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Abstract: Chemokines modulate the immune response by regulating the migration of immune cells.
They are also known to participate in such processes as cell–cell adhesion, allograft rejection, and
angiogenesis. Chemokines interact with two different subfamilies of G protein-coupled receptors:
conventional chemokine receptors and atypical chemokine receptors. Here, we focused on the former
one which has been linked to many inflammatory diseases, including: multiple sclerosis, asthma,
nephritis, and rheumatoid arthritis. Available crystal and cryo-EM structures and homology models
of six chemokine receptors (CCR1 to CCR6) were described and tested in terms of their usefulness in
structure-based drug design. As a result of structure-based virtual screening for CCR2 and CCR3,
several new active compounds were proposed. Known inhibitors of CCR1 to CCR6, acquired from
ChEMBL, were used as training sets for two machine learning algorithms in ligand-based drug
design. Performance of LightGBM was compared with a sequential Keras/TensorFlow model of
neural network for these diverse datasets. A combination of structure-based virtual screening with
machine learning allowed to propose several active ligands for CCR2 and CCR3 with two distinct
compounds predicted as CCR3 actives by all three tested methods: Glide, Keras/TensorFlow NN, and
LightGBM. In addition, the performance of these three methods in the prediction of the CCR2/CCR3
receptor subtype selectivity was assessed.

Keywords: cheminformatics; machine learning; neural network; gradient-boosting machine;
molecular docking; virtual screening; G protein-coupled receptors; chemokine receptors; CCR2;
CCR3; drug discovery; TensorFlow; LightGBM; Glide

1. Introduction

Chemokines, also referred to as chemotactic cytokines, are small proteins that regu-
late the migration of immune cells through the activation of G protein-coupled receptors
(GPCRs) [1]. Chemokines can be classified by the arrangement of the N-terminal cys-
teines responsible for the creation of disulfide bridges. There are four different chemokine
families: CXC, CC, XC, and CX3C, where X is any amino acid other than cysteine [2].
Based on their function, they can also be divided into homeostatic, inflammatory, and dual
homeostatic/inflammatory chemokines [2]. The first group are chemokines expressed in
homeostatic conditions that take part in the transport of non-effector leukocytes [3]. Inflam-
matory chemokines, on the other hand, are produced by leukocytes and other cells mostly
in response to tissue damage [4] or infection [1]. They are responsible for the chemotaxis
of leukocytes to inflamed or injured areas [2]. In addition to cell movement, chemokines
participate in: angiogenesis, cell–cell adhesion, embryonic development, integrin regula-
tion, and protease secretion, among others [5]. Chemokines also play a role in numerous
pathological processes, e.g., infection, inflammation, allergies, autoimmune and vascular
diseases, neoplasia, and allograft rejection [6].

Two main families of chemokine receptors have been so far recognized: conventional
chemokine receptors and atypical chemokine receptors [5]. Both consist of seven trans-
membrane domains that are located within the cell membrane [1]. Many chemokines
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can bind to multiple receptors; the same is true for their receptors, i.e., some of them can
bind multiple chemokines—this promiscuity is often observed in relation to inflammatory
processes [5]. Conventional chemokine receptors (cCKRs) can be grouped depending on
which chemokine subfamilies they bind: CXCR (6 receptors [7]), CCR (10 receptors [7]),
XCR (1 receptor [7]), and CX3CR (1 receptor [7]) [1]. As GPCRs, chemokine receptors
interact with G proteins and β-arrestins during signal transduction and demonstrate biased
signaling if bound to functionally selective ligands. According to the two-site model of the
chemokine binding, extracellular loops and N-terminus of cCKRs are responsible for the
initial interactions with chemokines, while N-terminus of chemokines induces the receptor
activation [5]. This model, however, has been suggested to be oversimplified and does
not take into account other important ligand-receptor interactions [8]. A list of ligands
that bind to a certain subtype of CC chemokine receptors, as well as to the corresponding
immune cell subset, is presented in Table 1.

Table 1. CC chemokine receptors and their ligands [9,10].

CC Chemokine Receptor Chemokines Immune Cell Subset Disease

CCR1 (CD191)
CCL3, CCL5 to CCL8,
CCL13 to CCL16, and

CCL23

• peripheral blood lymphocytes
• monocytes

MS 1, transplant, RA 2,
asthma, nephritis [11]

CCR2 (CD192)
CCL2, CCL7, CCL8,
CCL11, CCL13, and

CCL16

• monocytes
• activated memory T cells, B cells,

and basophils (in humans)
• in peritoneal

macrophages (in mice)

MS, RA, transplant,
asthma,

atherosclerosis [11]

CCR3 (CD193)

CCL2, CCL5, CCL7, CCL8,
CCL11, CCL13, CCL15,
CCL18, CCL24, CCL26,

and CCL28

• eosinophils, basophils, and Th1
and Th2 cells

• allergic reactions
asthma, allergies [12]

CCR4 (CD194) CCL3, CCL5, CCL17, and
CCL22

• Th2 T lymphocytes
• T cell receptor activation and

trafficking of dendritic cells
asthma [13]

CCR5 (CD195)
CCL2 to CCL5, CCL8,

CCL11, CCL13, CCL14,
and CCL16

• peripheral blood-derived
dendritic cells

• CD34+ hematopoietic progenitor
cells

• in certain activated/memory Th1
lymphocytes

MS, transplant, RA,
asthma, nephritis, IBD 3,

AIDS 4 [11]

CCR6 (CD196) CCL20
• inactivated memory T-cells
• Th17 cells
• some dendritic cells

SLE 5 [14]

1 multiple sclerosis, 2 rheumatoid arthritis, 3 inflammatory bowel disease, 4 acquired immunodeficiency syndrome,
5 systemic lupus erythematosus.

Four atypical chemokine receptors (ACKRs) have been discovered to date. Despite
their structures being reminiscent of cCKRs, atypical receptors are not coupled with G
proteins and therefore do not participate in conventional cellular signaling. Due to this,
they are sometimes referred to as “silent” receptors [15]. ACKRs have been shown to
function as decoy and/or scavenger receptors [16], i.e., they bind chemokines in order to
reduce their number and thus prevent activation [17]. At present, most anti-inflammatory
drugs target leukocytes. However, because of the role they play in the immune response
and inflammation, chemokine receptors have been identified as potentially more efficient
drug targets [11]. Conventional CKRs have been shown to be involved in the pathology of
numerous diseases. Drugs targeting chemokine receptors include but are not limited to:
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- maraviroc, a CCR5 antagonist used to inhibit the entry of the human immunodefi-
ciency virus (HIV) into cells by introducing steric hindrance. HIV hijacks CCR5 [18],
and to a lesser extent CXCR4, in order to access human cells [5];

- plerixafor and mavorixafor, both of which target CXCR4. Plerixafor is used for the
mobilization of hematopoietic stem cells [19], and mavorixafor is in phase III clinical
trials [20];

- vercirnon, a CCR9 antagonist that is currently in phase III clinical trials and has the
potential to treat Crohn’s disease, celiac disease, and ulcerative colitis [21].

There are certain hurdles that need to be overcome to utilize chemokine receptors
as drug targets for inflammation, e.g., inadequate in vivo dosing to inhibit the receptor
activity. The promiscuity of this system also raises concerns, though it has been suggested
that this may be overexaggerated, as structural, generic, and pharmacological evidence
suggest that there is no redundancy in the chemokine system. Inappropriate target selection
seems to be a much more plausible reason for difficulties in utilizing chemokine receptors
in pharmacotherapy [22].

An initial connection between CC chemokines (β-chemokines) and viral infections
was made with the discovery that RANTES, macrophage inflammatory proteins MIP-1α,
and MIP-1β (also known as CCL5, CCL3, and CCL4) effectively suppress HIV-1 [23,24].
This suggested that these molecules may control the immune response to infection, and that
sustained delivery of the respective receptor inhibitors could result in long-term control
of infection [23–25]. It is likely that these molecules play a positive role in controlling the
natural course of HIV infection since chemokine production is associated with antigen-
induced proliferative responses. This results in a better clinical status of HIV patients and
a decreased probability of infection in at-risk subjects [23–25]. Besides HIV, a plethora of
different viruses induce CC chemokine expression in humans and other species during
infections, as shown in Table 2. This justifies the usage of chemokine receptors as drug
targets in various infectious diseases.

Table 2. CC chemokines expressed during viral infections with respective chemokine receptors
binding them.

CC Chemokine Viruses inducing the Chemokine Expression Chemokine Receptors

CCL1
[26,27]

• MHV-68 (murine Herpes virus-68)
• RSV (respiratory syncytial virus) CCR8

CCL2
[27–29]

• DENV (Dengue virus)
• HSV (Herpes simplex virus)
• Influenza virus
• PVM (Pneumonia virus of mice)
• RSV (respiratory syncytial virus)
• MHV (mouse hepatitis virus)
• TMEV (Theiler’s murine encephalomyelitis virus)
• pMuLV (polytropic murine leukemia viruses)
• VSV (vesicular stomatitis virus)
• LCMV (lymphocytic choriomeningitis virus)

CCR2, CCR4

CCL3
[27,30–33]

• DENV (Dengue virus)
• HSV (Herpes simplex virus)
• Influenza virus
• MCMV, murine cytomegalovirus
• MHV-68 (murine Herpes virus-68)
• PVM (Pneumonia virus of mice)
• RSV (respiratory syncytial virus)
• MHV (mouse hepatitis virus)
• pMuLV (polytropic murine leukemia viruses)
• VSV (vesicular stomatitis virus)
• LCMV (lymphocytic choriomeningitis virus)
• HIV (Human Immunodeficiency Virus)

CCR4, CCR5
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Table 2. Cont.

CC Chemokine Viruses inducing the Chemokine Expression Chemokine Receptors

CCL4
[27,30,32,34,35]

• DENV (Dengue virus)
• HSV (Herpes simplex virus)
• RSV (respiratory syncytial virus)
• MHV (mouse hepatitis virus)
• pMuLV (polytropic murine leukemia viruses)
• TMEV (Theiler’s murine encephalomyelitis virus)
• VSV (vesicular stomatitis virus)
• LCMV (lymphocytic choriomeningitis virus)
• HIV (Human Immunodeficiency Virus)

CCR1, CCL3, CCR5, CCR8

CCL5
[27,32,36]

• HSV (Herpes simplex virus)
• Influenza virus
• MHV-68 (murine Herpes virus-68)
• HCV (hepatitis C virus)
• PVM (Pneumonia virus of mice)
• RSV (respiratory syncytial virus)
• MHV (mouse hepatitis virus)
• pMuLV (polytropic murine leukemia viruses)
• TMEV (Theiler’s murine encephalomyelitis virus)
• VSV (vesicular stomatitis virus)
• LCMV (lymphocytic choriomeningitis virus)
• HIV (Human Immunodeficiency Virus)
• DENV (dengue virus)

CCR1, CCR3, CCR4, CCR5

CCL6
[27,37] • TMEV (Theiler’s murine encephalomyelitis virus) CCR1

CCL7
[27,38,39]

• HSV (Herpes simplex virus)
• PVM (Pneumonia virus of mice) CCR1, CCR2, CCR3, CCR5, CCR10

CCL8
[24,27,40,41] • HSV (Herpes simplex virus) CCR1, CCR2, CCR3, CCR5

CCL11
[27,42,43] • PVM (Pneumonia virus of mice) CCR2, CCR3, CCR5

Among CC chemokines, CCL2 (MCP-1) and CCL3 (MIP-1α) are involved in the
immune response to SARS-CoV-2 [44]. CXC chemokines, such as CXCL5, CXCL9, and
CXCL10 have been studied concerning COVID-19 as potential biomarkers for this dis-
ease [45]. Immunosuppressing therapies for COVID-19 were described in [46], while
Mehta et al. investigated immunosuppression in severe conditions involving the cytokine
storm syndrome [47].

As was mentioned above, drug discovery for chemokine receptors still encounters
many difficulties [22] but there have also been many successes [48]. Recently, the use of
ACKRs as anti-cancer drug targets is an emerging therapeutic direction [49]. In general,
drug discovery is a long, difficult, and expensive process, frequently ending with drug
withdrawal at the clinical or even post-clinical phase. For this reason, drug repositioning
is frequently used to limit both the cost and the number of failures [50]. Computational
methods, including machine learning or artificial intelligence, can be also used to signif-
icantly reduce the initial discovery costs [51,52]. Prediction models that utilize machine
learning include, e.g., Glmnet, XGBoost, or LightGBM [53]. LightGBM (Light Gradient
Boosting Machine) is based on the Gradient Boosting Decision Tree (GBDT) algorithm,
and implements gradient-based one-side sampling (GOSS) and exclusive feature bundling
(EFB) [54].

Here, we trained a sequential neural network prepared with Keras API integrated
with TensorFlow [55] and a gradient boosting machine implemented in LightGBM [54] with
datasets including active ligands of chemokine receptors. Thus, their applicability in ligand-
based drug design could be assessed [56,57]. In addition, the currently available CCR1
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through CCR6 crystal and cryo-EM structures and homology models were evaluated in
terms of their usefulness in structure-based virtual screening (SBVS) following our previous
studies on class B receptors (GCGR, GLP-1R [58], VIP and PACAP receptors [50]). For
two CC receptors (CCR2 and CCR3) SBVS was performed against the Enamine screening
collection (HLL-460) including diverse chemotypes [59] to search for novel inhibitors and
new active-like scaffolds.

2. Materials and Methods
2.1. Crystal/Cryo-EM Structures and Models of Chemokine Receptors

The study involved the following receptors: CCR1, CCR2, CCR3, CCR4, CCR5, and
CCR6. At the time, only three of them had structures deposited in PDB, and of these
only CCR5 had structures of both the active and inactive receptor states. For this reason,
models were created of the missing active, inactive, and intermediate structures—this
was performed using GPCRdb [60], I-TASSER [61–63], and Robetta [64]. Every generated
structure was analyzed using PyMOL [65], and those that were assumed to be the highest
quality were selected to be used in further steps. Both the PDB structures and homology
models are listed in Table 3.

Table 3. Available crystal structures and models of CC chemokine receptors.

Receptor Conformational State PDB ID Method

CCR1
active — GPCRdb, I-TASSER

intermediate — I-TASSER
inactive — GPCRdb, Robetta

CCR2
active — GPCRdb

intermediate — GPCRdb
inactive 5T1A [66], 6GPS [67], 6GPX [67] —

CCR3
active — GPCRdb, I-TASSER

inactive — GPCRdb, Robetta

CCR4
active — GPCRdb, I-TASSER

inactive — GPCRdb, Robetta

CCR5
active 7F1Q [68], 7F1R [68], 7F1S [68], 7O7F [69] —

inactive 4MBS [70], 5UIW [71], 6AKX [72], 6AKY [72],
6MEO [73], 6MET [73], 7F1T [70] —

CCR6
active 6WWZ [74] —

intermediate — GPCRdb
inactive — GPCRdb

The receptor structures were imported into Maestro, Schrodinger LLC [75], where
they were preprocessed using the Protein Preparation Wizard with the default settings. All
water molecules, metal ions, and ligands not in the active site were removed; the remaining
ligand was then split from the receptor to prepare both structures for molecular docking.
Low-energy structures of the ligand were obtained using LigPrep [76] with the default
settings. The protonation state of each compound was determined with Epik (Schrodinger,
LLC). In the case of peptide or small protein (chemokine) ligands in the PDB structure, the
ligand was truncated to ca. 10 residues to allow sufficient sampling of its conformational
space during Glide docking. Glide [77] was then used to generate a receptor grid and
dock the lowest energy ligand conformation onto the receptor. The docking scores of the
ligand poses were recorded and heavy-atom RMSD was calculated (Schrodinger, LLC,
script rmsd.py) in order to determine the extent to which the ligand position had changed
in regards to that in the original PDB structure. If more than one PDB structure of the
receptor existed, cross-docking was performed to check the docking scores and RMSD in
relation to the other structures, and thereby determine the structure quality in terms of
structure-based VS. This was done for all three CCR2 structures and the ligands from four
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different CCR5 structures. In addition, second, more exact cross-docking was performed
for three of the CCR5 structures due to the significant similarities between their ligands.
The obtained docking scores and RMSD values were compared between receptors.

The selected receptor models were imported into Maestro [75], where they were
preprocessed for the enrichment study. ChEMBL [78,79] was searched in order to find
ligands known to interact with these receptors (actives). A total of 100 ligands were chosen
for each receptor and used to prepare a set of decoys using DUD-E [80], as was conducted
previously for class B receptor ligands [58]. Actives and decoys were combined to form test
sets, which were then prepared with LigPrep and docked onto every CC receptor. ROC
(receiver operating characteristic) curves [58] were created in order to determine the ability
of the models to differentiate between actives and decoys.

2.2. Structure-Based Virtual Screening Involving CCR2/CCR3 Receptor Subtype Selectivity

Structure-based virtual screening was performed using the inactive-state 6GPX crystal
structure of CCR2 and the inactive-state Robetta model of CCR3. The Hit Locator Library
(HLL-460), downloaded from https://enamine.net/ [59] on 17 November 2022 and con-
sisting of 460,160 compounds that encompass the website’s entire screening collection
of diverse chemotypes, was used. Maestro’s Canvas Similarity and Clustering was used
to cluster the compounds of the best docking scores. The chosen similarity metric was
Tanimoto [81], and the average linkage method was applied. Medoid compounds in each
of ca. 20 clusters were selected for analysis.

2.3. Ligand-Based Drug Design for CCR1–6

Active compounds for receptors CCR1–6 were downloaded from the ChEMBL
database [79] in September 2022. The human version of each receptor with the largest
number of ligands was selected and the subset including mostly the IC50 sub-category
was downloaded (see Supplementary Tables S1 and S2). Among these compounds, no al-
losteric compounds (except one compound in the CCR2 dataset) were found by text mining.
Compounds that were duplicated were removed from datasets. Based on SMILES—the
numerically coded descriptor, Morgan fingerprints (ECFP4) [82] were then generated using
Pandas (v. 1.5). Compounds were then subdivided into categories by the logarithmic-scale
activity values (pChEMBL) that corresponded to IC50 (half-maximal inhibitory concentra-
tion). Compounds demonstrating inhibitory activity for the target at the level greater than
100 µM (pChEMBL values < 4.0) were considered as ‘inactives’ (ligands tested experimen-
tally to be inactive ones). For example, in the CCR5, 6% of the compounds were in the low
activity range of pChEMBL values 4–5, 8% in the range of 5–6, and 13% in the range of 6–7.
Yet, to be in line with the standard practice, 10 µM (pChEMBL value ca. 5.0) as a cut-off
value of activity might have been more appropriate [83,84].

The hyperparameters of the sequential model of neural network in Keras/TensorFlow
were optimized based on the prediction accuracy using the 5-fold cross-validation in order
to assess modifications introduced to the model. The final sequential model consisted of an
input layer followed by three hidden layers each containing 64 nodes with the Rectified
Linear Unit (ReLU) activation function. The categorical cross-entropy loss function and the
stochastic gradient descent optimizer with the softmax activation layer were applied.

The sequential neural network model was trained on the datasets that were randomly
generated based on the curated ChEMBL data for chemokine receptors. For a final assess-
ment, the original datasets were divided into training and testing sets in a 70/30 ratio
and then used by NN. Five independent runs were used to compute the average (mean)
results to minimize stochastic effects. There were two series of datasets—one with only
active compounds and the other with active and inactive compounds included. The term
‘inactive compound’ means that this compound was present in the ChEMBL dataset for the
certain receptor type, but its activity (measured as effective concentration, i.e., pChEMBL
values) was less than 4.0 and it can be considered as an experimentally confirmed inactive

https://enamine.net/
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compound. Thus, such a compound was treated as ‘inactive’ and represented a negative
data point in the used training sets.

Results were evaluated by comparing known standardized activity values (pChEMBL)
based on experimental results (functional assays) to the predicted values within each
activity range. Results of NN were compared to results obtained with LightGBM. The
latter algorithm was tested previously, but only for the CB1, CB2, GCGR, and GLP-1R
receptor ligand datasets [56]. To perform an explicit comparison of these two approaches
(NN and gradient boosted decision trees), a binary classification in NN was modified to
fit a multi-class classification using ranges of activity values (pChEMBL ranges). Inactive
compounds in each training set represented a set of negative data points. Including of
this negative dataset representing true negatives was evaluated in terms of the accuracy
of each predictor (NN vs. LightGBM and CCR1-6). The accuracy of the NN predictions
was evaluated as a percentage of all predicted ligands that were classified as belonging
to the correct activity class. In addition, ligands that were classified as belonging to a
lower activity class (underpredicted) or to a higher activity class (overpredicted) were
also reported.

For training LightGBM, a total training set for each receptor was used, one with only
active compounds and the other which also included the inactive compounds. The number
of leaves in the decision trees of LightGBM ranged from 7 to 200, the maximum depth
varied from −1 to 10, the number of estimators from 50 to 500, and the learning rate ranged
from 0.5 to 0.001, all with 5-fold cross-validation and R2 measure with grid tuning to the
best estimator and the best parameters. The root mean square error (RMSE) between the
experimental values (standardized pChEMBL values) and the predicted activity values was
evaluated. To compare these results to the NN results, activity values predictions obtained
from LightGBM were split into activity classes based on the same pChEMBL values, as
described above for NN. NN and LightGBM results could then be directly compared
despite their original discrete vs. continuous values, respectively.

2.4. Structure-Based Virtual Screening Assisted by NN and LightGBM

Compounds obtained in both structure- and ligand-based virtual screening for CCR2
and CCR3 were mapped against each other in order to find the compounds that overlapped
between sets. In such way, 460 compounds proposed by SBVS for CCR2 and CCR3
could be limited to only a few compounds (10 and 12, respectively) that could be further
tested in bioassays. NN predictions vs. SBVS predictions, LightGBM vs. SBVS, NN vs.
LightGBM, and finally CCR2 vs. CCR3 datasets (for NN, LightGBM, and SBVS separately)
were compared.

3. Results
3.1. Self-Docking to PDB Structures

The self-docking results are presented in Table 4, alongside information pertaining to
PDB structures deposited in the PDB. All the CCR2 structures were in the inactive-state
conformation. Based on the presented data, the PDB structure of CCR2 (6GPS) had the
worst resolution in terms of structure-based virtual screening (SBVS). This impacted the
results of the self-docking—though both 6GPS and 6GPX had the same ligand, the self-
docking Glide scores and RMSD values were lower for 6GPX, suggesting that this was
the better-quality structure. In the case of 5T1A despite the good resolution of the crystal
structure, the Glide score value was similar to that of 6GPS and the RMSD was more than
twice as high.
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Table 4. Self-docking results.

Receptor PDB ID Resolution [Å] Ligand Small-Molecule Ligand Glide Score RMSD 1

CCR2
5T1A 2.81 BMS-681 yes −7.777 2 0.96

6GPS 3.30 MK-0812 yes −7.933 2 0.46

6GPX 2.70 MK-0812 yes −9.103 2 0.25

CCR5

4MBS 2.71 maraviroc yes
−9.026 3 0.78

−9.004 2 0.74

5UIW 2.20 5P7-CCL5 no −9.494 3 4.19

6AKX 2.80 compound 21 yes
−7.102 3 0.55

−7.79 2 1.19

6AKY 2.80 compound 34 yes
−8.961 3 0.36

−9.002 2 0.29

6MEO 3.90 HIV-1 envelope spike no −9.433 3 10.13

6MET 4.50 HIV-1 envelope spike no −5.863 3 5.22

7F1Q 2.90 MIP-1α and Gi no −4.898 3 7.70

7F1R 3.00 RANTES and Gi no −6.900 3 7.83

7F1S 2.80 apo receptor in
complex with Gi

no — —

7F1T 2.60 MIP-1α no −7.149 3 4.36

7O7F 3.15 [6P4]CCL5 no −7.875 3 7.34

CCR6 6WWZ 3.34 CCL20 no −9.275 3 6.78
1 computed for heavy atoms with respect to the PDB structure, 2 computed using the extra precision (XP) mode,
3 computed using the standard precision (SP) mode.

Most of the ligands present in the CCR5 structures were peptides. Such ligands
demonstrate high flexibility and for the sake of computational time the standard precision
(SP) Glide mode was used as the primary method for self- and cross-docking of them. The
lowest RMSD values were obtained for structures with small-molecule ligands: 4MBS,
6AKX, and 6AKY; which means these ligands only slightly changed their orientations.
These three structures were chosen to undergo more precise docking calculations due to
the similarities in the structures of the ligands: compounds 21 and 34 were both derivatives
of 1-heteroaryl-1,3-propanediamine derivatives [72] and designed to be alternatives of
maraviroc, a drug used to treat HIV infection [85]. Regardless of which Glide mode (SP vs.
XP) was used in self-docking, the lowest RMSD values were obtained for 6AKY (CCR5 with
compound 34). Similarly, the best values of the Glide score were acquired for 4MBS—the
receptor structure with maraviroc. For both of these structures, the results obtained using
the SP and XP methods were remarkably similar; furthermore, the XP self-docking provided
very similar values of the Glide score for both ligands, suggesting that the Glide-predicted
affinity of compound 34 to CCR5 is comparable to that of maraviroc.

The differences in values of the Glide score for these three ligands (maraviroc, com-
pound 21, and 34) could perhaps be explained by taking a closer look at their structures,
presented side by side in Figure 1. Compound 34 is the most similar to maraviroc, with
only a phenyl ring having been changed to a tiophene. Both ligands possess a cyclohexane
ring with two fluorine atoms. They are known to interact with the T1955.39 and T2596.59

residues of CCR5 [70]. The lack of these fluorine atoms in 6AKX with compound 21 and
the subsequent lack of hydrogen bonds might explain higher values of the Glide score
obtained for this structure. The phenyl group, on the other hand, is responsible for forming
hydrophobic interactions with Y1083.32, F1093.33, F1123.36, W2486.48, and Y2516.51 [70]; in
6AKX and 6AKY, the thiophene ring plays a similar role in stabilizing the inactive confor-
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mation of the receptor. The positioning of the sulfur atom in the aromatic ring determined
the depth to which it entered the binding pocket, with the sulfur atom in the meta position
being buried deeper than that in the ortho position [72].
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Figure 1. A comparison of binding modes of known allosteric CCR5 inhibitors. Maraviroc (4MBS,
orange), compound 34 (6AKY, green), and compound 21 (6AKX, grey) were shown also in detail at
the top from left to right. Polar contacts were marked with dashed lines and receptor residues were
indicated in the Ballesteros-Weinstein notation.

The docking scores obtained for the structures containing peptide ligands were largely
worse than in the case of the small molecules. The notable exceptions were 5UIW, where
the docked ligand was CCL5, and 6MEO with the HIV-1 envelope spike. Of all the peptide
ligand-containing structures, 5UIW had the best resolution and provided the lowest RMSD
value in self-docking. The 5UIW ligand, truncated to the first 11 residues, was well-
superposed on its PDB pose till residue Met5 (see Figure 2). However, a following helical
turn visible in the PDB pose was not rebuilt by Glide. This justifies a 10-residue cutoff for
docking of short peptides in Glide.
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Figure 2. Reconstruction of ligand binding mode in 5UIW self-docking. The reference PDB pose
of the 5UIW ligand was shown in grey, with the polar contacts involving side chains indicated with
yellow dashed lines. The residues involved in polar contacts located in ECL2 were labeled. The
Glide-reconstructed ligand pose was shown in magenta (RMSD equal to 4.19 Å).

7F1T with only a slightly worse resolution, provided comparable results in terms
of RMSD. Despite the low value of the Glide score, the RMSD value obtained for 6MEO
was relatively high, suggesting the ligand had to change position regarding the original
structure in order to improve the interactions with the receptor. All RMSD values obtained
for peptide ligands were much larger than those obtained for small molecule ligands. This
tendency can be also observed in the case of the CCR6 self-docking results.

3.2. Cross-Docking to PDB Structures

In the next step, ligands derived from crystal structures were subjected to cross-
docking. The results are presented in Table 5. In the case of CCR2, the lowest value of
the Glide score and lowest RMSD values were observed for the 6GPS ligand docked onto
the 6GPX receptor, which agrees with the self-docking results. In turn, the ligand in the
6GPX structure demonstrated the best values of the Glide score when docked onto the
6GPS structure. When docked onto the 5T1A structure, however, both the 6GPS and 6GPX
ligands displayed comparably high docking scores and RMSD values. The 5T1A ligand
(BMS-681—orthosteric), however, demonstrated far better values of the Glide score and
lower RMSD values when cross-docked onto the 6GPX structure, which, as was previously
stated, had the best resolution. In conclusion, both the self- and cross-docking results
suggest that of the three studied CCR2 structures, the 6GPX structure is of the highest
quality in terms of structure-based virtual screening. In the case of the 4MBS, 6AKX, and
6AKY structures, cross-docking was performed using both SP and XP modes, like in the
case of self-docking. As expected, the 4MBS ligand demonstrated the best scores when
docked onto the 6AKY structure and vice versa, which can probably be attributed to the
presence of the fluorine atoms and the hydrogen bonds they form (see above).
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Table 5. The cross-docking results.

Receptor Ligand Structure Glide Score RMSD 2

CCR2

5T1A
6GPS 1 −8.281 3 1.11

6GPX −5.383 3 4.39

6GPS
6GPX −9.028 3 0.39

5T1A −3.940 3 9.94

6GPX
6GPS −8.378 3 0.69

5T1A −4.919 3 10.00

CCR5

4MBS

6AKX
−8.834 4 0.54

−8.646 3 1.1

6AKY
−7.980 4 0.74

−8.912 3 0.61

6MET −5.214 4 2.25

6MEO −6.025 4 2.51

5UIW −5.940 4 3.98

7O7F −5.464 4 4.53

7F1T −5.126 4 4.55

7F1Q −2.975 4 4.73

7F1R −3.754 4 5.78

7F1S −3.735 4 6.73

6MEO

6AKX −11.31 4 7.89

6AKY −7.833 4 8.33

4MBS −12.929 4 8.95

7F1Q −8.798 4 9.36

6MET −7.165 4 9.74

5UIW −10.527 4 10.12

7F1R −6.731 4 10.45

7F1S −7.995 4 10.67

7O7F −7.963 4 10.84

7F1T −6.738 4 12.23

7O7F

5UIW −6.550 4 3.69

6MEO −7.851 4 5.14

4MBS −7.643 4 5.63

6MET −6.414 4 6.26

6AKY −7.268 4 7.09

6AKX −7.223 4 7.18

7F1Q −6.037 4 7.48

7F1T −7.108 4 8.29

7F1R −6.983 4 8.79

7F1S −7.329 4 13.03

6AKX

4MBS −8.501 4 0.89

6AKY −8.325 4 0.49

6AKY

4MBS −8.716 4 0.73

6AKX −8.282 4 1.04
1 results with the lowest values of RMSD were bolded, 2 computed for heavy atoms with respect to the crystal
structure, 3 computed using the extra precision (XP) mode, 4 computed using the standard precision (SP) mode.
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Due to the large quantity of tested structures, SP cross-docking was performed using
only the ligands from the 4MBS, 6MEO, and 7O7F. The 4MBS ligand demonstrated the
worst results (the highest values of the Glide score and largest RMSD values) when docked
onto the 7F1Q, 7F1R, and 7F1S structures. This was likely since the 4MBS ligand as an
inhibitor favored structures including the inactive-state receptor and not structures with
the active-state receptor (7F1Q, 7F1R, and 7F1S). Similar results were expected for the
6MEO ligand as it was also an inhibitor. Indeed, this ligand demonstrated the best results
when cross-docked onto the inactive receptor structures (4MBS, 6AKX, 5UIW). However,
although the 6MEO ligand demonstrated the worst results of the three active structures
(7F1Q, 7F1S, 7O7F), values of the Glide score were also relatively high for the inactive-state
structures (6MET, 4AKY). This was because the 6MEO ligand was a peptide and not a small
molecule such as the 4MBS ligand. Thus, it demonstrated better fitness to the peptide-
bound receptor conformations and not necessarily the inactive-state receptor conformations.
The 7O7F ligand (agonist), contrary to what was expected, displayed larger RMSD values
when docked onto active-state receptor structures (particularly 7F1S). However, there was
not as much of a disparity between the different docking scores as in the case of the previous
ligands to assess if the 7O7F ligand indeed favored the active receptor conformations. What
is more, molecular docking of peptide compounds, such as the 7O7F ligand, requires a
more extensive conformational search than in case of small-molecule ligands to account
for their conformational variability. However, because of the limited computational time,
the SP mode was used for these peptide compounds instead of XP. The lowest RMSD
value (3.69) for the 7O7F ligand was obtained for the 5UIW structure; however, the ligand
was flipped inside the binding site (see Figure 3A). Nevertheless, the reconstruction of its
peptide, 10-residue long conformation was proper—with RMSD equal to 2.68 Å (computed
in PyMOL, see Figure 3B). This again confirms that the 10-residue cutoff is the best for the
peptide docking in Glide.

3.3. ROC Analysis of CC Chemokine Receptor Models

ROC curves and enrichment factors provide important information on the protein
model ability to distinguish actives from inactive ligands in datasets [58]. They represent
an accurate and simple method of distinguishing good protein models from bad models
in terms of SBVS, as shown by us on the example of glucagon receptors [58,86]. Since the
ligands obtained from ChEMBL were mostly inhibitors, it was assumed that the created
ROC curves would be better for the receptors in their inactive state. Models used in the
actives enrichment analysis are presented in Supplementary Table S3 and Figure S1.

For CCR1, the above hypothesis was indeed true, but only in the case of the Robetta-
generated model (see Supplementary Table S4). The inactive-state receptor model generated
by Robetta indeed demonstrated the best ROC curve, signified by the larger area under the
curve (AUC). However, the GPCRdb inactive-state model recognized actives from decoys,
but this classification started to improve in the middle of the ROC curve. This means that
for smaller datasets this receptor model tended to misclassify actives from inactive ligands
(high false positives rate). Superposition of these two inactive-state CCR1 models in PyMOL
showed that TM helices were well-aligned (see Supplementary Figure S1). However, there
were significant differences between these two models in the conformations of intra- and
extracellular fragments. The largest differences were visible between helix H8, the C- and
N-termini, as well as loops ICL1, ICL3, and ECL1. The most significant difference was
in the N-termini. It was longer in the GPCRdb model than in the Robetta model and
resembled the active-state conformation of the N-termini in other solved structures of CC
chemokine receptors. Most probably, additional interactions of ligands with the extended
N-termini were the reasons why the GPCRdb model tended to overpredict actives (high
false positives rate) and displayed an S-shaped ROC curve. This again [58,86] confirms that
ROC curves are successful in the assessment of the quality of GPCR models.
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Figure 3. Reconstruction of ligand binding modes in cross-docking of CC chemokine receptors.
The reference PDB poses, and respective PDB receptor structures were shown in grey. Polar contacts
involving receptor residue side chains were shown as dashed yellow lines. Glide-generated ligand
poses were shown in magenta, with receptors shown in blue-to-red. (A) cross-docking of the peptide,
10-residue long 7O7F ligand to 5UIW structure—RMSD equal to 3.69 Å, (B) overlay of 7O7F ligand
conformations in PyMOL with RMSD equal to 2.68 (yellow—reference, magenta—reconstructed);
(C) cross-docking of the small-molecule 5T1A ligand (an orthosteric one) to 6GPS structure—RMSD
equal to 1.11 Å, (D) cross-docking of the small-molecule 4MBS ligand to 6AKX structure—RMSD
equal to 1.1 Å.

The active ligands enrichment for CCR2 was much better than those for CCR1 (see
Supplementary Table S4). As expected, the active-state receptor models performed the
worst, but the intermediate-state receptor model obtained from GPCRdb was shown
to accurately distinguish between the ChEMBL-derived actives (inhibitors of the CCR2
mediated signaling) and DUD-E decoys. It suggests that it could be used in further SBVS
studies alongside the inactive-state PDB structure of CCR2 (e.g., 6GPX).

The CCR3 models also performed well, with the best ROC curves being obtained
for the active-state model deposited in GPCRdb and inactive-state model generated with
Robetta (see Figure 4). Yet, active-state models (GPCRdb and I-TASSER) also performed
well in the actives enrichment study. The N-terminus in the inactive-state GPCRdb model
of CCR3 was similar to N-terminal fragments which interacted with chemokines in 7F1Q,
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7F1T, and 7O7F active-state PDB structures of CCR5. Namely, it was moved away from
the orthosteric binding site towards ECL2. In contrast, the N-terminus in the inactive-state
Robetta model of CCR3 was much closer to the orthosteric binding site, partly substituting
a chemokine and partly forming a cap on the extracellular part of the receptor. Importantly,
N-terminus and the beginning of TM1 in this inactive-state Robetta model was very much
like the PDB structure of CCR5 (4MBS), indeed representing the inactive state of the
receptor. This could be the reason why the Robetta model outperformed the GPCRdb
model in distinguishing CCR3 actives from inactive ligands as observed in ROC curves
(see Figure 4). In addition, the Robetta model contained a second disulfide bridge in the
extracellular part of the receptor (ECL3—N-terminus) besides the typical GPCR disulfide
bridge joining ECL2 and TM3. This additional disulfide bridge was present in most CC
chemokine receptor PDB structures but was not present in the inactive-state GPCRdb model
of CCR3.
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Figure 4. A comparison of the inactive CCR3 models generated with Robetta (grey), and deposited
in GPCRdb (blue-to-red). The disulfide bridges were marked as spheres. Below—ROC curves for
these two models of inactive-state CCR3, for Robetta model (left) and for GPCRdb model (right).
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The ROC curves obtained for the active and inactive-state CCR4 models were like a
random classifier, which means that they hardly could be used efficiently in SBVS. However,
the inactive-state Robetta model was again the best and again included N-termini forming
the receptor cap which substituted a chemokine, joined with ECL3 by the disulfide bridge. I-
TASSER and GPCRdb models again included N-termini resembling the active-state receptor
conformations. CCR5 was not tested in the active ligands enrichment as there were already
many active and inactive-state structures of this receptor in PDB. The CCR6 models from
GPCRdb also demonstrated random classifier-like ROC curves, though the best one was for
the intermediate-state receptor model. The described above ROC curves were presented in
Supplementary Table S4.

Robetta used the inactive-state 4MBS structure as a template for all described models
and most probably it was the reason why Robetta models performed the best in discrim-
inating decoys from inhibitors, as demonstrated by ROC curves. In the 4MBS structure,
the N-terminus was directed towards the receptor rather than away from it, which would
explain why this region in all Robetta models had a similar conformation. Furthermore,
there was a disulfide bond between the N-terminus and ECL3 in both the 4MBS template
and the CCR3 and CCR4 Robetta models. It would also likely have been present in the
CCR1 Robetta model if the N-terminus had not been truncated.

In addition to the overall model quality by the ROC curves analysis, SiteMap [87]
was used to determine the location of the binding sites in the CCR2 Robetta model, which
was then compared to the 4MBS CCR5 structure. The 4MBS ligand fits into the predicted
binding sites, lending credence the quality of the model. This comparison is presented in
Supplementary Figure S2.

3.4. Structure-Based Virtual Screening Involving CCR2/CCR3 Receptor Subtype Selectivity

In both cases, CCR2 and CCR3, 460 different ligands extracted automatically in Mae-
stro as the best-scoring fraction of the results obtained from Glide were divided into 22
different clusters. The number of ligands assigned to each cluster, as well as informa-
tion about the ligand closest to the centroid (medoid), can be found in Supplementary
Table S5 (for CCR2) and Table S6 (for CCR3). All medoid ligands could be classified as
actives based on values XP Gscore (below −8). For CCR2, the best XP Gscore value was
obtained for the ligand belonging to cluster 11; for CCR3, it was the ligand belonging to
cluster 8. The residues that were involved in ligand binding and numbered according
to the Ballesteros-Weinstein notation (see Supplementary Figure S3) were presented in
Supplementary Figures S4 and S5.

As for the receptor subtype selectivity, CCR3 ligands occupied the center of the
receptor, while CCR2 ligands (incl. the 6GPX ligand) were slightly moved to the right, to
TM1 and TM7 (see Supplementary Figures S4 and S5). In both, CCR2 and CCR3, Glu7.39
and Tyr6.51 were involved in ligand interactions, while Tyr1.39 only in CCR2. Residue 4.60
was involved in ligand interactions in both receptors, as Asn in CCR2 and Glu in CCR3.
Arg1.28 in CCR3 were involved in interactions with VS-extracted ligands but not in 6GPX
and to much less extent in any of VS-extracted CCR2 ligands (as Lys1.28).

3.5. Ligand-Based Drug Design Involving Machine Learning

The overall accuracy for the neural network prediction of the ligand activity to the set
of six chemokine receptors was equal to 40% with ‘non-active’ compounds included but
dropped to 23% when ‘inactives’ were removed. The overall average prediction accuracy
ranged from 20% (CCR1) to as high as 86% (CCR6) (see Figure 5 and Supplementary Table
S7). However, a detailed analysis of the data revealed that there were clear prediction
biases generated from discrepancies within the distribution of the known experimental
data. For example, in CCR1, where the actives dataset was biased towards activities in the
high nanomolar range, the best predictions were for compounds of this activity range. This
suggests that the prediction model could be overfitted to the training data set. This is even
more clearly illustrated by datasets for the five other receptors, in which the proportion
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of inactive compounds was also biased. This overfitting of the model was most clearly
observable for CCR6, in the dataset of which 88% of the ligands in each trial, on average, had
activity between 10 and 100 µM. Compounds in this activity range were correctly classified
in 98% of cases, while inactive compounds were overpredicted in 100% of cases, and
compounds of higher activity were underpredicted in 100% of cases. For CCR2, the dataset
of which included 37% inactive compounds, the NN performed the best in classification
of this type of compounds while underpredicted the activities of all actives. For CCR4,
the dataset included 64% of inactive compounds. The NN classified these compounds
correctly in 83.1% of cases and underpredicted activities of other compounds. On the other
hand, for CCR3, which dataset was biased towards the high activity compounds (78% of
compounds had activities better than 1 µM) there was a tendency to overpredict activity.
Compounds with activity worse than 10 µM were overpredicted in 91% of cases, though
they constituted only 7% of the dataset on average. For CCR5, which had a bimodal activity
distribution (32% ‘inactives’, 41% of better activity than 100 nM), relatively few compounds
were correctly classified, but rates of under- and overprediction were usually equivalent.
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Figure 5. Compound activity predictions for CCR2 using the sequential Keras/TensorFlow
model of NN. Histogram of ligand activities as predicted by Keras/TensorFlow. Ligand activi-
ties (pChEMBL) were divided into ranges (x-axis). The fraction of the dataset that was assigned to
each activity range (in %) was given in brackets. Predicted activity values fell into three categories:
overpredicted, underpredicted, and predicted correctly, with (left) and without (right) inactive
compounds included in the datasets.

Repeating training and testing of the NN with datasets in which inactive compounds
(the negative dataset) were removed enhanced the described above trends. Activity values
in datasets were much more evenly distributed, but unexpectedly this led to worse overall
performance of the model. The average prediction accuracy was 21% (CCR4) to almost
26% (CCR5). Notably, the medium-activity compounds were the most accurately predicted,
while the low-activity compounds were overpredicted and the high-activity compounds
were underpredicted, which suggests a tendency of the NN to overfitting. It was most
evident for CCR5, in which dataset the previous bimodal distribution of activity values
(with one mode centered on ‘inactives’) was removed, leading to 34% average accuracy
for compounds with activities better than 100 nM (60% of the dataset on average). The
CCR6 dataset could not be examined this way because it almost did not include any
inactive compounds.

The results described above clearly indicate that the NN used here was prone to
overfitting. Therefore, the preparation of uniformly distributed training datasets is impor-
tant to avoid any bias in the model predictions. Overall, gradient boosting decision trees
(LightGBM) provided qualitatively better predictions for used training sets (see Figure 6
and Supplementary Tables S8 and S9) as this algorithm is more fitted to numerical values
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predictions (pChEMBL values) instead of binary classification (active/inactive), for which
NNs are typically used. For example, LightGBM assigned the proper activity value range
for compounds in 84.9% of cases on average for CCR5 datasets without inactive compounds.
The average performance of LightGBM ranged from 52.9% (CCR1 with ‘inactives’ included)
to the aforementioned results for the CCR5 dataset.
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Figure 6. Compound activity predictions for CCR2 using LightGBM. (Top): Comparison of com-
pound activities predicted by LightGBM compared to the known activity values (as defined by
pChEMBL values), with (left) and without (right) inactive compounds included in the datasets. A
perfect correlation line is included for comparison (red line). (Bottom): Histograms representing
LightGBM result in prediction of activity values. Ligand activities (pChEMBL) were divided into
ranges (x-axis). The fraction of the dataset that was assigned to each activity range (in %) is included
in brackets. Predicted activity values fell into three categories: overpredicted, underpredicted, and
predicted correctly. (Left)—with inactive compounds included, (right)—without ‘inactives’ included.

3.6. Structure-Based Virtual Screening Assisted by NN and GBM

The overlap between the Enamine compounds selected by NN, GBM, and SBVS is
shown on the Venn diagrams in Figure 7. It provided 10 new active compounds for CCR2
and 12 for CCR3 (see Figures 8 and 9, and Supplementary Tables S10–S13). For CCR2, the
largest number of compounds was supplied by GBM (over 4000 compounds), and while
there was some overlap, there was not a single compound that had been selected by all three
methods. For the CCR3 model, however, two such compounds were discovered, suggesting
that they would present a good basis for further research. The interactions between the best-
ranked ligands and the appropriate receptors were shown on Figure 8 (CCR2) and Figure 9
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(CCR3). Here, the compounds were ranked according to XP-Gscore values obtained from
Glide. In the case of the NN-predicted actives of CCR3, only five top-scoring (according
to XP-Gscore) compounds were presented in Figure 9. More information about these
ligands, including their interactions with their receptor, is provided in Supplementary
Tables S10–S13.
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Figure 7. Venn diagrams presenting the overlap between the compounds found through SBVS, NN,
and GBM. The diagram on the left presents the results for the 6GPX structure of CCR2, and on the
right for the inactive-state Robetta model of CCR3.

A total of 537 CCR3 active compounds predicted by both NN and GBM were in the
range of pChEMBL values 7.0–8.3, while 21 CCR2 active compounds were in the range
of pChEMBL values 5.0–6.7. The two CCR3 active compounds predicted by these three
methods were Z1426245621 and Z2441027668 with GBM-predicted pChEMBL values of
7.23 and 7.12, respectively. XPGscore values for these two compounds were below −10 (see
Supplementary Table S12). Interestingly, both compounds belonged to highly populated
clusters (10th and 14th with 264 and 39 similar compounds, respectively). The binding
modes of these compounds were presented in Figure 9—compounds ranked as 2nd and
5th among GBM-predicted actives. The compound ranked as 2nd occupied the center
of the receptor, while the compound ranked as 5th was moved closer to TM1 and TM7,
such as an CCR2 antagonist in the 6GPX structure (see Figure 8, left upper corner). Both
compounds formed polar contacts with Glu7.39, which is also involved in antagonist-
receptor interactions in 6GPX (see Supplementary Figure S4).

Subsets of CCR2 and CCR3 active ligands predicted by LightGBM mostly did not
overlap. Only 30 compounds in the predicted CCR2 subset overlapped with the other
receptor subset. The overlap between subsets generated for different receptors with dif-
ferent ML methods was even smaller. Only four compounds in the NN-generated CCR2
subset were also in the predicted CCR3 subset generated with LightGBM. In the case of the
NN-based classifier, the overlap between CCR2 and CCR3 predicted active ligands was
larger. Namely, 507 ligands in the CCR2 subset were also in the predicted CCR3 subset.
It was mostly due to a large population of active ligands predicted as belonging to the
category of the highest activity (~124k ligands, see Figure 7). This suggests an important
conclusion that the LightGBM-based model reflects the receptor subtype selectivity during
prediction. On the other hand, the NN model is a much weaker predictor, with a high
fraction of false positives among predictions. This confirms the overall performance of the
NN model, as described above (see Figure 5). SBVS performed equally well as LightGBM in
distinguishing the receptor subtype. Only 8 compounds out of 460 were found to be in both
the CCR2 and CCR3 subsets of predicted active compounds. Interestingly, none of these
CCR2/CCR3 non-selective eight compounds were found in either the NN or LightGBM
predicted actives.
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Figure 8. Interactions between the best-ranked ligands found through virtual screening using the
CCR2 6GPX structure. The top displays the ligands that overlapped in both the GBM and SBVS
results, and the bottom those that overlapped in both the NN and SBVS results.
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Figure 9. Interactions between the best-ranked ligands found through virtual screening and the
inactive-state CCR3 Robetta model. The top displays the ligands that overlapped in both the GBM and
SBVS results, and the bottom those that overlapped in both the NN and SBVS results. Compounds
ranked as 2nd and 5th by GBM were also among compounds predicted by NN.

4. Discussion and Conclusions

Chemokine receptors represent promising drug targets regarding numerous diseases,
such as infections, allergies, and inflammation. Information on how chemokine receptors



Pharmaceutics 2023, 15, 516 21 of 25

evolved and what impact they have on a variety of cellular processes is important for
accurate target selection during drug discovery. Besides the selection of a drug target, an-
other difficulty is a limited access to the structures of all the activation states of chemokine
receptors due to experimental difficulties regarding GPCR structure determination. This sig-
nificantly hinders structure-based drug discovery. Publicly available models of chemokine
receptors deposited in GPCRdb or generated with GPCRM, Robetta, I-TASSER or other
web services are valuable sources of structural information provided the model quality can
be properly assessed in advance. This study aimed to determine the differences between
various PDB structures that could be relevant in structure-based VS. In the case of homology
models, we aimed at proposing a simple but effective approach to assess the model quality
in prior to SBVS. This approach had already been tested before for class B GPCR receptors
(GCGR, GLP-1R, VPAC1, VPAC2, PAC1) and now it has been tested for class A chemokine
receptors. From among the available CCR2 structures, 6GPX was suggested to be the best
for SBVS for small-molecule active ligands, while evaluating different CCR5 structures
proved to be more complicated due to the presence of peptide ligands in these structures.
Following the enrichment and molecular docking study, SBVS was performed using 6GPX
against the Enamine screening library HLL-460. As a result, new active compounds of
CCR2 were proposed. These compounds, to our knowledge, were not tested before in
bioassays including this receptor. In the same manner, the CCR3 inactive-state Robetta
model was used to propose new active ligands of this receptor.

In addition to SBVS, ChEMBL datasets for CCR1–6 were used as training sets for
two machine learning algorithms (Keras/TensorFlow sequential NN and LightGBM). The
performance of these two algorithms in ligand-based drug design for CC chemokine
receptors was compared. LightGBM outperformed NN regardless of whether the negative
datasets (ligands that were confirmed to be inactive in functional assays—‘inactives’) were
included or not.

The NN model—a multi-class classifier based on Keras/TensorFlow—split the tested
compounds into six classes corresponding to the six ranges of pChEMBL values. These
predictions, however, were susceptible to the same biases that were present in the training
data. For example, 78% of the training dataset for CCR3 (with ‘inactives’ included) consti-
tuted active compounds with pChEMBL ≥ 6.0 while inactive compounds (pChEMBL < 4.0)
constituted only 1%. Consequently, 124,967 compounds (27% of the Enamine dataset) were
classified as actives (6th class). Conversely, the CCR2 training dataset (with ‘inactives’
included) was biased towards inactive compounds—37% with 28% of compounds in the
two highest activity classes. This training set was more evenly distributed between active
and inactive compounds than in case of CCR3 for which 58% of compounds were in the two
highest activity classes but only 1% in the inactive compounds class. To further improve
the activity prediction alterations in the ChEMBL original datasets would have to be done
to balance the active/inactive compound shares in the training sets. Nevertheless, adding
the negative dataset (true negatives, ‘inactives’) improved the binary classification (active
vs. inactive) regardless of whether NN or LightGBM was used.

For the GBM model to perform equally well for CCR2 and CCR3 (<5000 and <2000
active compounds in the Enamine dataset, respectively) the activity cutoff would have to
be changed from 5.0 to 7.0 for CCR2 and CCR3, respectively. Without changing this cutoff,
the GBM model predicted 216,407 compounds as CCR3 actives which is even more than
124k compounds predicted as CCR3 actives by the NN model. Thus, the superiority of the
GBM model over the NN model is mainly because it provided continuous activity values
in contrast to the discrete activity ranges of the NN model. With such continuous activity
values, it is easy to extract, e.g., top 1000 compounds for further investigations which is not
possible with only six activity ranges used for the NN model. In such cases, increasing the
number of classes for the NN classifier could solve this problem.

Despite the above limitations of the GBM and NN models they proved to be useful
when combined with SBVS. NN and GBM-predicted datasets of CCR2 and CCR3 actives
were juxtaposed with datasets of actives obtained in SBVS. The ML and SBVS-generated
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datasets overlapped in a few cases which allowed 10 new active CCR2 ligands and 12
new active CCR3 ligands from the Enamine compound library to be proposed. Among
the predicted CCR3 ligands, there were two compounds predicted as actives by all three
methods: NN, GBM, and SBVS. These two compounds constitute the basis for further
investigations regarding small-molecule inhibitors of the CCR3 signaling. This combined
approach including both structure-based virtual screening and ligand-based drug design
based on machine learning proved as a simple, low-cost, and effective method for CC
chemokine receptors drug discovery.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics15020516/s1, Figure S1: A comparison of the inactive-
state CCR1 models, Figure S2: Results of SiteMap prediction of CCR2 binding sites, Figure S3: Multiple
sequence alignment of CC chemokine receptors, Figure S4: CCR2 residues involved in interactions
with best-scored compounds obtained in VS using the 6GPX structure, Figure S5: CCR3 residues
involved in interactions with best-scored compounds obtained in VS using the inactive-state Robetta
model, Table S1: Estimation of allostery-related ChEMBL entries by text-mining (descriptions of
bioassays), Table S2: Number of compounds used as final training and testing datasets for NN and
GBM models, Table S3: A comparison of the crystal structures and models of chemokine receptors
CCR1–6, Table S4: The ROC curves obtained for the different CCR models, Table S5: Results of
structure-based virtual screening for CCR2 (6GPX), Table S6: Results of structure-based virtual
screening for CCR3 (inactive-state Robetta model), Table S7: Compound activity predictions using
the sequential Keras/TensorFlow model of NN, Table S8: Compound activity predictions for CC
chemokine receptors using LightGBM, Table S9: Compound activity predictions using LightGBM,
Table S10: CCR2 actives—Enamine compounds selected by SBVS assisted by LightGBM, Table
S11: CCR2 actives—Enamine compounds selected by SBVS assisted by NN, Table S12: CCR3 actives—
Enamine compounds selected by SBVS assisted by LightGBM, Table S13: CCR3 actives—Enamine
compounds selected by SBVS assisted by NN.
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