the synthesis of ergosterol (A
sterol that acts to maintain cell membrane integrity) as well as ergosterol production by 51%
and 47%, respectively, when compared with terbinafine at the MIC (Figure 4D,E). In this
context, AS-AgNPs at the MIC increased the uptake of SYTOX® Green, which determines
the cell viability by 74.3% in T. rubrum; meanwhile, terbinafine increased this uptake by
only 37.5%, when compared to the control (Figure 5A). Thus, AS-AgNPs might inhibit the
growth of T. rubrum by changing its membrane permeability.
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Figure 4. Effect of AS-AgNPs on mycelial growth and cell membrane integrity of T. rubrum. (A) Per-
centage of dry mycelial weight produced by T. rubrum in the absence (control) and presence of
terbinafine (MIC: 256 µg/mL) and AS-AgNPs (MIC: 128 µg/mL). (B) Percentage of conidial germina-
tion of T. rubrum in the absence (control) and presence of terbinafine (256 µg/mL) and AS-AgNPs
(128 µg/mL). (C) Rate of release of intracellular material from T. rubrum at 260 nm in the absence (con-
trol) and presence of terbinafinel (MIC: 256 µg/mL) and AS-AgNPs (MIC: 128 µg/mL). (D) Inhibition
rate (%) of CYP51 enzyme in T. rubrum in the absence (control) and presence of terbinafinel (MIC:
256 µg/mL) and AS-AgNPs (MIC: 128 µg/mL). (E) Ergosterol content as percent of the wet weight
of T. rubrum in the absence (control) and presence of terbinafinel (MIC: 256 µg/mL) and AS-AgNPs
(MIC: 128 µg/mL). Values are mean ± SD of three independent experiments (** p < 0.05 compared to
control non-treated cells).

The measurement of β-(1,3)-D-glucan synthase and chitin synthase activities were
used to assess the effect of AS-AgNPs on the integrity of the fungal cell wall in T. rubrum.
Interestingly, AS-AgNPs significantly inhibited the activity of β-(1,3)-D-glucan synthase and
chitin synthase by 71% and 76%, respectively, when compared to the control (Figure 5B,C).
As shown in Figure 5D, AS-AgNPs showed a time-dependent stimulatory effect on ROS
production by T. rubrum compared to terbinafine, when used at the MIC (Figure 5D). A
TUNEL assay for DNA fragmentation showed the time dependent stimulatory effect of
AS-AgNPs on the level of nick-end labeling, when compared to the control (Figure 5E).
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Figure 5. In vitro mechanistic studies of antifungal action of AS-AgNPs against T. rubrum. (A) Effect
of AS-AgNPs (128 µg/mL) on SYTOX® Green uptake into T. rubrum after 24 h of treatment. (B) %
Inhibition of β-(1,3)-D-glucan synthase in the absence or presence of AS-AgNPs (128 µg/mL) against.
T. rubrum. (C) % Inhibition of chitin synthase in the absence or presence of AS-AgNPs (128 µg/mL)
against T. rubrum. (D) Effect of AS-AgNPs (128 µg/mL) on ROS release from T. rubrum after treatments
of different durations. (E) Effect of AS-AgNPs (128 µg/mL) on the nick-end labeling of T. rubrum
after treatments of different durations. Values are mean ± SD of three independent experiments
(* p < 0.05, ** p < 0.05 compared to control non-treated cells).

2.4. Effect of AS-AgNPs on Ultrastructural Changes in T. rubrum

An inverted microscopic investigation showed normal cell structures with consistent
cytoplasm, and no spores or chlamydospores; in addition long septate hypha were re-
vealed in untreated mycelium of T. rubrum (Figure 6(Aa,b)). Treatment of T. rubrum with
terbinafine (256 µg/mL) led to the formation of smaller and broader hypha with several
vacuole-like structures inside them and the production of thinner branched hypha with
tear-shaped microconidia (Figure 7(Ac,d)). Interestingly, AS-AgNPs (128 µg/L) inhibited
the germination of spores completely, and resulted in many malformations of and severe
injury to the fungal structures of T. rubrum (Figure 6(Ae,f)).
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Figure 6. Effect of AS-AgNPs on cell morphology of T. rubrum. (A) Inverted phase-contrast micro-
scope images of T. rubrum with different treatments. (a) Saline-treated fungus display germination
that started 4 h subsequent to the incubation of spores. (b) Normal structure of hyphae after 72 h
incubation. (c) Terbinafine-treated cells (256 µg/mL) displaying different modifications; thick broader
hyphae with vacuoles, tiny elongated hyphae with tear-shaped microconidia (arrow) (d). (e) AS-
AgNP-treated cells (128 µg/mL) showed inhibition of spore germination. There are malformations,
cellular injuries, and dumpy necrotic hyphae (arrow) (f). 400× (bar 100 µm). (B) SEM of T. rubrum
treated with saline, terbinafine (256 µg/mL), and As-AgNPs (128 µg/mL). The saline-treated sample
(negative control) displays normal tubular and uniform hyphae. The terbinafine–treated cells (posi-
tive control) show minor distortion in the shape of the cells and collapse in cell wall (red arrows);
however, significant modifications are obvious in the case of AS-AgNP-treated cells where there are
the fragmentation of cells into flat shapes (red arrows) and the leakage of intracellular material after
damage (yellow arrows). Bar = 2.5 µm. (C) TEM of T. rubrum treated with saline, terbinafine, and
As-AgNPs. The fungal hyphae displayed morphological alterations once subjected to terbinafine
and As-AgNP. T. rubrum treated with terbinafine showed damage of cytoplasm content and the cell
membrane started to separate itself from the cell wall. Meanwhile, the treatment of T. rubrum with
AS-AgNPs resulted in the complete destruction of the fungal hypha through lysis, and the cell wall
and compartment were completely damaged. Bar = 250 nm.
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Figure 7. Skin histological analysis of rat dermatophytosis model. (A) Cytotoxicity of AS-AgNPs on
primary HDF cells. Cell viability was measured by MTT assay after 48 h of incubation at different
concentrations of AS-AgNPs. Values are mean ± SD of three independent experiments (* p < 0.05,
** p < 0.05 compared to control non-treated cells). (B) Representative images of infected skin tissue
taken on day 14 post treatment. Groups are as follows: control (non-infected), I + Control (infected
rat with saline treatment), I + Terbinafine (infected rat treated with terbinafine (10 mg/kg) and I +
AS-AgNPs (infected rat treated with AS-AgNPs (0.5 µg/g)). Skin tissue sections stained with H&E
(C) and periodic acid–Schiff (PAS) (D). I + Terbinafine displayed slight effect on thickness of epidermis
of skin, and fungal fragments were still identified in the epidermis and the hair follicle (PAS). The
AS-AgNP-treated group showed complete recovery of skin structure (H&E) with an absence of
fungal cells.

SEM images of the T. rubrum treated with AS-AgNPs showed more visible malformed
cells, the folding of fungal hypha, an increased cell membrane permeability, and the
formation of round swells; these are amongst the greatest significant detected modifications.
On the other hand, the T. rubrum treated with terbinafine demonstrated cell wall breakdown,
which seemed to include scattered hypha and filamentous hyphae distorted into flat shapes
(Figure 6B).

Figure 6C displays the TEM images of the T. rubrum hyphae cultured on Sabaroud
dextrose agar medium. The T. rubrum hyphae treated with terbinafine showed severe
cytoplasm damage and a condensed cell wall. In addition, the cell membranes started to
break from each other. AS-AgNP treatment was shown to destroy hyphae by lysis and to
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destroy the cell wall completely. In addition, the cytoplasmic compartment also displayed
desolation and fragmentation. In general, AS-AgNPs result in severe injury to the cell wall
and organelles.

2.5. Effective In Vivo Topical Treatment of Dermal T. rubrum Infection Using AS-AgNPs

Before applying AS-AgNPs in vivo, we examined their cytotoxicity on primary human
dermal fibroblasts (HDF). As shown in Figure 8A, AS-AgNPs displayed no cytotoxicity on
HDF cells at the MIC of 128 µg/mL and up to the concentration of 150 µg/mL. AS-AgNPs
started to show significant cytotoxicity at 200 µg/mL.
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Figure 8. Effect of AS-NPs on fungal burden and dermal pro-inflammatory cytokines in dermato-
phytosis rat model. (A) Inhibitory effect of AS-AgNPs versus trebinafine treatment on colonization
of T. rubrum in infected skin homogenate after 14 days of treatment. Infected rats with T. rubrum
were treated for 14 days with saline, terbinafine (10 mg/kg) or topically with AS-AgNPs (0.5 µg/g.
Effect of AS-AgNPs versus trebinafine treatment on the pro-inflammatory cytokines produced in
the infected skin tissues of the dermatophytosis rat model. The following cytokines, including
(B) TNF-α, (C) IL-1β, (D) IL-6, (E) MOP and (F) IL-17, were measured as described in M&M. Values
are expressed as means ± SD (n = 6 rats/group) (** p < 0.005, compared to control non-infected cells).

A photographic and histopathological assessment of H&E-stained skin samples
showed a normal skin structure, a suitable number of normal hair follicles, and sebaceous
glands in the control non-infected rat (Figure 7B,C). In contrast, the infected untreated skin
samples showed an increased epidermal thickness and hyperkeratosis, with a reduced
number of hair follicles. In addition, the infiltration of inflammatory cells into the dermal
layer was also observed (Figure 7C). Interestingly, the topical treatment of infected skin
with AS-AgNPs displayed a significant improvement in skin structure repair over using
the terbinafine treatment (Figure 7A). The AS-AgNP-treated group showed no significant
proliferation of the epidermis and stratum corneum hyperkeratosis, while a mild thickening
and proliferation of the epidermis with a low inflammatory response were detected in
the terbinafine-treated group. In addition, PAS staining confirmed the absence of fun-
gal infection in the AS-AgNP-treated group, when compared to the infected non-treated
group (Figure 7D). On the other hand, the terbinafine treatment group still displayed a
PAS-positive reaction for fungal burden (Figure 7D).
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2.6. AS-AgNPs Significantly Reduce Fungal Burden and Tissue Inflammation in Rat Model of
T. rubrum Deramatophytosis

To study the effect of AS-AgNPs on the fungal burden in vivo, we quantify the colo-
nization of T. rubrum, which is isolated from infected skin with and without treatment. As
shown in Figure 8A, the treatments with AS-AgNPs and terbinafine significantly inhibit
the mean fungal burden by 84% and 43%, respectively, in comparison to the saline-treated
group (Figure 8A). Thus, the topical treatment with AS-AgNPs displayed a higher antifun-
gal activity than terbinafine.

We also studied the effect of AS-AgNPs on deramatophytosis-induced inflammation
by measuring pro-inflammatory cytokines in dermal tissues from different groups. Con-
sistent with its inhibitory effect on fungal burden, the AS-AgNP treatment significantly
reduced the elevated levels of pro-inflammatory cytokines, TNF-α, IL-1, IL-6, MOP and
IL-17 by 76%, 64%, 68%, 52%, and 65%, respectively, in comparison to the saline-treated
group (Figure 8B–F). In addition, the anti-inflammatory effect of AS-AgNPs was more
pronounced than the effect of terbinafine on all the tested cytokines by approximately
20–14% (Figure 8B–F).

3. Materials and Methods
3.1. Plant Material and Preparation of the Extract

A. santolina were collected during the month of May from Saudi Arabia, Al-Hassa-
Damam road, Eastern Province. In total, 10 gm of A. santolina leaves were dispensed in
100 mL of sterilized distilled water and boiled for 60 min at 95 ◦C. The extract was filtered,
evaporated by a rotary vacuum evaporator at 40 ◦C, and stored at 4 ◦C [24].

3.2. Biosynthesis of AS-AgNPs

AgNO3 solution was prepared in deionized water and used for the biosynthesis of AS-
AgNPs. In total, 10 mL of A. santolina leaf extract was added to 90 mL of 1 mM of AgNO3
and kept in a water bath at 90 ◦C for 60 min for the reduction process of silver ions [25]. The
color change from colorless to dark brown denotes the biosynthesis of silver nanoparticles.

3.3. Characterization of AS-AgNPs

A UV–Vis spectrophotometer(Perkin Elmer, Boston, MA, USA) from 200 to 900 nm
functioned at a resolution of 1 nm, and was used as a function of wavelength for the spectral
analysis of AS-AgNPs. The crystalline nature of AS-AgNPs was determined by a XDL 3000
powder X-ray diffractometer (XRD, Unisantis XMD-300, Malvern Panalytical, Malvern, UK).
The surface morphology and size of AS-AgNPs were observed by transmission electron
microscopy (TEM) (JEM-2010; JEOL, H7100; Hitachi Ltd., Tokyo, Japan) at an accelerating
voltage of 200 kV. The spectra of the AgNPs were measured by Fourier transform infrared
spectroscopy (FTIR) (PerkinElmer, Waltham, MA, USA) at a resolution of 4 cm−1 with KBr
pellets. AS-AgNPs were also subjected to energy dispersive X-ray analysis (EDX), according
to the method of [26]. The size distribution of the particles was determined by measuring
the dynamic oscillations of light scattering intensity (DLS), resulting from the Brownian
motion of the particles using the Zetasizer Nano ZS, Malvern Instruments Ltd., Malvern,
UK. Zeta potential was used to study the stability of the AgNPs. The measurements were
performed in the first 3–4 h after the synthesis of AgNPs and then once a week for 4 weeks.

3.4. Fungal Strain

T. rubrum ATCT 9322 (ATCT, Kasr Al-Ainy, Cairo, Egypt) was used throughout this
study. T. rubrum was cultured at 28 ◦C on modified Sabouraud dextrose agar (MSDA)
slants containing the following: peptone 10 g/L, glucose 40 g/L and agar 15 g/L at a pH
range of 5.4–5.8.
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3.5. Minimum Inhibitory Concentration (MIC)

The broth microdilution assay was used to measure the MIC of the AS-AgNPs and
terbinafine. MSDA was added to all the wells of 96-well plates. Serial bifold dilutions
of the two antifungal agents were prepared to obtain concentrations between 1 µg/mL
and 512 µg/mL. Lastly, 10 µL aliquots of the T. rubrum suspension (1 × 106 CFU/mL)
were added to the wells and the plates were incubated at 28 ◦C for 7 days. The MIC was
described as the lowest concentration able to visually inhibit 100% of the fungal growth [27].

3.6. Hyphal Growth Inhibition

The effect of AS-AgNPs and terbinafine on mycelial growth were assessed by measur-
ing the dry mycelial weight of T. rubrum according to the method [28]. Briefly, MSDA, (5 mL)
with the antifungal drugs (at their MIC values), was added to 0.5 mL of the fungal suspen-
sion (1 × 106 CFU/mL). The samples were incubated at 28 ◦C for 10 days and the fungal
mycelia were filtered using sterile filter paper and dried at 65 ◦C for 15 min. The dry fungal
mycelia were then weighed and the percentage of mycelial production was measured,
using the growth in the control test tubes as 100% of potential dry mycelia weight.

3.7. Effects on Conidial Germination

MSDA (500 µL), containing the antifungal drugs at their MIC values, was mixed with
500 µL of fungal suspension (1 × 106 CFU/mL) and then incubated at 28 ◦C. After 24 h, the
number of germinated and ungerminated conidia were measured using a hemocytometer
where the percentage of germinated conidia was determined.

3.8. Membrane Permeability Assays
3.8.1. Release of Intracellular Material

In total, 2 mL aliquots of the fungal suspension (1 × 106 CFU/mL) were added to
9 mL of MSDA containing either AS-AgNPs or terbinafine, and incubated for 8 h. Then,
fungal cells were centrifuged at 3,000 rpm for 5 min, and the absorbance of the supernatant
was measured at 260 nm with a UV-visible Spectrophotometer (Shimadzu, Kyoto, Japan.).
An alcoholic potassium hydroxide solution was used as a reference compound as it results
in 100% cellular leakage. The rate of release of intracellular material absorbing at 260 nm
was determined by comparing the test values with the lysing agent (100%) [29].

3.8.2. Ergosterol Quantitation

In total, 1 mL of T. rubrum inoculum (1 × 106 CFU/mL) was added to 9 mL of MSDA
containing either AS-AgNPs or terbinafine and incubated for 5 days at 28 ◦C. Then, the
fungal cells were centrifuged at 3,000 rpm for 5 min, washed with sterile distilled water and
the wet weight of the fungal pellet was measured. In total, 3 mL of lysing agent was added
to each pellet and vortexed for 1 min. Fungal suspensions were incubated at 90 ◦C for 1 h
and allowed to cool. Ergosterol was extracted by adding a mixture of 3 mL of n-heptane,
then vortexing for 5 min. The heptane layer was transferred to Eppendorf tubes and stored
in a refrigerator for one day. Aliquots of ergosterol extracts were determined by measuring
the absorbance at 281.5 nm with a UV-Visible spectrophotometer (Shimadzu). Ergosterol
content was measured as a percentage of the wet weight of the fungal cell, as described
by [30].

3.8.3. Activity of CYP51 Enzyme

Fungal suspension (1 × 106 CFU/mL) was prepared as previously described. The
fungal cells, treated with either AS-AgNPs or terbinafine (MIC) for 5 days, were collected
by centrifugation, and the enzyme was extracted by ultrasonication in an ice bath. The
enzyme activity was determined by the ELISA quantitative detection kit (SinoBestBio,
Shanghai, China), according to the method of [31].
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3.8.4. SYTOX® Green Uptake

This experiment was performed by observing the uptake of SYTOX® Green, which
is a high-affinity nuclear stain able to enter the cells with compromised membranes [32].
T. rubrum cells were incubated with AS-AgNPs, terbinafine, or phosphate buffer saline
(negative control) at 37 ◦C for 24 h. SYTOX® Green (0.5 µM) was added to the fungal
cultures for 10 min and the fluorescence produced by the fungal cells was detected using
a fluorescence spectrometer (SpectraMax i3 Multi-Mode Detection Platform, Molecular
Devices, LLC, Sunnyvale, CA, USA) at an excitation wavelength of 488 nm and an emission
wavelength of 540 nm.

3.9. Cell Wall Integrity Assays
Activity of β-(1,3)-D-Glucan Synthase and Chitin Synthase

The fungal suspension (1× 106 CFU/mL) was treated with either AgNPs or terbinafine
(MIC), as previously described. The samples were incubated at 28 ◦C, with shaking for
7 days. Then, the samples were collected, washed with PBS, centrifuged, and the deposits
were collected. In total, 0.2 g of fungal deposit was added to 2 mL of extracting solution,
sonicated on an ice bath, placed at −20 ◦C overnight, and repetitively frozen and thawed
to extract the enzymes. The samples were then centrifuged at 5000× g for 5 min at 4 ◦C
and the supernatants were collected. The activity of β-(1,3)-D-glucan synthase and chitin
synthase were measured using a quantitative detection kit (SinoBestBio, Shanghai, China).
The enzyme activity was determined by measuring the absorbance at 550 nm (β-(1,3)-D-
glucan synthase) and 585 nm (chitin synthase) with a microplate reader, following the
method of [31].

3.10. Reactive Oxygen Species (ROS) Assay

The fluorogenic probe 5-(and-6)carboxy-2′,7′-dihydrodichlorofluorescein diacetate
(carboxy-H2DCFDA) was applied to detect ROS production in the T. rubrum cells following
the method described previously [33]. T. rubrum cells were incubated for 3 h with AS-AgNPs
or terbinafine. The fluorescence released by the fungal cells was measured by a fluores-
cence spectrometer at an excitation wavelength of 488 nm and an emission wavelength
of 540 nm.

3.11. DNA Fragmentation Assay

A TUNEL assay was performed to identify the presence of any DNA fragmentation
according to the method described previously [34]. T. rubrum cells were incubated with
AS-AgNPs or terbinafine at their MIC values for 3 h. Cells were washed with PBS and
fixed with 4% paraformaldehyde in PBS for 1 h at 20 ◦C. Next, the cells were washed
with PBS and incubated in ice for 2 min with the permeabilization solution as previously
described. Subsequently, the cells were washed with PBS and labeled using an In Situ
Cell Death Detection Kit (Thermo Fisher Scientific, Bremen, Germany), according to the
manufacturer’s instructions. Finally, 50 µL of the TUNEL reaction mixture was added to
the fungal cells, and the resultant mixture was incubated at 37 ◦C for 60 min in the dark.
The fungal cells were then washed with PBS and observed by a fluorescence spectrometer.

3.12. Effects on Morphology and Ultrastructure
3.12.1. Inverted Phase Contrast Microscopy

The morphological alterations to T. rubrum after treatment with the antifungal drugs
were determined in a 96-well microtiter plate with flat bottom. About 1 × 106 CFU/mL
of the T. rubrum was prepared and treated with AgNPs or terbinafine at their MIC values
in RPMI medium without phenol red, and incubated at 28 ◦C for 3 days before their
observation under a phase-contrast inverted microscope (×400). DMSO-treated T. rubrum
was used as a negative control. Changes identified in the fungal structures were compared
with the normal growth in the negative control [35].
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3.12.2. Scanning and Transmission Electron Microscopy

The morphological modifications of fungal structures were also evaluated in AgNP-
treated and untreated samples using scanning (SEM, Hitachi High-Technologies Europe
GmbH, Krefeld, Germany) and transmission (TEM, JEOL-JEM 1400, Freising, Germany)
electron microscopy [36]. Briefly, T. rubrum cells were incubated with AgNPs or terbinafine
at their MIC values as described previously. The fungal mat was centrifuged and the
cell pellet was kept in glutaraldehyde solution (Agar Scientific, Essex, UK) for 24 h then
rinsed with PBS. The cells were then fixed and stained by osmium tetroxide (Agar Scientific,
Essex, UK), dehydrated by graded ethanol series and finally submerged in ethanol for
one hour. For SEM examination, the final drying was carried out at room temperature by
hexamethyldisilazane (Merck, Darmstadt, Germany) for 25 min. Sputter coating of the
samples was performed with gold. SEM images were obtained by Field-Emission SEM,
Hitachi S-5500 (Hitachi High-Technologies Europe GmbH, Krefeld, Germany). For TEM
examination, samples were post-fixed by osmium tetroxide and implanted in epoxy resin
(Agar Scientific, Essex, UK) overnight. Samples were sectioned by Ultra-microtome (Leica
Camera AG, Wetzlar, Germany)) and stained with 2% uranyl acetate (Agar Scientific, Essex,
UK) and 4% lead citrate (Agar Scientific, Essex, UK). The transmission electron micrographs
were taken by EM208S (Philips, TSS microscopy, Hillsboro, USA) 100 kV).

3.13. Cell culture and Cytotoxicity Assay

The human primary dermal fibroblast HDFa cell line was obtained from (ThermoFisher
Scientific, Waltham, MA, USA) (C0135C). Cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA), supplemented with 1%
penicillin/streptomycin (Gibco Invitrogen, Carlsbad, CA, USA) and 10% heat-inactivated
fetal bovine serum (FBS) (Sigma-Aldrich).

Cell viability was measured by using a MTT cell proliferation assay kit (Sigma-Aldrich),
according to the manufacturer’s instructions. HDF cells were cultured in 96-well plates
and treated with AS-AgNPs (0–200 µg/mL) for 48 h. The cultured medium was replaced
by medium containing 0.5 mg/mL MTT to metabolize to formazan. An ELISA plate reader
was used to measure the optical density at 550 nm, as described [18].

3.14. Rat Dermatophytosis Model

The in vivo animal experiment was approved and licensed by the Research Ethics
Committee, Deanship of scientific research at King Faisal University (KFU-REC-2022-OCT-
ETHICS218). Male albino rats (n = 24, 3 months old) were housed under conventional
conditions of 25± 2 ◦C and 12 h dark/light cycle, with a standard diet and water ad libitum.

Rats were exposed to common anesthesia intramuscularly by a 0.2 mL combination
of ketamine, xylazine, and acepromazine (3:3:1, by volume). An area of 2 × 2 cm2 on the
back of the mice was shaved and the skin inside this area was scraped using sterile fine
grit sand paper. T. rubrum conidia (1 × 106 cells/animal) was applied in a 100 µL volume
of medium/animal and smoothly scrubbed on the grazed skin. The control rates were
inoculated with 100 µL of PBS. Rats were divided into 4 groups (n = 6) as follows: group 1,
non-infected and non-treated (negative control group); group 2, infected animals treated
with saline only; group 3, infected animals treated daily intramuscularly with terbinafine
(10 mg/kg) and group 4, infected animals treated topically with AS-AgNPs (0.5 µg/g)
every 5 days. The course of the treatment continued for 14 days.

3.15. Fungal Burgen

The determination of the fungal burden was performed on day 7 and day 14 post treat-
ment by gathering a dermal biopsy from anesthetized animals using ketamine/xylazine
(80/15 mg/kg). Skin biopsy was suspended in PBS and plated on PDA medium. The
results were expressed as colony-forming units (CFU) per gram of skin.
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3.16. Histopathology

Rats were sacrificed on day 14 post treatment, and the skin areas with infection were
fixed in buffered 10% formalin (v/v) and embedded in paraffin. Skin samples were cut into
5-µm-thick sections and stained with (H&E) and Periodic acid–Schiff (PAS). Nikon 80i light
microscope (Nikon Corporation, Tokyo, Japan) was used to take tissue section images.

3.17. Measurement of Cytokine Levels in Skin Tissue

TNF-α, MOP, IL-1, IL-6, and IL-17 were measured by the enzyme-linked immunosor-
bent assay (ELISA) kit (MyBioSource, Inc., San Diego, CA, USA) in skin tissues according
to the manual instructions and as described previously [20,37]. In brief, 500 µg of skin
tissue was homogenized in 1.0 mL of PBS, centrifuged at 3000× g for 10 min at 4 ◦C, and
the supernatants were collected for measurements. Data were expressed as picograms per
milligram of tissue.

3.18. Statistical Analysis

All values were expressed as the mean ± SD (standard deviation) of at least 3 inde-
pendent experiments. Power calculation was performed for 2 samples using the unpaired
Student’s T-test (2-tailed), assuming equal variation in the two groups. Differences were
considered statistically significant at * p < 0.05, and ** p < 0.005.

4. Discussion

This report provides an alternative topical treatment for dermatophyte T. rubrum,
using green biosynthesized AgNPs with A. santolina extract.

In this report, we biosynthesized AS-AgNPs for the first time using the water extract
of A. santolina as a bioreductant, which increases its biocompatibility and pharmacological
properties. Consistent with our technique, it has been previously described that, once
the AgNPs are formed in a reaction mixture, the color changes to dark brown due to the
surface plasmon resonance (SPR) [38]. The absorption band of the UV-visible spectrum for
the biofabricated AS-AgNPs appeared at 448 nm, which is almost the same absorbance
peak as the biosynthesized AgNPs using an extract of Cymbopogon citratus [39]. Similarly, a
maximum absorbance at 450 nm was observed in the visible UV spectra of biosynthesized
silver nanoparticles using an Acer oblongifolium extract [40]. Consistent with ref. [41], our
study showed that the UV–Vis spectra of green synthesized AgNPs, using the extract of
Allium cepa var. Aggregatum, gives a sharp peak from 410 to 470 nm. Our results are also in
agreement with the results of [42], who biofabricated AgNPs using Aloe vera extract, where
the UV–Visible spectrum showed a strong broad peak at 455 nm. Generally, AgNPs are
known to exhibit a UV–Visible absorption maximum in the range of 400–500 nm because of
surface Plasmon resonance [43].

TEM showed the size of AS-AgNPs particles to be about 21.99 nm with a spherical
shape. AS-AgNPs with these unique structures have formerly been identified [44]. Addi-
tionally, the XRD confirmed the occurrence of AgNPs and their characteristic metallic silver
crystalline structure. FTIR is an essential means for the identification of functional groups
and interactions between molecules. Therefore, we compared the FTIR spectrum of plant
extract with AS-AgNPs. The FTIR spectrum for the biosynthesized AS-AgNPs displayed
some shifting in the peaks and changes in peaks intensity. The shifting in the peaks signified
that the responsible functional groups were involved in the binding mechanism on the AS-
AgNPs. All the peak changes support the role of the functional groups of A. santolina extract
in reducing and stabilizing agents to biosynthesize AS-AgNPs. It has been demonstrated
previously that both the primary and secondary amines are responsible for the stabilization
of AgNPs [45]. Our FTIR showed peaks associated with primary and secondary amines
capped on the nanoparticle surfaces. These results are consistent with the stated results of
bio-fabricated AgNPs using Urtica diocia leaves [46]. EDX of the biosynthesized AS-AgNPs
showed a characteristic optical absorption band at 3 keV, which established the occurrence
of elemental silver in the form of silver nanoparticles [47]. AS-AgNPs were considered very
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stable in the dispersion medium, depending on the previously described zeta potential for
other nanoparticles, which are either higher than +30 mV or lower than −30 mV [48]. Our
results revealed that the value of the zeta potential for the A. Santolina extract is −80.7 mV.
This value reveals the higher stability of A. Santolina extracts, in order to biosynthesize
AS-AgNPs. The negative value of the zeta potential signifies that the negative surface
charge of A. Santolina extract could come from the OH−, COO−, CO− functional groups,
which are confirmed in FTIR spectrum.

Our results displayed that the MIC of AS-AgNPs was 128 µg/mL. This is the first
study to determine the antifungal potential of biosynthesized AgNPs using A. santolina
extract against the growth of T. rubrum in vitro and in vivo. Interestingly, our results
confirmed the superior antifungal action of AS-AgNPs over plant extract. This might be
due to the fact that AgNPs acted as a carrier of plant phytochemicals, which are used as
capping and stabilizing agents, facilitating penetration into fungal cells. Ag+ also forms
complexes with bases contained in DNA and is a potent inhibitor of fungal DNAases [49].
Furthermore, AgNPs might be able to adhere to fungal hyphae, destroying the fungal cells.
Few studies have reported the significant antifungal action of biosynthesized AgNPs using
different synthesis methods or different types of extracts against different types of der-
matophytes. For example, the results of the serial dilution plate counting method showed
that the MIC of chemically synthesized AgNPs against Microsporum canis, Trichophyton
mentagrophytes, and Microsporum gypseum is 200, 180 and 170 µg/mL, respectively [50]. The
results of the agar diffusion assay revealed a MIC of 30 µg/mL for biosynthesized AgNPs
using the extract of the red yeast Phaffia rhodozyma against Microsporum and Trichophyton
dermatophytes [51]. Additionally, the results of the broth microdilution assay revealed
that AgNPs mediated by a cold atmospheric-pressure air plasma jet displayed antifungal
activity against different dermatophytes with Epidermophyton floccosum, which was the
most sensitive fungus; meanwhile, T. rubrum was the most tolerant, with an MIC ranging
from 50 to 100 µg/mL, depending on the fungal species [52]. Furthermore, the results of
the agar disc diffusion method showed that AgNPs biosynthesized using the leaf extract
of Passiflora caerulea displayed antifungal action against T. mentagrophytes, T. rubrum, E.
floccosum, M.audouinii, and M.Canis, of these, T. rubrum has an inhibition zone of 104 mm
at 75 µg/mL of AgNPs [53]. Moreover, the results of the Oxford cup plate assay revealed
that AgNPs synthesized using the cell-free extract of Lysinibacillus fusiformissp displayed an
antifungal potential against C. albicans, T. rubrum, and T. mentagrophytes with an MIC of 30,
50, and 60 µg/mL, respectively [54]. Therefore, our study provides biosynthesized AgNPS
using A. santolina extract as a novel antifungal drug for the treatment of dermatophyte
infection caused by T. rubrum.

Interestingly, the extract of A. santolina exhibited significant antifungal activity against
different fungi, including, C. albicans, C. tropicalis, and C. parapsilosis because of the oc-
currence of biologically active antifungal compounds. These include flavonoids, which
have nutritional and organoleptic characteristics. Luteolin, 3′,4′,5,7-tetrahydroxyflavone,
Rutin, and Apigenin have been reported to show high antioxidant, antibacterial and anti-
inflammatory activities and are used for treating hypertension, inflammatory diseases, and
cancer [11,55,56].

In this study, AS-AgNPs interrupted mycelial growth, as was demonstrated in the
dry mycelium mass examination, which reveals the production of fungal cell material. In
dermatophytosis, hyphal production is significant as they penetrate into the deeper layers
of the epidermis [57]. Additionally, T. rubrum conidia are identified as the primary means
of establishing dermatophytosis. They adhere to epithelial cells of the keratinized tissues of
the host, germinate and start an invasion of the stratum corneum [1]. Therefore, the results
of our study are of specific importance because AS-AgNPs inhibit the conidial germination
of T. rubrum.

Numerous mechanisms have been described to identify the mode of antifungal activity
of AgNPs. These include the ability of AgNPs to destruct the cell membrane permeability
barrier and to damage the membrane lipid bilayers, causing the leakage of ions, accom-
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panied by the creation of pores, and decomposing the membrane potential. Additionally,
AgNPs might block the cell cycle at the G2/M phase [58]; this results in increasing the
production of reactive oxygen species (ROS) and reducing the activity of antioxidant
enzymes [59].

The ultrastructural alterations of T. rubrum treated with AS-AgNPs include modified
mycelial structures, increased cell membrane permeability, and cell wall damage. This is
the first report to describe the ultrastructure modifications in T. rubrum upon exposure to
AgNPs. Other reports have described the morphological and ultrastructural modifications
of T. rubrum hyphal cells that were treated with different antifungal agents. These include
ME1111, which exerted its antifungal action through interfering with active transport
system found in the cell membrane with subsequent cell lysis [60], and K101 nail solution,
which disrupted the contact between the cell wall and the inner membrane [61].

Interestingly, our data showed the efficiency of AS-AgNPs in producing a 93% leakage
of intracellular material, in comparison to the control. Further, the treatment of dermato-
phytes with 10 µg/mL of AgNPs led to a significant increase in leaked materials, reaching
a maximum value of 48% in the case of M. gypseum [52]. Additionally, AgNPs might
bind to the cytoplasmic materials of damaged cells, leading to the leakage of cytoplasmic
constituents and a subsequent cell death.

Ergosterol is a distinctive lipid steroid of the fungal cell membrane that regulates
the membrane fluidity, and its biosynthesis pathway is one of the main targets for many
antifungal agents [62]. In this study, AS-AgNPs significantly decreased the activity of the
CYP51 enzyme, the major enzyme in ergosterol biosynthesis. Ergosterol content reduced
dramatically, suggesting the targeting of ergosterol synthesis by AS-AgNPs in a way similar
to fluconazole [63]. AgNPs were shown to reduce the ergosterol content in C. albicans [64,65].
Additionally, treatment of the T. rubrum cells with AS-AgNPs resulted in an increase
in the uptake of SYTOX® Green, as a result of the increased membrane permeability of
T. rubrum. Thus, a reduction in ergosterol after AgNP treatment could be accountable for the
sensitivity of fungal cells, the compromised membrane integrity, and changes in the cellular
microenvironment. In addition, targeting the fungal cell wall is a favorable mechanism
for many antifungal drugs [66]. As an important component of the fungal cell wall,
β-1,3-glucan played a significant role in cell growth to confirm the stability of cell osmotic
pressure [67]. The suppression of β-(1,3)-D-glucan synthase resulted in the inhibition of
the synthesis of glucan and the damage of cell wall [67]. Our results demonstrated the
inhibitory effect of AS-AgNPs on the activity of β-(1,3)-D-glucan synthase of T. rubrum.
In addition, AS-AgNPs suppressed the chitin synthase activity, which is responsible for
the production of chitin, an important component of the fungal cell wall that maintains its
integrity [68].

AS-AgNPs also elevated ROS production, which consequently resulted in damage to
the fungal cells [69]. In this context, Bokyoung et al., 2019, revealed that ROS levels were
significantly increased in C. albicans in the presence of 50 µg/mL of AgNPs at 30 min [70].
Additionally, in yeast, the toxic action of AgNPs might be due to the generation of ROS via
the release of silver ions inside the fungal cells internalizing AgNPs [70].

Infection by T. rubrum was shown to stimulate the activation of nuclear factor kappa
beta (NF-κB) and the production of IL-1β, IL-6, TNF-alpha and IL-10 by macrophages [71–74].
Interestingly, the direct inhibitory action of AS-NPs on the fungal burden was associated
with the downregulation of pro-inflammatory cytokines, including TNF-α, MOP, IL-1, IL-6,
IL-2 and IL-17. Our biosynthesized AS-AgNPs recapitulate the effect of nitric oxide-releasing
AgNPs, which have been recently shown to down-regulate the production of IL-2, 6, 10 and
TNFα, upon topical application in a mouse model of T. rubrum dermatophytosis [75].

Green synthesized AgNPs have several advantages over chemically synthesized Ag-
NPs in topical treatment, including limited cytotoxicity, a low stimulatory effect on the
host inflammatory response [76], and the presence of phytochemicals adsorbed on the NP
surface, which increases their antimicrobial activity in medical applications [77,78].
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To our knowledge, this is the first report to provide the topical use of green biosyn-
thesized AgNPs alone as an effective therapy for T. rubrum-induced dermatophytes. Few
studies have investigated the anti-dermatophytic effect of chemically synthesized AgNPs
in a combination with other agents. For example, nitric oxide-releasing AgNPs have been
reported to be effective as topical treatment against T. rubrum in a mouse model of der-
matophytosis [75]. In addition, a combination of chemically synthesized AgNPs with an
atmospheric-pressure air cold plasma jet [52], or with a Nd:YAG laser, was reported to treat
deramatophytes in a guinea pig disease model [79]. Our data provide a short treatment
course, which lacks the risk of antimicrobial resistance and the systemic side effects of other
antifungals. More translational research is needed to determine the antifungal activity of
AS-AgNPs against other models of dermatophytosis.

5. Conclusions

For the first time, we report the use of an aqueous extract of A. santolina as a rapid and
sustainable source for the green synthesis of silver nanoparticles. As an alternative ther-
apeutic strategy, we investigated the anti-dermatophytic potential of AS-AgNPs in vitro
and in vivo. Our results revealed the significant antifungal action of AS-AgNPs against
T. rubrum with an MIC of 128 µg/mL. AS-AgNPs led to the inhibition of the conidial
germination and hyphal growth, increased the leakage of intracellular material, the inhi-
bition of CYP51, increased the uptake of SYTOX® Green, the inhibition of the activity of
β-(1,3)-D-glucan synthase and chitin synthase, the inhibition of ergosterol synthesis, and
the complete inhibition of the germination of spores. Topical treatment of dermal T. rubrum
infection using AS-AgNPs in a rat model displayed a significant improvement in the skin
structure repair without showing any in vivo cytotoxicity. The therapeutic potential of
AS-AgNPs in vivo was found to be mediated via the inhibitory effect of AS-AgNPs on the
fungal burden associated with the downregulation of pro-inflammatory cytokines. Our
data provide the information for a short treatment course of dermatophytosis, which lacks
the risk of antimicrobial resistance and the systemic side effects of other drugs. The clinical
success of AgNPs will pave the way for a new generation of wide-ranging Ag-containing
therapeutic products for controlling and preventing the further outbreak of diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
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