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Abstract: The importance of nutrition in human health has been understood for over a century.
However, debate is ongoing regarding the role of added and free sugars in physiological and
neurological health. In this narrative review, we have addressed several key issues around this
debate and the major health conditions previously associated with sugar. We aim to determine the
current evidence regarding the role of free sugars in human health, specifically obesity, diabetes,
cardiovascular diseases, cognition, and mood. We also present some predominant theories on
mechanisms of action. The findings suggest a negative effect of excessive added sugar consumption
on human health and wellbeing. Specific class and source of carbohydrate appears to greatly influence
the impact of these macronutrients on health. Further research into individual effects of carbohydrate
forms in diverse populations is needed to understand the complex relationship between sugar
and health.

Keywords: sugar; high-fructose corn syrup; fructose; sugar-sweetened beverage; cognition; obesity;
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1. Introduction

Noncommunicable diseases (NCDs) are chronic and largely preventable conditions,
such as diabetes, heart disease, kidney disease, cancer, and mental health disorders [1].
NCDs account for around 74% of deaths globally and place an enormous financial bur-
den on healthcare services and households [1,2]. Lifestyle factors such as weight, diet,
physical activity, and substance use are major contributing factors to the burden of pre-
ventable disease. Obesity is an increasing global health concern, occurring in 13% of the
world’s population, and is considered a major risk factor for NCDs, mortality, and reduced
quality of life [3]. Chronic conditions are frequently associated with multi-comorbidity
and polypharmacy, increasing the risk of a ‘prescribing cascade’, drug side-effects, and
drug–drug interactions [4,5]. Lifestyle modification for treatment and prevention of these
diseases is optimal. A great deal of evidence supports lifestyle changes, such as improved
diet for prevention of obesity, diabetes, heart disease, and cognitive decline [6]. However,
the role of specific diets and macronutrients is still disputed.

Studies investigating the impact of sugar consumption on human health have been
ongoing since the mid-20th century. However, there is continued debate regarding the role
sugar plays in physical, neurological, and cognitive health. Excessive sugar consumption
has been implicated in obesity, metabolic disorders, diabetes, cardiovascular disease, cancer,
depression, and cognitive impairment [7–10]. Several researchers have criticised these
claims as exaggerated or misleading, claiming that sugar is no more detrimental than any
other source of dietary energy, and even promoting its benefits for health and cognitive
function [11–13]. The aim of this narrative review is to collate and summarise the existing
research related to impacts of added dietary sugars on human health cognition and mood
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and to provide an overview of the findings (see Table 1 for a summary of findings). The
paper will outline evidence regarding the role of added sugars in several chronic conditions
and highlight gaps in the current knowledge.

Table 1. Summary of findings outlining the effects of added sugar consumption.

Condition Relationship Impact on Related Systems

CHD [14–18] ↑ • Dyslipidaemia [15,19–23]
• Increased pro-inflammatory cytokines [15,23,24]
• Reduced insulin sensitivity [23]

Stroke [25–28] ↑
T2DM [29–38] ↑ • Dyslipidaemia [15,19–23]

• Hyperglycaemia [21]
• Increased adipose tissue [21,39]
• Increased de novo lipogenesis [21]
• Increased liver fat [39,40]
• Reduced insulin sensitivity [23]

NAFLD [40] ↑
Metabolic Syndrome [41–43] ↑

Executive function
[8,10,28,44–56] ↓

• Hippocampal dysfunction [10,48,50,52,57,58]
• Microbiome dysbiosis [24,59]
• Neuroinflammation [48,50]
• Reduced Brain-Derived Neurotrophic Factor (BDNF) expression [60,61]
• Alterations in dopaminergic signalling [49,62]

Obesity [21,37,43,63] ↑
• Increased adipose tissue [21,39]
• Reduced insulin sensitivity [21,22]
• Alterations in dopamine signalling [49,62]

Abbreviations: CHD, coronary heart disease; T2DM, type 2 diabetes mellitus; NAFLD, non-alcoholic fatty liver
disease; ↑ increased/increasing; ↓ decreased/decreasing.

2. Background
2.1. Controversies

Since the discovery of the role of diet in diseases such as scurvy and rickets in the early
1900s and isolation of the first vitamin (Thiamine) in 1926, nutrition has become an expo-
nentially expanding industry and field of research [64]. The 1950s saw growing evidence
of a dietary role in the increasing rates of coronary heart disease (CHD) witnessed at the
time [65,66]. This led to two divergent hypotheses of CHD that have also been presented
as explanations for obesity, diabetes, and non-alcoholic fatty liver disease [67–69]. These
contrary propositions are: (1) the added sugar hypothesis proposed by John Yudkin; and (2)
the saturated fat and cholesterol theory proposed predominantly by Ancel Keys, Frederick
Stare, and Mark Hegsted [66,70]. By the 1980s, the sugar hypothesis had been eclipsed by
the more popular fat theory, and a wave of low-fat guidelines and food alternatives swept
the globe for the following four decades [71].

The past ten years have observed an increase in articles suggesting that evidence
linking sugar to coronary disease was downplayed or suppressed due to pressure from
the Sugar Research Foundation (SRF) (now the Sugar Association) [66,72]. The claims
cite several studies funded by the SRF that downplayed the role of sugar and highlighted
the role of fats in CHD [73]. While these claims have been contested by some, a lack of
transparency around funding and research at the time makes them difficult to confirm
or contest. Aside from these controversies, both the ‘added sugars’ and ‘dietary fats’
hypotheses of illness have suffered criticism for their reductionist approaches to nutritional
causes of disease, i.e., being primarily affected by a single macronutrient.

The Framingham Heart Study (a cohort study of over 14,000 people from three gener-
ations that started in 1948) brought attention of sugar as a major factor back into the public
eye. This study found that frequent consumers of sugar-sweetened beverages (SSBs) had
significantly increased liver fat and dysbiosis (decreased high-density lipoprotein (HDL)
and increased triglyceride and cholesterol levels) [40,74].
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2.2. Trends in Sugar Consumption

The association of fat with cardiovascular disease and obesity in the mid- to late 20th
century led to a reduction in fat consumption and an increase in carbohydrates and refined
sugars [74]. High-fructose corn syrup accounted for less than 1% of caloric sweeteners in
the 1970s but increased to 42% by 2000 [75]. Estimated total sugar intake between 1977 to
1998 increased from 235 to 318 kcal per day [75]. According to food availability data, added
sugars and sweeteners reached a peak of over 69 kg (153 pounds) per person per year in the
USA in 1999 [76]. These changes in diet coincided with a dramatic rise in obesity, diabetes,
and cardiovascular disease [77].

Added sugars refers to sugars that are added in food preparation or manufacturing,
such as glucose, fructose, sucrose (a sugar molecule made from glucose and fructose
combined), and hydrogenated starch hydrolysates (high-fructose corn syrup) [78]. The
World Health Organization (WHO) and the Scientific Advisory Committee on Nutrition
(SACN) use the term ‘free’ sugars, which also includes all sugars that are naturally present
in honey, fruit juices, and syrups. This is generally not considered to include sugars found
within the cellular structure of foods, such as dairy foods, or the carbohydrates found in
nuts, fruit, cereal grains, or vegetables.

The turn of the century witnessed a modest decline in added sugar intake. A report
by the US Department of Agriculture noted a reduction in added sugars and sweeteners
by 14% between 1999 and 2014 [76]. Trends from the US 2001 to 2018 National Health and
Nutrition Examination Survey (NHANES) highlighted this reduction, albeit observed only
in younger adults (aged 19–50 years) from a mean of 96.6 g to 72.3 g per day, including
a reduction in SSBs from 49.7% of daily sugar intake to 37.7% [79]. A similar reduction
in sugar was observed in Australia and New Zealand between 1995 and 2011, with the
proportion of dietary energy from free sugars declining from 12.5% to 10.9% [80]. The
greatest contributor to this decline was again observed in children and young adults. These
declines in sugars were accompanied by only a minimal 1% increase in dietary fats [81].
Despite the decline, global sugar consumption is still high and well above the recommended
5% or 10% of daily energy intake [82,83]. SSBs are still the main source of daily added
sugars in most Western countries [84].

Growing evidence linking free or added sugars to obesity, heart disease, and den-
tal caries prompted introduction of sugar guidelines by the WHO, the American Heart
Association (AHA), and the UK National Health Service (NHS), among others. A 2014
systematic review highlighting the significant impact of sugar intake on dental caries [85]
was instrumental in formation of the WHO guidelines for recommended daily sugar intake.
The AHA and WHO recommend no more than 10% of total calories be added sugars; that
is approximately 200 calories, 50 g, or 12 teaspoons for an average adult [28]. However,
both these organisations note that a limit of 5% of total calories per day would improve
health outcomes. The NHS guidelines recommend that free sugars not make up more than
5% of calories from food or exceed 30 g per day [82].

2.3. Obesity

Rates of global obesity have tripled since 1975, with the WHO estimating that 13% of
adults were obese and 18% of children were overweight or obese in 2016 [3]. Australian
estimates of obesity are even higher, at 31% of adults and 8.2% of children and adolescents
in 2017–18 [86]. Obesity significantly increases risk of several non-communicable diseases,
such as diabetes, cancer, cardiovascular disease, dementia, obstructive sleep apnoea, stroke,
osteoarthritis, and liver disease [87]. Obesity research has suffered from the same fat or
sugar conundrum as CHD. The ongoing debate remains primarily focused on whether the
cause of overweight and obesity is excess sugar, excess fat, or an excess total calorie intake
(the “Energy Balance Model”) [88,89].

The declines in sugar consumption in recent years, alongside the continued increase
in obesity, may suggest that sugar is not the major contributor to weight gain. Bentley [90]
suggests that this shift is caused by a generational delay. As childhood consumption tends
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to predict adult obesity, the increases in adult obesity (i.e., ages 40 to 70 years, for example)
reflect poor diets of children in the 1950s through to the 1980s. This reasoning is further
supported by reductions in sugar being observed predominantly in children and younger
adults. If Bentley’s argument is correct, we should see levels of obesity begin to decline as
the children who have grown up with reduced sugar in their diets grow into adulthood.
Another proposed explanation is the shift from traditional sugars to sugar alternatives
(low-calorie, artificial sweeteners), which saw an annual global growth of approximately
5.1% per year between 2008 and 2015 [91]. Recently, studies have begun to investigate
the impacts of these sugar alternatives and have found links between specific sweeteners
and obesity [92], cardiovascular diseases [93], and cancer [94]. This is a relatively new
but growing field of research. Another factor impacting this relationship is the increasing
prevalence of inactivity. Global rates of insufficient activity range from 16.3% to 39.1%,
with rates increasing in higher-income Western countries [95]. Global, population-based
surveys have found that over 80% of adolescents 11–17 years of age were insufficiently
physically active in 2016 [96].

Research investigating differences between low-carbohydrate- and low-fat diets has
demonstrated varied results [97–103]. Most of these studies found little or no difference
in weight loss when comparing isocaloric reductions in fat to carbohydrates. The main
differences between diets were a more profound improvement in high-density lipoproteins
(HDL) and lipid profiles in low-carbohydrate diets and a greater reduction in low-density
lipoproteins (LDL) in low-fat diets [99,100,104]. These findings indicate the potential
for individualised dietary therapies to preferentially target different lipid and glycaemic
treatment goals depending on diagnosis or cardiovascular risk profile.

Studies that found improved weight loss after reduced fat intake often had the limita-
tion of failing to classify the type of carbohydrates consumed [102,105]. High-glycaemic-
index (GI) carbohydrates (which include white bread, potatoes, sugar, and white rice) are
understood to promote postprandial carbohydrate oxidation at the expense of fatty acid
oxidation, which has led to increased lipogenesis, insulin resistance, and weight gain in
animal models [106]. Conversely, consumption of high-fibre, low-GI carbohydrates has led
to reductions in postprandial glucose response, cholesterol, and adiposity [107,108].

The results of large observational studies have been mixed. For example, a large
epidemiological study in the UK (N = 132,479) found that obese adults consumed a larger
amount of each food group than underweight or normal weight individuals [109]. While
sugar consumption was higher in the obese group, a higher proportion of daily kilojoules
were consumed as fat (34.3%) than as sugar (22.0%) compared to normal weight participants
(33.4% and 24.2%, respectively). The study also found a negative correlation between sugar
consumption and adiposity when controlling for age, sex, ethnicity, physical activity, and
total energy intake. Another large study of 1165 children and adolescents in the Hellenic
National Nutritional Health Survey found that children and adolescents consuming ≥ 10%
energy intake from added sugars were 2.57 times more likely to be overweight or obese
than those consuming less than 10% [110]. Discrepancies may be due to methodological
differences, or at least partially due to limitations of self-report measures, which are
vulnerable to recall bias and other confounders. Food frequency questionnaires in particular
have been found to have variable reliability [111]. Ravelli and Schoeller [112] found that
not only do participants tend to underreport energy intake but this underreporting tends
to be greater as BMI increases.

The evidence for an impact of sugars on obesity appears to be stronger when investi-
gating the impacts of SSBs (as opposed to total sugar intake or other forms of carbohydrate).
Numerous studies have been conducted, with multiple systematic reviews and meta-
analyses concluding that SSB consumption promotes weight gain [113–116]. Sucrose and
high-fructose corn syrup from SSBs are the major source of fructose in our diets, which
are thought to have a more detrimental impact on physical and neurological health given
the unique way they are metabolised in the body. Fructose metabolism is similar to glycol-
ysis except that it bypasses the regulatory step of phosphofructokinase, which is able to
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regulate glycolysis through allosteric inhibition [117]. Unlike glucose, fructose is insulin-
independent and metabolized predominantly in the liver. It has also been implicated in
increased hepatic de novo lipogenesis and hypertriglyceridemia, important characteristics
of metabolic syndrome and non-alcoholic fatty liver disease.

Many studies to date have found a strong link between sugar consumption and obesity.
However, meta-analyses have revealed that increased sugar consumption is associated
with increased energy intake in general, giving more credence to the notion that higher
energy intake accounted for by all calories, rather than just sugar, is the cause of the obesity
epidemic. International data show that carbohydrate consumption is declining but diet
quality is still poor and calorie intake high [118]. Rather than just a case of too much sugar,
could it be a case of too much food intake overall? Further research into the differential
mechanisms of fructose and the unique roles of different fat and carbohydrate classifications
may reveal improved dietary targets for obesity management.

2.4. Diabetes

Diabetes is the disease most commonly associated with sugar consumption. Whether
sugar is a unique cause or contributor to diabetes is another contested issue. Many
prospective and retrospective studies have been conducted with varying and inconsis-
tent results [119,120]. However, the majority of research conducted has found a positive
association between sugars [121], particularly fructose and SSB consumption [35,119,122],
and risk for diabetes type 2 (T2DM) (see Table 2). Several animal and human studies
have observed impaired insulin signalling and increased fasting glucose and insulin result-
ing from SSB consumption [61,123,124]. The association has been particularly evident in
women but not always observed in male cohorts [125–127].

Numerous systematic reviews and meta-analyses have found strong associations
between SSB consumption and T2DM incidence [37,128–132]. An econometric model of
repeated cross-sectional data from 175 countries indicated that sugar was significantly cor-
related with diabetes risk in a dose-dependent manner, with reductions in sugar associated
with a decline in diabetes incidence [133].

While many studies have found significant results, some have found no, or inconsis-
tent, relationships [120]. It should be noted, however, that studies finding no relationship
between added sugars and diabetes risk tended to be of a shorter duration: four weeks [20]
to six years follow-up [134,135]. In contrast, studies that supported the impact of fructose,
glucose, and SSB intake on increased diabetes risk tended to be of longer follow-up dura-
tion, at least 10 years or more [80]. A four-week study by Lê et al. [20] that found no insulin
resistance did identify increases in fasting TG, LDL, and leptin, which are all implicated in
development of diabetes and cardiovascular disease. This suggests that added sugars may
have numerous systemic effects that can be observed early, prior to development of chronic
diseases such as T2DM.

The effect of time is evidenced by the findings of the Nurse’s Health Study, where
an 8-year follow-up by Colditz et al. [135] showed no relationship between sucrose and
diabetes. However, a subsequent 18-year follow-up of the same cohort showed increased
risk of T2DM [136]. Nevertheless, one 12-year follow-up study found no relationship
between high-glycaemic-index (GI) carbohydrates and diabetes risk [137].

Studies that found no relationship between added sugars and subsequent diabetes
risk were predominantly investigating glucose or sucrose intake [21,63,135,138]. The
majority of studies that identified a significant positive relationship between added sugar
and diabetes diagnosis or risk factors measured intake of fructose or fructose-containing
beverages [21,29,31,32,63], which may indicate a unique deleterious effect of fructose over
other forms of carbohydrates. For example, a study in overweight and obese human
subjects found that ten weeks of fructose consumption, but not glucose consumption,
decreased insulin sensitivity [21]. This issue is further complicated by the fact that natural
fructose (from fruit) may be associated with a reduced risk of T2DM, while fructose from
SSBs (high-fructose corn syrup) is associated with an increased risk [126,139].
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A commonly found protective factor for diabetes risk was consumption of fruit or
green leafy vegetables and high-fibre, low-GI foods [136,140–142]. However, protective
factors, such as fibre and exercise, were not always assessed and accounted for in analyses,
and this may account for some of the inconsistencies in results. Some studies investigating
the relationship between fat and T2DM found some protection from diabetes attributable
to certain fats, particularly dairy [143,144]. Considering obesity is a known risk factor for
diabetes and high-fat diets may lead to obesity and other health issues, it is not suggested
that long-term high-fat diets would be beneficial in this cohort. Further studies that measure
comprehensive macronutrient intake and exercise over longer time periods of at least ten
years may provide clarification. While data weigh in favour of sugar being a risk factor for
diabetes, more knowledge regarding sex-specific relationships and the independent effect
of sugar type is required to further our understanding of this relationship.

Table 2. Findings from published reports on the effects of free or added sugars on chronic disease in
human subjects.

Authors and Year Design Timeframe/
Follow-Up Subjects Measures

Intervention/
Independent
Variable

Findings

Ahmadi-Abhari et al.,
2014. [138] Case-control study. 6.3y (mean)

Aged 40–79y; n = 749
diabetes cases; n = 3496
controls.

FFQ (total sugars,
fructose, glucose,
lactose, sucrose,
maltose).
Physical assessment

↑ Fructose and
glucose ↓ Risk of T2DM

Bazzano et al., 2008 [136]. Prospective cohort study 18y
Female registered
nurses (NHS); aged
30–55y; n = 71,346

FFQ (fruit juice, whole
fruit, whole vegetables)
Self-reported T2DM

↑ Fruit juice

↑ T2DM risk
(Whole fruits and green
leafy vegetables
decreased T2DM risk)

Bernstein et al., 2012 [145]. Prospective cohort study NHS: 28y
HPFS: 22y

NHS: Women aged
30–55y; n = 84,085
HPFS: men aged
40–75y; n = 43,371

FFQ (SSB = soft drinks,
fruit juice)
Self-reported T2DM

↑ SSB ↑ Stroke risk

Colditz et al., 1992 [135]. Prospective cohort study 6y
Female registered
nurses (NHS); aged
30–55y; n = 84,360

FFQ (sucrose)
Self-reported T2DM Sucrose -Sucrose was not

related to T2DM risk.

De Koning et al., 2012 [15]. Prospective cohort study 22y Adult males; n = 42,883

FFQ (SSB = SD, fruit
punch, fruit drinks)
Self-reported CHD
Biomarkers (n = 18,225)

↑ SSB

↑ CHD risk
↑ TG
↑ Inflammatory
markers
↓ HDL
↓ Leptin

Dhingra et al., 2007 [41]. Prospective cohort study 4y (mean) Adults (FHS); n = 6039 FFQ (SD) ↑ SD ↑MetS prevalence

Drouin-Chartier et al.,
2019 [29]. Prospective cohort study

NHS: 1986–2012
NHS II: 1991–2013
HPFS: 1986–2012

NHS: women aged
30–55y; n = 76,531
NHS II: women aged
25–42y; n = 81,597
HPFS: men aged
40–75y; n = 34,224

FFQ (SSB = soft drinks,
fruit juice)
Self-reported T2DM

↑ SSB ↑ T2DM risk

Eshak et al., 2012 [25]. Prospective cohort study 18y Aged 40–59; n = 43,149) FFQ (SD)
Medical records ↑ SD

↑ Total stroke risk
↑ Ischaemic stroke risk
in women
↓ Ischaemic stroke risk
in men

Eshak et al., 2013 [126]. Prospective cohort study 10y Aged 40–59y;
n = 27,585

FFQ (soft drink, 100%
fruit juice, vegetable
juice)
Self-reported T2DM

↑ SD

↑ T2DM risk in women
-No relationship
between
fruit/vegetable juice
and T2DM

Fagherazzi et al.,
2013 [30]. Prospective cohort study 14y Adult women;

n = 66,118
FFQ (SSB)
Self-reported T2DM ↑ SSB ↑ T2DM risk

Ferreira-Pego et al.,
2016 [42]. Prospective cohort study 3.24y (median) Adults; n = 1868 FFQ (SSB)

Physical assessment
>5 servings SSB per
week ↑MetS risk

Fung et al., 2009 [16]. Prospective cohort study 24y Adult females (NHS);
n = 88,520

FFQ (SSB)
Medical records ↑ SSB ↑ CHD Incidence

Haslam et al., 2020 [19]. Prospective cohort study 12.5y (mean)
FHS Offspring:
n = 3146
FHS Third generation:
n = 3584

FFQ (SSB)
Physical assessment ↑ SSB ↓ HDL

↑ TG

Hirahatake et al.,
2019 [31]. Prospective cohort study 30y Aged 18–30; n = 4719

FFQ (SSB)
Interviews
Pathology results

↑ SSB ↑ T2DM risk

Huang et al., 2017 [32]. Prospective cohort study 8.4y (mean) Adult females (aged
50–79 years; n = 64,850)

FFQ (SSB)
Self-reported T2DM ↑ SSB ↑ T2DM risk

Romaguera et al.,
2013 [33]

Retrospective
Case-Cohort study. NA

Adults; n = 12,403
diabetes cases;
n = 16,154 controls

FFQ (SD, juice, nectar) ↑ SSB ↑ T2DM risk
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Table 2. Cont.

Authors and Year Design Timeframe/
Follow-Up Subjects Measures

Intervention/
Independent
Variable

Findings

Janket et al., 2003 [134]. Prospective cohort study. 6y (mean) Aged 45 years and
over; n = 38,480

FFQ (sucrose, fructose,
glucose, lactose) Total sugar intake

No relationship
between sugars and
T2DM incidence.

Janzi et al., 2020 [26]. Prospective cohort study. 19.5y (mean) Adults; n = 16,781

FFQ (Added sugar, SSB,
sugary treats).
Physical assessment
Interview

↑ SSB ↑ Stroke risk

↑ Added sugar ↑ Stroke risk
↓ Aortic stenosis

↑ Sugary treats ↓ Coronary events

Jebril et al., 2020 [121]. Cross-sectional survey NA Adults; n = 1000

FFQ (added sugar)
Physical health
assessment
Medical records

Added sugar intake

-No relationship
between sugar and
diagnosed T2DM.
-Positive relationship
between sugar and
undiagnosed T2DM.

Larsson et al., 2014 [27]. Prospective cohort study 10.3y (mean) Aged 44–83y;
n = 68,459

FFQ (SSB)
Medical records/death
register

≥2 servings SSB
per day

↑ Total stroke
↑ Cerebral infarction

Le et al., 2006 [20]. Repeated measures
experimental study. 4 weeks Adult males; (n = 7) High-fructose diet

(1.5 g/kg). Fructose (1.5 g/kg)

↑ LDL
↑ TG
↑ Leptin
↓ Non-esterified fatty
acids
-No change in insulin
resistance

Lowndes et al., 2015 [63]. Randomised Parallel
group study 10 weeks

Aged 20–60y;
BMI = 21–35 kg/m2 ;
n = 198
(28–34 per study group)

Consumption of milk
containing HFCS,
fructose, glucose, and
sucrose, contributing
18%, 9%, 9%, and 18%
of energy intake
compared to controls.

Fructose 9%

↑ Insulin
↑ Hepatic insulin
resistance
↑Weight (for all sugar
intervention groups)

Maersk et al., 2012 [39]. Randomised Parallel
group study 6 months

Overweight adults;
aged 26–40 years;
n = 47
(SD group, n = 10)

Dietary record
Physical assessment

1 Litre SD per day
(50% glucose, 50%
fructose)

↑ Visceral adipose
tissue
↑ Liver fat
↑ Skeletal muscle fat
↑ TG
↑ Total cholesterol

Miao et al., 2021 [28] Prospective cohort study 16y (mean) Adults (FHS); n = 1384
FFQ (SSB)
Hospital admission
records

↑ SSB ↑ Stroke risk

Montonen et al.,
2007 [146]. Prospective cohort study 12y Ages 40–60y; n = 4304

FFQ (total sugars,
fructose, glucose,
lactose, sucrose,
maltose).

↑ Fructose and
glucose ↑ T2DM incidence

O’Connor et al., 2015 [34]. Prospective cohort study 10.8y Aged 40–79y;
n = 25,639

7-day food diaries (SD,
fruit juice, sweetened
tea/coffee, sweetened
milk)
Self-reported T2DM
Medical records

↑ SD or sweetened
milk drinks

↑ T2DM risk
(No effect of fruit juice
or tea/coffee)

Odegaard et al., 2010 [35]. Prospective cohort study 5.7y (mean) Aged 45–74; n = 43,580
FFQ (SSB = Soft drink
or fruit/vegetable
juice).

↑ SSB ↑ T2DM risk

Pacheco et al., 2020 [17]. Prospective cohort study 20y Adult women; mean
age 52.1y; n = 106,178

FFQ (SSB = caloric soft
drinks, sweetened
water, fruit drinks)
Medical records

↑ SSB ↑ CVD risk

Palmer et al., 2008 [36]. Prospective cohort study 10y Adult women;
n = 43,960

FFQ (SSB = soft drink
and juice)
Self-report T2DM

↑ SSB

↑ T2DM risk
(Orange and grapefruit
juice not associated
with T2DM risk)

Papier et al., 2017 [125]. Prospective cohort study 8y Adults (n = 39,175) FFQ (SSB)
Self-report T2DM ↑ SSB ↑ T2DM risk in women

Park et al., 2022 [40]. Prospective cohort study
FHS Offspring: 6y
FHS Third
generation: 6.2y

FHS Offspring: Adults;
mean age 62.8y; n = 691
FHS Third generation:
Adults; mean age
48.4 years; n = 945.

FFQ (SSB)
Physical assessment ↑ SSB ↑ NAFLD incidence

↑ Liver fat

Paynter et al., 2006 [147]. Prospective cohort study 9y Middle-aged adults;
n = 12,204

FFQ (SSB = fruit punch,
non-diet soft drink,
orange juice, grapefruit
juice)

SSB

-No relationship
between SSB and
diabetes risk (with or
without juice)

Rahman et al., 2015 [14]. Prospective cohort study 11.7y (mean) Men aged 45–79;
n = 42,400

FFQ (SSB)
Medical records/death
register

↑ SSB ↑ HF risk

Sakurai et al., 2014 [127]. Prospective cohort study. 7y Men aged 35–55y;
n = 2037

FFQ (SSB)
Pathology results ↑ SSB -No effect on T2DM

risk

Schulze et al., 2004 [37]. Prospective cohort study. 8y Adult women;
n = 91,249 FFQ (SSB) ↑ SSB ↑ T2DM risk

↑Weight
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Table 2. Cont.

Authors and Year Design Timeframe/
Follow-Up Subjects Measures

Intervention/
Independent
Variable

Findings

Shin et al., 2018 [43]. Cross sectional NA Adults; n = 12,112

FFQ (SSB = soft drinks,
fruit juices, sweetened
rice drinks).
Physical assessment

↑ SSB ↑MetS risk in women
↑ Obesity prevalence

Stanhope et al., 2009 [21].
Double-blinded parallel
arm study with matched
subjects.

10 weeks
Aged 40–72y;
BMI = 25–35 kg/m2 ;
n = 32

Consumption of
glucose- or
fructose-sweetened
beverages providing
25% of energy.

Fructose

↑ Increase body fat and
weight
↑ Postprandial de novo
lipogenesis
↑ Fasting glucose
↑ Fasting insulin
↓ Insulin sensitivity
index

Glucose

↑ Increase body fat and
weight
↑ TG
↓ Fasting glucose

Stern et al., 2019 [38]. Prospective cohort study 2.16y (median) Women aged ≥
25 years; n = 72,667

FFQ (SD)
Self-reported T2DM ↑ SD ↑ T2DM incidence

Welsh et al., 2011 [22].
Prospective cohort study
(NHANES subgroup,
1999–2004)

NA Aged 12 to 18y;
n = 2157

FFQ (added sugars)
Pathology results ↑ Added sugars

↓ HDL
↑ TG
↑ Fasting insulin in
overweight individuals
only
↑ Insulin resistance in
overweight individuals
only

Yang et al., 2014 [18].

Prospective cohort study
(NHANES: T1, 1988–1994;
T2, 1999–2004; T3,
2005–2010)

14.6y (median)
Adults; n = 11,733 (T1),
8786 (T2), 10,628 (T3);
BMI ≥ 18.5 kg/m2

FFQ (added sugars)
Death register ↑ Added sugars ↑ CVD mortality risk

Yu et al., 2018 [23]. Cross-sectional survey
(NHS) NA Women aged

30–55 years; n = 8492
FFQ (SSB)
Biospecimens ↑ SSB

↑ TG
↓ HDL
↑ Inflammatory
biomarkers
↑ Insulin
↓ Adiponectin

Abbreviations: y, years; FFQ, food frequency questionnaire; ↑ increased/increasing; ↓ decreased/decreasing;
T2DM, type 2 diabetes mellitus; NHS, Nurse’s Health Study; HPFS, Health Professional’s Follow-up Study;
FHS, Framingham Heart Study; SSB, sugar-sweetened beverage; SD, soft drink; CHD, coronary heart disease; TG,
triglycerides; HDL, high-density lipoprotein; MetS, metabolic syndrome; LDL, low-density lipoprotein; BMI, Body
Mass Index; CVD, cardiovascular disease; NHANES, National Health and Nutrition Examination Survey; HFCS,
high-fructose corn syrup.

2.5. Heart Disease

Dietary impacts on heart disease have been widely contested over the past 70 years, yet
there are still few studies that directly investigate impact of refined carbohydrates on CHD
compared to those investigating fats. While low-fat foods dominated our understanding of
a healthy diet, few studies have supported that hypothesis. Studies that investigated the
impacts of carbohydrates are mixed but more strongly support a refined carbohydrate and
SSB contribution to heart disease [18,131] (see Table 2). A meta-analysis of 39 trials found
that high sugar intake was significantly associated with increased dyslipidaemia [148].
A large repeated measures longitudinal study across 24 years found that carbohydrates
from refined starches and added sugars, as well as trans fats, were significantly associated
with higher CHD risk [149]. Conversely, it found that carbohydrates from whole grains
and intake of polyunsaturated fatty acids were related to reduced risk of CHD. A similar
22-year study of only men found an increased risk of CHD, dyslipidaemia, and raised
inflammatory markers subsequent to SSB consumption [15].

Not all studies have found this same increased risk, however. For example, a large
international epidemiological study (N = 135,335) with a shorter median follow-up of
7.4 years found that carbohydrates were related to increased risk of death but not to
coronary disease or coronary mortality [150]. However, this study did not classify type
of carbohydrates measured, nor was it able to measure trans fats, which may explain the
discrepancies with the previous study. Longer time frames may also be required to identify
long-term cardiovascular risk. A Swedish population study (N = 25,877) with a mean
follow-up of 19.5 years [26] found that added sugar (which specifically excluded sugar
from fruits, vegetables, and fruit juice) was positively correlated with stroke and coronary
events but negatively correlated with atrial fibrillation and aortic stenosis. This supports
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the need to further investigate individual macronutrient types (specifically carbohydrate
classifications) for their independent impacts on cardiovascular health.

It is well documented that coronary heart disease and cardiovascular diseases are related
to hyperglycaemia and insulin resistance. Dyslipidaemia (particularly hypertriglyceridemia)
and impaired insulin signalling are strongly associated with heart disease [151–154]. These
conditions have commonly been found following long-term SSB consumption in large-
scale human trials [19,22,23,155]. Sprague Dawley rat trials found that fructose, but not
glucose, resulted in hyperinsulinemia and hypertriglyceridemia [61,123], indicating a
significant factor of carbohydrate source. The findings above indicate that sugars likely
play a deleterious role in cardiovascular health, but specific types of carbohydrates and fats
can have vastly dissimilar results in terms of mechanism and disease outcome and should,
therefore, be considered in future studies.

2.6. Cognition

Monosaccharide glucose is the primary energy source for the mammalian brain [156].
The brain requires about 20% of glucose-derived energy provided by basal metabolism [157].
Consistent and tightly regulated glucose metabolism is required for neuronal function, ATP
generation, cellular maintenance, and synthesis of neurotransmitters [156,157]. However, it
has been proposed that excessive sugar consumption may lead to cognitive impairment
and an increased risk of dementia. A growing body of research has observed long lasting
impacts of chronic excessive sugar intake on memory, mood, object recognition, and
concentration [8,62,158] (see Table 3).

Prior studies have associated increased adiposity (rather than dietary constituents)
with reduced cognitive function [159,160], but sugar-induced impairments in cognition
have been observed independently to, or prior to, weight gain [7]. Animal studies have
identified several similar functional and structural neurological impairments (particularly
hippocampal impairment and neuroinflammation) subsequent to high levels of sugar
consumption over a four-to-six-week period in adolescents and adults [49,50]. Beecher
et al. [10] found that chronic overconsumption of sucrose in adolescent mice over a 12-week
period impaired adult episodic and spatial memory and reduced hippocampal cell prolifer-
ation. Studies in rats found that early-life high-fructose corn syrup exposure demonstrated
long-lasting cognitive and affective alterations in adulthood, along with significant protein
abnormalities in the nucleus accumbens (NAcc) [53,62].

Maternal exposure to diets high in sucrose [161] and fructose [162] resulted in spatial
cognition deficits and hippocampal alterations in rat offspring. These findings have been
replicated in human studies where maternal (pregnant or breastfeeding) SSB and fructose
consumption (predominantly fructose) was inversely related to childhood cognitive perfor-
mance [163,164], social–emotional development [165], and alterations in brain tissue [166].
Prenatal exposure to sucrose in mice was associated with impairments in attention and
impulsivity in offspring [167]. Inattention and impulsivity are two of the main character-
istics of attention-deficit/hyperactivity disorder (ADHD) [168], stipulated as diagnostic
criteria in the DSM-IV [169], and previously linked to diet in human studies [170]. Some
age cohort studies found no impact of added sugars on hippocampal brain-derived neu-
rotrophic factor (BDNF) in adult rats where significant alterations were found subsequent
to childhood and adolescent SSB intake [50,60]. These results highlight a critical period
of increased susceptibility to adverse effects due to sugar consumption, making perinatal,
childhood, and adolescence a period of particular vulnerability.

Further research in human models has provided substantial evidence that chronic
SSB consumption leads to cognitive impairments over time [8,171] or even after short-term
consumption in childhood [44]. A recent systematic review investigating impacts of SSBs
on middle-aged and older adults found that only one out of the ten studies identified
produced no significant association [171,172]. Negative associations between sugar and
cognitive performance were even more profound in diabetic populations [173].



Nutrients 2023, 15, 889 10 of 25

Several researchers have refuted these findings, citing evidence that sugars may in
fact have a beneficial impact on cognition [174–178]. These studies’ cognitive tests were
administered after fasting of up to 12 h [175,177–183]. The act of eating breakfast after
any period of fasting, independent of the meal constituents, should improve cognitive
performance [184,185]. Sugar consumption likely improves performance by replenishing
diminishing glucose stores and supporting blood-glucose homeostasis, which diminishes
with age as beta cell function deteriorates [186]. This may explain why significant findings
are often only evident in the elderly or those with Alzheimer’s disease and memory
complaints [178,181,187–189]. Evidence in younger adults and children is inconsistent and
rarely shows the same improvements in memory or recognition [190,191].

These studies were all conducted within a short timeframe after glucose administration
(from 15 min to one hour). Researchers commonly used saccharin as a control substance.
Tasks of high cognitive demand have been observed to be facilitated by glucose administra-
tion as they utilise more energy than low-demand tasks [180,192,193]. Saccharin and other
sugar alternatives cannot be metabolised by the body and would consequently provide
no energy for cognitive effort. It would, therefore, be surprising if cognitive performance
was equal between energy versus no energy diets among fasted participants. Studies that
provided fasted participants a standardised breakfast before sugar or control solutions saw
no change, or a reduction, in performance after sugar consumption [176,191,194]. Prior
long-term sugar intake of participants, and the impact this may have on results, was rarely
considered. The impacts of simple carbohydrates on gut permeability, BDNF levels, or
upregulated inflammatory pathways (considered major mechanisms for sugar-induced
impairments) were not investigated, nor would short-term consumption necessarily have
any significant effect on these systems, which are hypothesised to occur after a longer
duration of excessive sugar intake [10,53].

Many reviews that conclude a lack of evidence for the detrimental effects of sugar
have failed to consider the studies conducted that have found evidence of significant
correlations or profound structural and functional impairments, often relying on evidence
that is over 20 years old [12,13,174]. This may be due to a dearth of RCTs in humans
relating to this research topic. A recent systematic review [174] that concluded no evidence
for a detrimental effect of sugar on cognition described an included study as showing
improved recognition speed, spatial and numerical memory, and episodic memory due
to glucose administration [193]. However, that study predominantly investigated the
role of glucose regulation and found that decreased performance on cognitive tasks was
related to poor glucose control, elevated blood glucose, and higher intake of sugar and
high-calorie foods and sweets. This would indicate that long term consumption has a
detrimental effect on cognition irrespective of short-term impacts. Several studies have
supported this finding, revealing a strong effect of glucose control and glucose recovery on
cognitive outcomes, highlighting the significant impact of glucose administration response
on cognitive function [192,195]. Although these short-term studies are often used to refute
claims of the detrimental impacts of sugar on cognitive performance, one could argue that
these studies are not testing the same hypothesis. The immediate impacts of glucose on
cognitive performance may highlight potential benefits of temporary supplementation but
cannot be used to extrapolate long-term impacts.

Observational and experimental studies into the impacts of sugar consumption on
cognition are vulnerable to the same limitations of food frequency questionnaires and recall
bias as described above. Research should also account for alternative macronutrient intake as
high-fat diets have been associated with cognitive impairments and dyslipidaemia [196–198],
and salt is implicated in high blood pressure [199]. Fibre may have a protective effect due
to its role in the microbiome [200,201]. While these factors should be considered in future
research, the current evidence strongly indicates a major role for refined sugars in cognitive
dysfunction and dementia.
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Table 3. Findings from published reports on the effects of free or added sugar consumption on
cognition in healthy subjects.

Author and Year Design Timeframe/
Follow-Up Subjects Tasks/Measures Intervention/

Independent Variable Significant Findings

Human studies

Adan & Serra-Grabulosa,
2010 [179]. RCT 0–30 min

(unclear)

Fasted adults, aged
18–25y; n = 72; glucose
group, n = 18.

RAVLT
Purdue-Pegboard
JoLO
WCST
CalCAP
Digit Span of WAIS
VAS

75 g glucose

↑ Perdue pegboard
assembly
↑ Reaction time
-No effect of glucose
on learning or
memory

Azari, 1991 [191]. Double-blind,
Repeated measures trial. 30 min

Aged 19–25; n = 18.
Fasted with
standardized breakfast.

Word list recall and
recognition 30 g or 100 g glucose -No effect of glucose

Benton & Owens, 1993 [202]. RCT 15 min Young adults, mean
age 21y; n = 153

Word list recall
Spatial memory test
Wechsler story
Blood glucose

50 g glucose -No effect of glucose
solution

Brandt, 2015 [177].

Double-blind,
placebo-controlled trial.
(Glucose compared to
aspartame)

15 min
Fasted young adults;
mean age 19.47y; n = 41;
BMI = 18.5 to 30 kg/m2

Word recall task
(recognition,
recollection or
familiarity).

25 g glucose ↓ Familiarity

Chong et al., 2019 [8]. Cross-sectional survey NA Adults aged ≥ 60 years

FFQ (total sugars, free
sugars, fructose,
glucose, sucrose,
maltose, lactose)
MMSE

↑ Total and free sugar
intake. ↓MMSE score

Flint & Turek, 2003 [203].

Randomised placebo-controlled
trial.
(Comparison groups: 10, 100,
and 500 mg/kg, or 50 g glucose
or saccharin placebo)

2 min Fasted adults aged
18–50 (n = 67) TOVA program 100 mg/kg glucose

↓ Attention
(impaired
impulsivity and
disinhibition)

Gagnon et al., 2010 [178].

Double-blinded,
placebo-controlled trial.
(Glucose compared to
saccharin)

15 min
Fasting older adults
(aged 60 years and
over; n = 44)

STROOP
Trail making tests A
and B
Computerised
dual task

50 g glucose

↑ Switching
↑ Inhibition
↑ Trail Making Test
A, but not B.
↑ Attention

Gui et al., 2021 [44]. Cross-sectional survey NA Children; mean age
8.6 years; n = 6387 FFQ (SSB) ↑ SSB consumption

↓ Executive
functions
↑ Risk of executive
dysfunction

Hope et al., 2013 [176].
Double-blind
placebo-controlled
experimental trial.

Immediate

Adults; mean age 25.1y;
n = 12.
Tested after
consumption of
standardised breakfast.

Erikson Flanker Task 25 g glucose ↓ Sensorimotor
processing speed

Kennedy & Scholey,
2000 [180].

Randomised crossover design.
(Glucose compared to
saccharin)

20 min Fasted young adults;
aged 19–30; n = 20

Serial threes
Serial sevens 25 g glucose solution ↑ Performance on

Serial Sevens

Macpherson et al.,
2015 [181].

Repeated measures RCT.
(Glucose compared
to saccharin)

5–30 min
(unclear)

Fasting young adults;
mean age 20.6y; n = 24;
Fasting older adults;
mean age 72.5y; n = 24

Memory task
Tracking task 25 g glucose solution

Older adults:
↑ Recognition
memory
↑ Tracking precision
Younger adults:
No effects

Martin & Benton, 1999 [194].

RCT.
4 block design: glucose vs
placebo; fasted vs breakfast
(mean 1049 ± 767 kJ;
42.6 ± 30.3 g carbohydrate).

20 min Female adults; mean
age 22.6y; n = 80 Brown–Petersen task

50 g glucose
(fasted condition) ↑ Recall

50 g glucose
(breakfast condition) -No effect of glucose

Miao et al., 2021 [28]. Prospective cohort study (FHS). 19y (mean) Adults; n = 1384 FFQ (SSB)
Clinical surveillance ↑ SSB ↑ Dementia

↑ AD

Munoz-Garcia et al.,
2020 [45]. Prospective cohort study 6y University graduates;

aged over 55y; n = 1069
FFQ (SSB)
STICS-m ↑ SSB ↓ Cognition

Owen et al., 2010 [182].
Between-participant,
double-blind,
placebo-controlled design.

15 min
Fasted young adults;
aged 18–30; n = 90

Word presentation
Immediate word recall
Face presentation
Implicit memory task
Delayed word recall
Delayed word
recognition
Face recognition

25 g glucose ↓Word recognition
(increased errors)

60 g glucose

↑ Immediate free
recall
↑Word recognition
↑ Implicit memory

Scholey et al., 2009 [183].
RCT.
(Glucose compared to
saccharin)

20 min
Fasted young adults
(mean age 21.6 years; n
= 120

Word recognition
Tracking task 25 g glucose solution

↑ tracking
performance
-No effect on
memory

Stollery & Christian,
2016 [175].

Experimental.
glucose or saccharin (no sugar). 10 min Fasting adults; n = 31 Object location

binding task 30 g glucose
↑ Object location
binding memory
↑ Location memory
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Table 3. Cont.

Author and Year Design Timeframe/
Follow-Up Subjects Tasks/Measures Intervention/

Independent Variable Significant Findings

Human studies

Sunram-Lea et al., 2011.

Double-blind,
placebo-controlled, balanced,
crossover trial.
(Glucose compared
to saccharin)

15 min Fasted young adults;
n = 30

Immediate word recall
Serial threes
Serial sevens
Corsi block-tapping
task
Delayed word recall
Delayed word
recognition

15 g, 25 g, 50 g, or 60 g
glucose solution

U-shaped
dose-response.
-Spatial WM,
immediate recall,
delayed recall, and
recognition memory
were all improved at
25 g only.

Ye et al., 2011 [46]. Cross-sectional survey. NA Aged 45–75y; n = 1500

FFQ (Sucrose, glucose,
fructose, galactose,
lactose, maltose, fruit
juice, or
sugar-sweetened solid
foods).
MMSE
Word list learning
Digit span
Clock drawing Figure
copying STROOP
Verbal fluency tests

↑ Total sugars/added sug-
ars/sucrose/glucose/fructose

↓MMSE
-No effect of
increased natural
fructose, galactose,
lactose, maltose,
fruit juice, or
sugar-sweetened
solid foods.

Zhang et al., 2022 [47]. Cross-sectional survey NA Aged 13–18y; n = 1427 FFQ (SSB)
Questionnaire ↑ SSB

↓ Inhibition
↓WM
↓ Cognitive
flexibility

Animal studies

Beecher et al., 2021 [10].
Longitudinal experimental
study.
(Sucrose compared to water)

12 weeks Adolescent mice; n = 46

Elevated-plus-maze
Novelty suppressed
feeding
Marble burying
Open field test
Forced swimming test
NOR
MWM
Pathology tests

25% sucrose solution

↓ Episodic and
spatial memory
↓ Overall density of
dentate gyrus
proliferating cells
↑ Locomotor activity

Fierros-Campuzano et al.,
2022 [48].

Longitudinal experimental
study.
(Fructose compared to water)

12 weeks
Adolescent male Wistar
rats; aged 5–6 weeks;
n = 60

Barnes Maze
Pathology tests 10% fructose solution

↓ Spatial memory
↓ Neurogenesis in
hippocampus
↑ Inflammatory
markers in PFC
↑ GFAP expression
in hippocampus and
PFC

Hamelin et al., 2022 [49].

Longitudinal experimental
study.
(Sucrose compared to water or
artificial sweetener)

6 weeks Adult male
mice; n = 297

Mouse gambling task
Pathology tests

1% sucrose solution
(25% daily sugar
intake).

↓ DA and DA
turnover in PFC
↓ Decision-making
↓ c-Fos expression in
prelimbic cortex,
nucleus accumbens,
and striatum.
↑ Activity in BLA

Hsu et al., 2015 [50].

Longitudinal experimental
study.
(Sucrose or fructose compared
to water)

30 days
Adolescent (n = 38) and
adult (n = 38) male
Sprague Dawley rats.

Barnes maze test
Y-maze

SSB (11% sucrose)

Adolescents:
↓ Spatial learning
Adults:
-No effect observed

HFCS (11%)

Adolescents:
↓ spatial learning
and memory
retention
↑ Hippocampal
inflammatory
markers
Adults:
-No effect observed

Kageyama et al., 2022 [60]. Longitudinal experimental
study. 40 days

Postnatal, adolescent,
and adult Sprague
Dawley rats
(n = 7–8 per group).

Pathology results 20% HFCS

↓ BDNF expression
in childhood and
adolescence
-No effect in adult
rats

Lee et al., 2021 [51].

Longitudinal experimental
study.
(Comparison of high sucrose to
high-fat and control diets)

21 days

Older Sprague Dawley
rats; 15 months old;
n = 36; high sucrose
group, n = 17

T-maze Sucrose as 70% of
carbohydrate kcal ↓ Cognitive learning

Lemos et al., 2016 [52]. Longitudinal experimental
study. 9 weeks

Male Wistar rats;
12 weeks old; n = 6–8
rats per group.

Open field test
Object displacement
NOR
Forced Swimming test
Western Blot

35% sucrose

↓Memory
performance
↑ Inhibitory
Adenosine A1
receptor in
hippocampus

Messier et al., 2007 [204].

Repeated measures RCT.
(Comparison of high-fructose
diet to high-fat and
control diets)

3 months
7-week-old C57BL/6
mice; n = 38; fructose
group n = 8

Operant bar pressing
task 15% fructose ↑ Learning (on 2 of 5

testing days)
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Table 3. Cont.

Author and Year Design Timeframe/
Follow-Up Subjects Tasks/Measures Intervention/

Independent Variable Significant Findings

Human studies

Miles et al., 2021 [205]. Longitudinal experimental
study. 14 days Adult male Wistar rats;

8 weeks old; n = 16

Location
Discrimination task
Pairwise
Discrimination
acquisition and
reversal learning
Processing speed

10% sucrose (approx.
70 mL per day) -No effect of sucrose

Noble et al., 2019 [53]. Longitudinal experimental
study.

30 days
(Postnatal
day 26 to 56)

Juvenile, male Sprague
Dawley rats (n = 24).

Zero Maze
Novel object in context
task

11% w/v HFCS

↓ later-life
hippocampal-
dependent episodic
contextual memory
-No impact on
glucose tolerance,
weight, anxiety

Reichelt et aal., 2022 [57]. Longitudinal experimental
study. 28 days

male albino Sprague
Dawley rats; 4 weeks
old; n = 32

Object-in-place task
Locomotor behaviour
Biconditional
discrimination
Immunohistochemistry

200 mL 10% sucrose, 2
h per day.

↓
Context-appropriate
responses
↓ Hippocampal PV+
cells

Ross et al., 2009 [206]. Longitudinal experimental
study. 18 weeks Male Sprague Dawley

rats; n = 29. Spatial Water Maze 60% fructose

↓ Retention
performance
-No impact on
acquisitional
performance

Sanguesa et al., 2018 [61].

Longitudinal experimental
study.
(Comparison of fructose,
glucose, water)

28 weeks

Female, adult, Sprague
Dawley rats; n = 36;
control, n = 12;
Fructose, n = 12;
glucose, n = 12

NOR
MWM
Immunohistochemistry

10% w/v fructose

↓ NOR
↓ BDNF
↓ IRS-2 protein
expression
↓ Akt
phosphorylation

Wong et al., 2017 [54]. Longitudinal experimental
study. 24 days

Adolescent and young
adult Sprague Dawley
rats; n = 48

Object and place
recognition memory
Delay-discounting task
Progressive ratio
T-maze forced
alternation.

10% sucrose
solution, 2 h per day. ↓ Spatial memory

Wu et al., 2015 [55]. Longitudinal experimental
study. 8 months Male Sprague Dawley

rats; 8 weeks old; n = 19 MWM 10% fructose solution ↓ Spatial learning
and memory

Xu & Reichelt, 2018 [56]. Longitudinal experimental
study. 28 days Male Sprague Dawley

rats; 3 weeks old; n = 36

Open field test
NPR
NOR
Immunohistochemistry

10% sucrose, 2 h per
day

↓ NPR
↓ NOR
↓ Hippocampal PV+
cells

Abbreviations: RCT, randomised control trial; mins, minutes; y, years; RAVLT, Rey Auditory Verbal Learning
Memory Test; JoLO, Benton Judgement of Line Orientation Test; WCST, Wisconsin Card Sorting Test; CalCAP„
California Computerized Assessment Package; WAIS, Wechsler Adult Intelligence Scale; VAS, Visual Analogue
Scale; ↑ increased/increasing; ↓ decreased/decreasing; MMSE, the Mini Mental State Examination; TOVA, Test
Of Variables of Attention program; SSB, sugar-sweetened beverage; FHS, Framingham Heart Study; STICS-m,
Spanish version of the modified Telephone Interview of Cognitive Status; WM, working memory; NOR, novel
object recognition; MWM, Morris Water Maze; PFC, prefrontal cortex; GFAP, Glial fibrillary acidic protein;
DA, dopamine; BLA, basolateral amygdala; HFCS, high-fructose corn syrup; AD, Alzheimer’s disease; BDNF,
brain-derived neurotrophic factor.

2.7. Mood

The impact of sugar on mood and behaviour is less certain and findings are frequently
inconsistent, although some hypothesise that any adverse impacts may be due to the
neuropathological effects of sugars [207]. As with the cognition studies described above,
many previous studies on mood have investigated only the short-term impacts of sugar
(generally 30–60-min following glucose administration) and also after a prolonged period
of fasting [187,208–211]. Hypoglycaemia has been observed to have an adverse effect on
both mood and cognition and would provide a poor control group while being potentially
reversed by administration of any carbohydrate [212,213].

Where retrospective and longitudinal methods have been employed, significant corre-
lations have been found between diets high in sugar and major depression or depressive
symptoms [214,215]. A large Chinese study found that prevalence of depressive symptoms
was doubled in those consuming four cups or more of SSBs (specifically soft drinks or
soda) per week compared to those who consumed less than one cup [9]. Another study
found a 60% greater risk in depression and suicidal ideation in those consuming more
than 500 mL of SSBs per day [216]. Other studies indicate a role for high-sugar diets in
anxiety, stress, hyperactivity, and conduct issues [10,158,207,217]. However, the impacts of
sugars on psychological health are still unclear, and studies must contend with the large
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number of confounders, subjectivity, and potential malingering that complicate mental
health research. Further research is needed to clarify the relationship between added sugars
and psychological health.

3. Possible Mechanisms of Action

It is hypothesised that impacts of chronic high sugar consumption on mood are a
subsequent effect of the neurological impacts of sugar consumption. Western diets have
been associated with systemic inflammation, neuroinflammation, and reduced BDNF in the
hippocampus, impairing synaptic plasticity, executive function, and mental health [214,218].
Sugar has also been found to induce neurochemical changes in the central nervous system,
specifically changes to dopamine signalling and sensitization of D-1 dopamine and mu-1
opioid receptors. Subsequent removal of high-fat and high-sugar foods leads to anxious
and depressive behaviours due to reductions in dopamine levels in the NAcc [219,220].
These same withdrawal symptoms and neurochemical changes are observed in drugs of
dependence [58,219,221].

3.1. Addiction and Dopaminergic Alterations

Mechanisms and signals involved in metabolic and homeostatic control can be dis-
rupted via several proposed mechanisms. Consumption of palatable foods, including sugar,
stimulates dopamine release in the ventral tegmental area (VTA) of the hypothalamus,
activating reward pathways (from the VTA to the NAcc), which can override satiety sig-
nals [165,166]. Repeated exposure to palatable foods alters mesocorticolimbic dopamine
circuitry, dysregulating homeostatic controls, reinforcing food cues, and increasing feed-
ing [167,168]. These dopaminergic signalling pathways are thought to be crucial for reward
motivation and memory, specifically episodic and working memory [169]. Activation
of reward pathways leads to increased sugar seeking and consumption. Alterations in
dopamine signalling can lead to reduced plasticity in the NAcc, which is hypothesised to
cause the memory impairments observed in cases of addiction [222].

In rat models, excessive sugar consumption elicits signs of addiction, with bingeing,
withdrawal, depressive-like behaviours, increased reward seeking, and higher resilience to
foot shock punishments than methamphetamines [10,223]. Intermittent sugar consumption
produced an increase in extracellular dopamine in the NAcc and decreased enkephalin
mRNA expression and opioid modifications associated with withdrawal [219]. Sugar also
activates the hypothalamus (the principal regulator of satiety and hunger behaviours) and
inhibits ghrelin and leptin production, reducing the sensation of being full and promoting
overconsumption [10,224].

3.2. Microbiome Disruption and Neuroinflammation

Several disease states are thought to be caused by disruption of the gut microbiome
(dysbiosis) brought about by poor diet. Dysbiosis has been implicated in pathogenesis
of obesity, insulin resistance, and non-alcoholic fatty liver disease [225]. High-fat and
high-sugar diets impair gut wall permeability by reducing numbers of protective micro-
biota, impacting intestinal mucosa, disrupting tight junctions, and increasing bacterial
translocation, leading to increased inflammatory cytokine signalling [24,226]. Sugar alone
has been associated with profound dysbiosis of gut microbiome, and alterations are sim-
ilar to those observed in neurodegeneration [227–229]. Human and animal studies have
shown significant alterations in gut microbiome due to sugar consumption. One study
by Jones et al. [230] found that dietary fructose, and no other dietary macronutrients,
impacted microbiota, with a significant inverse association between fructose and Eubac-
terium eligens and Streptococcus thermophilus, two beneficial microbes considered to have
anti-inflammatory properties and promote gut health. Rodent studies using high-fructose
diets have observed dramatic shifts in microbial colonies, increases in pro-inflammatory
cytokines, reductions in anti-inflammatory cytokines, lipid accumulation in the liver, and
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neuroinflammation [24,228]. These impairments were observed to occur independent of
body weight or caloric intake [53].

Structural impairment to gut wall permeability enables entry of liposaccharides into
the blood stream, activating Toll-like receptor-4 and leading to excessive production of
proinflammatory cytokines [231,232]. This low-grade systemic inflammation is known
as metabolic endotoxemia and can lead to several chronic inflammatory conditions [229].
Fructose-induced dysbiosis-triggered hippocampal neuroinflammation and neuronal loss in
mice may highlight a potential mechanism for the neurological and psychiatric impairments
associated with sugar and obesity [224,228,233].

4. Strengths and Limitations

This paper has several strengths. While it is not a systematic review, a thorough search
of PubMed, Embase, and Google Scholar was conducted, and every attempt was made to
search for all systematic reviews and meta-analyses that exist on the topics discussed. This
paper covers several aspects of health that may be impacted by sugar intake and thoroughly
examines and critiques many substantial arguments around dietary factors in health and
wellbeing. Several health conditions that may also be impacted by sugar, such as cancer,
kidney disease, and dental caries, were not included as the authors chose to focus on the
most commonly contested issues in order to deliver a more focused and comprehensive
discussion. We aimed to provide an up-to-date and in-depth examination of the literature;
investigating the nuances of macronutrient intake, approaches to measurement, data collec-
tion, and methodologies that have impacted previous findings and current understandings
of the research.

A major limitation of the studies discussed, when describing human dietary studies,
is the requirement to rely on regular participant recording (food diaries) or recall of food
intake (in dietary questionnaires or interviews), as well as assuming a certain consistency
in portion size interpretation between participants or groups. It is common for participants
to greatly underestimate alcohol intake, which is a large contributor to overall sugar and
calorie consumption [234].

Use of the terms carbohydrates and sugars is often disparate between study types. As
new research elucidates the importance of glycaemic index and the potential differences in
physiological influence of different sugar types on neurological and biological processes,
the importance of classifying and controlling for diet types becomes particularly important.
The terms added or free sugars are not considered to include those from dairy, vegetables,
or whole grains. However, these are sometimes referred to or included in total sugar
estimates, which can provide highly misleading conclusions. For example, Sievenpiper
describes an observed negative correlation between diabetes incidence and consumption of
high-fibre cereals, grains, and nuts as a protective effect of sucrose consumption [11,140].
Many studies fail to collect or disclose carbohydrate class or source (i.e., carbohydrates
from table sugar, oats, fruit, or Coca Cola could all lead to vastly different determinations),
making interpretation and comparative evaluation problematic.

5. Conclusions

In conclusion, very little scientific evidence exists that indicates a benefit of added
dietary sugars; however, an overwhelming and growing body of evidence highlights the
negative effects of excessive or prolonged sugar intake. This is particularly significant for
fructose and high-fructose corn syrup. There may be benefits to glucose supplementation
for some individuals in times of increased cognitive requirements. However, glucose can be
acquired from healthy dietary sources, such as fruit, vegetables, and whole grains, which all
provide nutritional benefits to the body. There is also little evidence that all added sugars
must be eradicated from the diet. However, the current guidelines of limiting energy intake
consumed as added sugars to 5–10% have so far held up under scrutiny, particularly when
considering the high disease burden and significant financial impacts of sugar-induced
dental disease [235].
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The above review has highlighted the significant differences between carbohydrate
classes and their potentially diverse impacts on health and different population groups. The
independent impacts of macronutrients, and the artificial sweeteners that have frequently
replaced them, need to be further explored. There is also the potential for sugar-associated
impairments, particularly regarding impacts on cognition and developmental conditions, to
impose a greater challenge for those with an underlying predisposition (e.g., a mental health
condition) or an existing condition (such as ADHD). Large-scale population studies are
not the ideal methodology to identify individualised impacts of different macronutrients
and macronutrient diet combinations on various population groups. RCTs and cohort
studies in a diverse range of participants, measuring precise macronutrient composition
and mediating factors, such as exercise, must be conducted.
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