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Abstract: Citrus peels are rich in bioactive compounds such as vitamin C and extraction of vitamin C
is a good strategy for citrus peel recycling. It is essential to evaluate the levels of vitamin C in citrus
peels before reuse. In this study, a near-infrared (NIR)-based method was proposed to quantify the
vitamin C content of citrus peels in a rapid way. The spectra of 249 citrus peels in the 912–1667 nm
range were acquired, preprocessed, and then related to measured vitamin C values using the linear
partial least squares (PLS) algorithm, indicating that normalization correction (NC) was more suitable
for spectral preprocessing and NC-PLS model built with full NC spectra (375 wavelengths) showed
a better performance in predicting vitamin C. To accelerate the predictive process, wavelength
selection was conducted, and 15 optimal wavelengths were finally selected from NC spectra using
the stepwise regression (SR) method, to predict vitamin C using the multiple linear regression (MLR)
algorithm. The results showed that SR-NC-MLR model had the best predictive ability with correlation
coefficients (rP) of 0.949 and root mean square error (RMSEP) of 14.814 mg/100 mg in prediction set,
comparable to the NC-PLS model in predicting vitamin C. External validation was implemented
using 40 independent citrus peels samples to validate the suitability of the SR-NC-MLR model,
obtaining a good correlation (R2 = 0.9558) between predicted and measured vitamin C contents. In
conclusion, it was reasonable and feasible to achieve the rapid estimation of vitamin C in citrus peels
using NIR spectra coupled with MLR algorithm.

Keywords: vitamin C; citrus peel; near-infrared (NIR); determination; linear algorithm

1. Introduction

Citrus fruit including oranges, tangerines, mandarins, clementines, grapefruit, pome-
los, lemons, limes, and other minor varieties, originated in Southeast Asia, have been
cultivated for the last 4000 years [1], and are some of the most popular fruits in the world.
According to the statistics from Food and Agriculture Organization (FAO), citrus fruit are
widely planted in more than 140 countries worldwide, with an annual output of about
100 million tons (Asia and the Americas accounts for over 70%) every year, playing an
important role in the world’s fruit trade and economy. In Asia, China is the largest producer
and exporter of citrus fruit, with annual yields of over 40 million tons, exceeding 20% of
the world’s total fruit production.

Citrus fruit are mainly used to produce fresh juices or citrus-based drinks or as fresh
foods for direct consumption of their edible parts, and large amounts of byproduct wastes
are always generated either during industrial processing or after eating, such as citrus
peels [2], which can cause environmental pollution issues.

Several studies have been reported that show that citrus peels are rich in various
nutrients and bioactive ingredients, including carbohydrates, vitamin C, carotene, polyphe-
nols, flavonoids, essential oils, pectin, etc. [3], which make citrus peels a good material
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for producing value-added products such as additives, antioxidants, biological enzymes,
biofuels, nutritional supplements, etc. [4]. For examples, citrus peel oils and peel extracts
were analyzed and evaluated as potential food additives for preventing cancer and as
anticancer agents [5]. Methanolic extracts of citrus peels showed strong antioxidant ac-
tivities in terms of free fatty acid content, peroxide value, and iodine value, which was
almost same good as synthetic antioxidants such as butylated hydroxy anisole (BHA) and
butylated hydroxy toluene (BHT) [6]. Citrus peels (orange, mandarin, lemon, grapefruit)
were hydrolyzed to produce bacterial celluloses (BCs), and the obvious characteristics
of great water holding capacity, thermal stability, crystallinity, and thin fiber diameter
were proved in the produced BCs [7]. Dried citrus peels were also used as substrates for
producing pectinase by Aspergillus niger, obtaining maximum enzyme activity when 15%
substrates involved [8]. Sweet lime peel and orange peel were characterized with a good
amount of carbon, hydrogen, and oxygen, and that indicated the good potential of citrus
peel in ethanol production [9].

Vitamin C, also known as L-ascorbic acid, is one of important biologically active
compounds and has been found to have higher amounts in citrus peels than in pulp and
seeds [10]. Vitamin C has a great antioxidant activity and can be used as a high efficiency
antioxidant to scavenge active oxygen groups and some free radicals such as superoxide,
singlet oxygen, hydrogen peroxide and hydroxyl radical [11]. Vitamin C is regarded as a
good dietary supplement exhibiting functions of both pro-oxidant and antioxidant [12].
The levels of vitamin C can regulate the functions of blood-forming stem cells and the
development of leukemia [13]. Using citrus peels as raw materials to extract vitamin
C is one of good strategies for peel reuse and has been proved to be reasonable and
feasible [14,15]. It is better and very necessary to evaluate the contents of vitamin C in
citrus peels before recycling, as the concentration of vitamin C varies in different varieties
of citrus peels [10].

However, traditional methods for determining vitamin C in foods are mainly chem-
ical assays such as official dichloroindophenol titrimetry [16], high-performance liquid
chromatography (HPLC) and HPLC-based methods [17], ultra-performance liquid chro-
matography (UPLC) and UPLC-based methods [18,19], and electrochemical methods [20].
Some physical approaches are proposed to determine the vitamin C in foodstuffs, such as
the calorimetric method [21] and cyclic voltammetry [22]. The feasibility of enzymatic meth-
ods applied in vitamin C determination has also been demonstrated [23]. Although with
these methods, vitamin C can be determined with a low limit of detection, high-precision,
specificity and recovery, i.e., good accuracy and reliability, are time-consuming, tedious,
laborious, destructive and requires well-trained staff to operate machines. Moreover, it is
very difficult to achieve real-time rapid and nondestructive evaluation of vitamin C when
large numbers of samples are required for detection. A novel method is necessary and
should be developed to determine vitamin C in a rapid way. On the other hand, vitamin C
is vulnerable to oxidation [24], which also needs a rapid method to evaluate the levels of
vitamin C, helping to use citrus peels in a timely manner.

Near-infrared (NIR) spectroscopy, an optical technology, has the obvious advantages
of little or no sample pretreatment, non-pollution, rapidness, non-destructive inspection,
simultaneous detection of multiple components, and can be potentially applied for in-
dustrial purposes [25]. By absorbing electromagnetic waves in the 780–2526 nm range,
NIR provides information from molecular vibrations and combined overtones of chemical
groups such as C-H, O-H, N-H and S-H, which can be analyzed by chemometrics to relate
to target parameters for qualitative and quantitative evaluation [26], i.e., model establish-
ment between NIR spectra and target parameters. NIR technology has been used for the
quality evaluation in various foods in terms of physical, chemical, nutritional, textural and
microbial properties, with good or satisfied and even excellent performance, indicating a
great potential of NIR in food industrial application [27,28]. However, few studies on NIR
technology for the quality evaluation of fruit peels have been reported, especially vitamin
C in citrus peels.
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In this study, we proposed to develop a NIR-based method for the rapid assessment of
vitamin C levels in citrus peels. It is also the first effort to investigate the potential of NIR
technology in monitoring the vitamin C of citrus peels. This study will provide a novel
technical support to facilitate the use of citrus peels, reducing the waste.

2. Results and Discussion
2.1. Statistical Values of Vitamin C

A total of 249 citrus peels samples from 50 different varieties were prepared and their
vitamin C contents were measured and arranged from small to large, and one of every
three values was selected for model prediction, and the remaining values were used for
model calibration and cross-validation. The statistical details are shown in Table 1. After
calculation, it was found that all the measured vitamin C values obeyed normal distribution,
indicating the statistical significance. On the other hand, the subsequent F-test and t-test
required all the measure data to meet normal distribution. The specific data distribution is
shown in Figure 1.

Table 1. Statistical vitamin C values (mg/100 g) determined by official method.

Sample Set Number of
Sample Minimum Maximum Mean Standard

Deviation

Calibration set 166 40.108 342.413 152.379 59.085
Prediction set 83 43.304 333.110 151.582 58.106
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2.2. Spectral Profiles of Samples

The extracted mean raw and preprocessed spectral profiles of citrus peel samples in
the range of 912 t 1667 nm are shown in Figure 2. Three absorption peaks at around 980 nm,
1200 nm, and 1450 nm were observed and originated from second overtones O-H stretching
vibration (water absorption), second overtone C-H stretching (fat absorption) and first
overtones O-H stretching vibration (water absorption), respectively [29].

It was observed that the positions of absorption peaks (refer to the vertical distance
from the x-coordinate) for the 249 curves in Figure 2a were different, and that was probably
due to the difference of physicochemical components in each citrus peel sample. After
spectral preprocessing, the changes in absorption peak position in different each plots were
also observed, which may be due to the elimination of interference information from raw
spectra such as electrical noise, light scattering and baseline drift, etc.

Although the specific absorption peak of vitamin C was not found, the relevant useful
NIR spectra can be mined and extracted by applying appropriate chemometrics, to relate to
the vitamin C contents that is modeling, achieving the quantitatively prediction of vitamin
C in citrus peels.
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Figure 2. Spectral characteristics of citrus peel samples (249 curves with different colors). (a) Raw
spectra; (b) Savitzky−Golay smoothing (SGS) spectra; (c) normalization correction (NC) spectra;
(d) multiple scattering correction (MSC) spectra; (e) 1st derivative (1st Der) spectra; (f) 2nd derivative
(2nd Der) spectra; (g) baseline correction (BC) spectra; (h) standard normal variate (SNV) spectra;
(i) mean centering transformation (MCT) spectra.

2.3. Predicting Vitamin C Using Full Wavelength

The full-band spectra (raw and preprocessed) within the range of 912 to 1667 nm
(375 wavelengths) were mined to related to the measured vitamin C by partial least squares
(PLS) algorithm, resulting in different performance of the nine PLS models in prediction
of vitamin C of citrus peels samples, with correlation coefficients of prediction (rP) of
0.877–0.974 and root mean square error of prediction (RMSEP) of 10.671–23.916 mg/100 g
(Table 2).

Table 2. Prediction of vitamin C (mg/100 g) in citrus peel by PLS model using full 375 wavelengths.

Spectra Model Number of LV
Calibration Cross-Validation Prediction

∆E
rC RMSEC rCV RMSECV rP RMSEP RPD

RAW RAW-PLS 1 13 0.957 13.077 0.930 15.703 0.928 16.343 3.537 3.266
SGS SGS-PLS 2 14 0.971 11.314 0.934 15.235 0.926 16.319 3.542 5.005
NC NC-PLS 3 14 0.974 10.674 0.953 13.174 0.956 13.798 4.189 3.124

MSC MSC-PLS 4 14 0.974 10.671 0.932 15.499 0.918 16.428 3.518 5.757
1st Der 1st Der-PLS 5 8 0.944 13.170 0.889 17.907 0.877 18.114 3.191 4.944
2nd Der 2nd Der-PLS 6 5 0.915 18.949 0.892 21.566 0.881 22.335 2.588 3.386

BC BC-PLS 7 12 0.950 14.237 0.906 20.135 0.913 20.253 2.854 6.016
SNV SNV-PLS 8 11 0.947 14.611 0.894 21.421 0.887 23.916 2.417 9.305
MCT MCT-PLS 9 13 0.957 13.077 0.910 20.703 0.893 21.744 2.658 8.667

1 PLS model built with raw spectra; 2 PLS model built with SGS spectra; 3 PLS model built with NC spectra; 4 PLS
model built with MSC spectra; 5 PLS model built with 1st Der spectra; 6 PLS model built with 2nd Der spectra;
7 PLS model built with BC spectra; 8 PLS model built with SNV spectra; 9 PLS model built with MCT spectra.
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It was also observed that the PLS models built with eight preprocessed spectra
had different predictive abilities in predicting vitamin C, compared with the RAW-PLS
model using raw spectra. Among, the NC-PLS model built with NC spectra showed
the best performance in predicting vitamin C content of citrus peels samples (rP = 0.956,
RMSEP = 10.671 mg/100 g, residual predictive deviation (RPD) = 4.189), although largest
numbers of latent variables (LV) involved, which indicated that NC was more suitable for
preprocessing the spectra of 912–1667 nm and that was probably due to the elimination of
adverse effects caused by outlier samples. Moreover, the NC-PLS model performed better
than the RAW-PLS model, in terms of correlation coefficients (r), root mean square errors
(RMSEs), RPD, absolute value of difference between RMSEP and root mean square error of
calibration (RMSEC) (∆E) values, indicating that implement of spectra pretreatment by NC
method indeed improved the predictive accuracy and precision of the RAW-PLS model. In
general, spectral preprocessing was necessary to predict the vitamin C of citrus peels, and
an appropriate preprocessing method such as NC was required.

There are some reports on NIR technology in prediction of vitamin C concentration in
other fruit such as tomatoes (range: 1295–2611 nm, rP = 0.81, RMSEP = 4.09 mg/100 g), oranges
(range: 4000–10,000 cm−1, rP = 0.71, RMSEP = 94.9 mg/L), acerola (range: 800–2500 nm,
rP = 0.99, RMSEP = 166.27 mg/100 g), and apple (range: 4000–10,000 cm−1, rP = 0.917,
RMSEP = 4.8 mg/100 g) [30], different from our study, which was probably due to the
different spectral ranges and samples involved in modeling. Until now, this is the first
time using NIR to predict vitamin C level in citrus peels, and the satisfactory results were
obtained. The further wavelength selection and model optimization were performed based
on the NC spectra.

2.4. Optimal Wavelengths Selected by Four Different Methods

The optimal wavelengths were selected from NC spectra by regression coefficients
(RC), stepwise regression (SR), successive projections algorithm (SPA) and competitive
adaptive reweighted sampling (CARS) methods, respectively, and the results are shown
in Table 3. After wavelength selection, the wavelength number decreased from 375 to
5–22, with the wavelength reduction of over 94%. It was also observed that most of
the selected optimal wavelengths mainly located in the three regions of 912–1030 nm,
1161–1255 nm, and 1576–1667 nm, which are shown in Figure 3 and indicated that more
spectral information related to vitamin C prediction existed in these regions.

Table 3. Optimal wavelengths selected from NC spectra by RC, SR, SPA and CARS, respectively.

Method Number of Optimal
Wavelengths Specific Wavelengths Wavelength Reduction

RC 22
915, 924, 938, 950, 997, 1030, 1100, 1102, 1161,
1176, 1236, 1385, 1528, 1596, 1609, 1616, 1623,

1642, 1651, 1655, 1657, 1658 nm
94%

SR 15 915, 927, 960, 965, 1016, 1028, 1094, 1109, 1397,
1576, 1623, 1642, 1648, 1662, 1664 nm 96%

SPA 20
912, 915, 986, 1162, 1167, 1178, 1205, 1209, 1214,

1234, 1255, 1352, 1393, 1635, 1642, 1658,1660,
1662, 1664, 1667 nm

95%

CARS 11 924, 927, 936, 954, 1198, 1211, 1635, 1637, 1642,
1644, 1658 nm 97%

2.5. Predicting Vitamin C Using Optimal Wavelengths

Based on the selected optimal wavelengths, the NC-PLS model was optimized and
four optimized PLS models (RC-NC-PLS, SR-NC-PLS, SPA-NC-PLS, CARS-NC-PLS) were
respectively established and their performance in predicting vitamin C of citrus peels
samples are shown in Table 4.
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Table 4. Prediction of vitamin C (mg/100 g) in citrus peel by PLS model using optimal wavelengths.

Model Number of
Wavelength

Number
of LV

Calibration Cross-Validation Prediction
∆E

rC RMSEC rCV RMSECV rP RMSEP RPD

RC-NC-PLS 1 22 9 0.936 16.316 0.908 19.887 0.901 20.354 2.855 4.038
SR-NC-PLS 2 15 10 0.942 15.432 0.937 16.418 0.936 16.689 3.482 1.257

SPA-NC-PLS 3 20 11 0.901 20.499 0.849 25.655 0.835 26.768 2.245 6.269
CARS-NC-PLS 4 11 7 0.814 24.494 0.785 25.767 0.787 25.916 2.358 1.422
RC-NC-MLR 5 22 - 0.913 19.148 0.852 25.112 0.848 26.776 2.319 7.628
SR-NC-MLR 6 15 - 0.955 13.430 0.948 14.651 0.949 14.814 4.260 1.384

SPA-NC-MLR 7 20 - 0.910 19.447 0.855 24.865 0.829 27.326 2.346 7.879
CARS-NC-MLR 8 11 - 0.842 23.578 0.836 26.663 0.818 29.409 2.214 5.831

1 PLS model built with optimal wavelengths selected from NC spectra by RC method; 2 PLS model built with
optimal wavelengths selected from NC spectra by SR method; 3 PLS model built with optimal wavelengths
selected from NC spectra by SPA method; 4 PLS model built with optimal wavelengths selected from NC spectra
by CARS method; 5 MLR model built with optimal wavelengths selected from NC spectra by RC method; 6 MLR
model built with optimal wavelengths selected from NC spectra by SR method; 7 MLR model built with optimal
wavelengths selected from NC spectra by SPA method; 8 MLR model built with optimal wavelengths selected
from NC spectra by CARS method.

Among these, the SR-NC-PLS model built with 15 optimal wavelengths selected
from NC spectra by SR method showed a good predictive ability, with higher values
of rP (0.936) and RPD (3.482) as well as lower values of RMSEP (16.689 mg/100 g) and
∆E (1.257 mg/100 g), better than those of other three optimized PLS models, which was



Molecules 2023, 28, 1681 7 of 13

probably due to the different optimal wavelengths involved in model construction. The
results also indicated that the SR method was the best option to select optimal wavelengths.

In fact, multiple linear regression (MLR) can also be used for predicting a target param-
eter of samples in the situation where the number of wavelengths is less than the number
of samples [31]. MLR is a classic linear algorithm and works to interpret linear relationship
between one dependent variable and two or more independent variables [32]. In this study,
based on the same selected optimal wavelengths, four MLR models including RC-NC-
MLR, SR-NC-MLR, SPA-NC-MLR, and CARS-NC-MLR were respectively developed and
assessed in terms of r and RMSE values. It was found that the SR-NC-MLR model had the
best performance in predicting vitamin C among the four MLR models, carrying the largest
values of rP (0.949) and RPD (4.260) as well as smallest values of RMSEP (14.814 mg/100 g)
and ∆E (1.384 mg/100 g), better than the SR-NC-PLS model.

In addition, through a comparative analysis, it was found that the SR-NC-MLR model
was comparable to the NC-PLS model in predicting vitamin C of citrus peels samples,
indicating that the optimization of NC-PLS model was successful. This also meant that the
selected 15 optimal wavelengths and the full 375 wavelengths contributed similarly to the
vitamin C prediction.

2.6. F-Test and T-Test Analysis

As shown in Table 5, after implementing F-test, it was found that the F value (1.004)
was smaller than the F (one-tailed critical value) value for the SR-NC-MLR model, which
indicated that no significant difference between the measured value and predicted value of
vitamin C contents in citrus peels existed.

Table 5. F-test and t-test double sample analysis of variance.

Model Double Sample
Analysis Index Predicted

Value
Measured

Value

SR-NC-MLR

F-test

average 149.861 150.334
variance 3478.621 3464.791

observed value 83 83
df 82 82
F 1.004

P (F <= f) one-tailed 0.493
F (one-tailed critical value) 1.441

t-test

average 149.861 150.334
variance 3478.621 3464.791

observed value 83 83
pooled variance 3471.706

assumed mean difference 0
df 164

t Stat 0.0517
P (T <= t) one-tailed 0.479

t (one-tailed critical value) 1.654
P (T <= t) two-tailed 0.959

t (two-tailed critical value) 1.975

It was also observed from t-test results that the t value was less than the t (two-tailed
critical value) value, revealing that there was no significant difference between the mean
values of the measured value and the predicted value of vitamin C contents in citrus peels.

In short, the good soundness and predictive validity of the SR-NC-MLR model were
verified using the F-test and t-test analysis. In other words, it was reasonable and feasible
to apply the SR-NC-MLR model to predict vitamin C contents of citrus peels.
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2.7. Independent External Validation of Best Optimized Model

Forty citrus peels were used as independent samples to externally validate the validity
and suitability of the SR-NC-MLR model in predicting vitamin C contents, and the results
are shown in Figure 4. A good correlation (R2 = 0.9558) was found between the predicted
and the measured values of vitamin C contents, indicating the good predictive performance
of the SR-NC-MLR model.
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3. Materials and Methods
3.1. Preparation of Citrus Peel Samples

Two hundred and forty-nine fresh intact and undamaged citrus fruit (50 varieties
and five of each (four of the Xuegan variety): Judaro, Miyagawa wase, Nanfengmiju,
Nankou„Kaixuangan, Red Sene, Clementine, Amakusa, Owari, Yura Wase, Taguchi wase,
Cocktail grapefruit, Bendizao, Huyou, Hongyugan, Ueno Wase, Hongmeiren, Aoshima,
Ougan, Green Ougan, Ponkan, Navel orange, 439, Honeybelle tangelo, Himekoharu, 60,
Okitsu No.60, Lime, Sweet Spring, Gaocheng, Flame grapefruit, Valencia orange, Gonggan,
Seihou, Chachigan, Huyou, Asumi, Washington Sanguine blood orange, Tarocco blood
orange, Xuegan, Jincheng, Gaotaocheng, 123-1, Tsunokaori Tangor, Murcott, Manju, Moro
blood orange, Haruka, Orah, Liubencheng, Sokitsu) were randomly selected after har-
vesting from the Citrus Breeding Base of Zhejiang Citrus Research Institute, Taizhou City,
Zhejiang Province, China and immediately transported to the laboratory to be stored at
cold temperature (4 ± 0.5 ◦C) for further spectral acquisition and vitamin C determination.
Before the test, the peel surface was examined carefully again, and a simple cleaning was
performed to guarantee minimal impact on further spectral collection.

3.2. Spectral Collection and Preprocessing

A portable NIR spectroscopy device (Isuzu Optics Corp., Zhubei, Taiwan) was used
to collect spectral information of citrus peels in reflectance mode. The machine mainly
consists of four sections including a spectrograph (covering spectral range of 900–1700 nm,
1 mm InGaAs detector), a ring-shaped Halogen lamp (20 W), a glass plate (diameter, 60 mm;
height, 10 mm). and spectral analysis software (NIRez 2.0 Rice, Isuzu Optics Corp., Taiwan).
The device was operated by setting the exposure time of 0.63 ms and the scan number
of 5. Before the spectral collection of samples, the device was calibrated by scanning a
white tile bar with reflectance of 99.99% and then turning off the light source to ensure
0.00% reflectance.

Before each test, several citrus fruit were taken out and one piece of peel with size
of 20 mm × 20 mm (length × width) from each citrus fruit was cut to put into the glass
plate of NIR device. Each citrus peel was scanned five times to obtain the average spectra.
Finally, a total of 249 spectra of citrus peel samples were prepared for further analysis. The
spectra in the range of 912–1667 nm (375 wavelengths) was only considered and analyzed,
because of obvious noises existed in the two regions of 900–912 nm and 1667–1700 nm.
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The process of spectral collection is always negatively influenced by several factors
such as sample status, light scattering, stray light, baseline drift, instrument response and
the surrounding environment [33]. Therefore, it is quite necessary to perform spectra
preprocessing to minimize or even eliminate the undesirable effects, improving the signal-
to-noise ratio of spectra and predictive ability of subsequent constructed model. In this
study, six preprocessing methods including SGS, NC, MSC, 1st Der, 2nd Der, BC, SNV, and
MCT were applied to preprocess the collected raw spectra, respectively.

SGS uses polynomials to achieve data smoothing, based on the PLS algorithm, retain-
ing useful information in signal analysis and eliminating random noise [34]. NC is used
to eliminate influence of changes in optical path or sample dilution on spectra [35]. MSC
can eliminate noises caused by specular reflection and non-uniformity of sample, spectral
baseline drift and non-repeatability [36]. Derivation is an effective preprocessing method
used to eliminate baseline drift and improve spectral resolution. The 1st Der and 2nd Der
can remove the constant baseline and the first functional baseline, respectively [37]. BC
can effectively correct drifts originated from electronic offset, dark current and readout
noise [38]. SNV is applied to reduce influences of uneven particle size and non-specific
scattering of particle surface [39]. MCT is realized using sample spectra minus mean
spectra of calibration set to increase the difference between sample spectra, thus improving
robustness and prediction ability of model [40].

All the spectral preprocessing were completed using software Unscramble 10.3X
(CAMO, Oslo, Norway).

3.3. Measurement of Vitamin C

The vitamin C contents in citrus peel samples were determined using the chemical
2-6-dichlorophenol indophenol titration method (AOAC Method 967.21) [41], three times
for each sample, and the averaged values were used. In this study, the NIR-based method
was developed and compared with the official chemical method, expecting to potentially
substitute the official method for vitamin C determination in the future.

3.4. Quantitative Relationship Establishment between Spectra and Vitamin C

The quantitative relationships between the raw, preprocessed NIR spectra and the
measured vitamin C values were respectively established by applying linear PLS regression
algorithm. PLS is always used to build the fundamental relationship between two matrixes
(X and Y), explaining Y space with greatest variance by finding multidimensional directions
in X space, and is particularly suitable when X matrix (predicted) has more variables than
Y matrix (observed), as well as when there is multicollinearity in X [42]. PLS combines the
advantages of principal component analysis (PCA), canonical correlation analysis (CCA)
and multiple linear regression (MLR) analysis, and can achieve predictive function through
extracting a group of irrelevant latent variables (LV) [43]. PLS model performance is related
to the number of LV, and a good PLS model always has small number of LV [44].

The predictive performance of the PLS model is evaluated mainly using r and RMSE in
the calibration set (rC & RMSEC), cross-validation set (rCV & RMSECV), and prediction set
(rP & RMSEP) [45]. The cross-validation is implemented by leaving one sample out from the
calibration set in turn, and then rebuilding a model with the remaining samples to predict
the excluded sample, i.e., leave-one-out cross-validation [46]. Generally, a PLS model with
good performance always have higher values of r and lower values of RMSEs. Two other
parameters including RPD and ∆E are also used to assess the PLS model quality. RPD is
ratio of standard deviation of measured values to RMSEP values in prediction set. ∆E value
is used to indicate the model robustness. A good PLS model is usually accompanied by a
greater value of RPD and a smaller value of ∆E [47].

In this study, by inputting a matrix (375 NIR spectra as X variables, 166 vitamin C
values as Y variables) to run PLS algorithm and using the remaining 83 vitamin C values
for prediction purpose, an intrinsic relation between the two variables was explored, i.e.,
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PLS modeling. The established PLS model was evaluated by terms of rC, rCV, rP, RMSEC,
RMSECV, RMSEP, RPD and ∆E.

3.5. Optimal Wavelength Selection and Model Optimization

Generally, NIR spectral analysis technique is accompanied by a large amount of spec-
tral data, which inevitably contains some spectral variables carrying noise, non-information
wavelength or even interference information, resulting in the decrease of predictive effi-
ciency [48]. Selection of wavelengths holding useful information is therefore very necessary
and has been a key step in NIR data analysis, which can greatly reduce the data calculation,
accelerate the prediction, improve the model prediction accuracy, and effectively prevent
the overfitting prediction [49].

Four efficient methods including RC, SR, SPA, and CARS were respectively used to
select the optimal wavelengths for further model optimization. In the procedure of RC,
the wavelengths with large absolute values of regression coefficients in developed PLS
model were selected as optimal wavelengths [50]. By running SR program, the optimal
wavelengths were automatically selected by repeating the operations of forward addition
and reverse deletion of spectral variables at the same time, and terminating with the
minimum values of residual sum of squares (MVSSS) via increasing spectral variables [51].
In SPA process, by sequentially executing the selection of candidate subsets by projection,
the evaluation of candidate subsets by predicted residual error sum of squares (PRESS)
and the elimination of variables through F-test criterion, the wavelengths corresponding
the minimum number and the lowest values of PRESS were considered to be optimal
wavelengths [52]. In the CARS method, the important wavelengths were picked out by
assessing the importance of each wavelength through the corresponding absolute value of
regression coefficient, according to the law of survival of the fittest [53].

Using the same modeling process, the optimized PLS model was developed by in-
putting a new matrix containing the selected optimal wavelengths as X variables and
166 vitamin C values as Y variables. The remaining 83 vitamin C values were used for
prediction. The optimized PLS model was also evaluated using the same parameters
mentioned above.

The RC process and model optimization were performed in software Unscrambler
10.3X (CAMO, Oslo, Norway). The SR, SPA and CARS program were executed in software
Matlab R2018a (The Mathworks, Inc., Natick, MA, USA).

3.6. Statistical Two-Sample Analysis

F-test and t-test two-sample analysis were conducted to verify the suitability of the
established model in predicting vitamin C of citrus peels, ensuring the model soundness
and predictive reliability. F-test, also called homogeneity test of variance, is a test under
null hypothesis with statistical values obeyed F-distribution [54]. The t-test, also called
Student’s t-test, is applicable in three simultaneously required conditions of two sets of
samples coming from the normal population, independence of the two sets of samples and
satisfying homogeneity of variance (pass F-test) [55]. F-test was applied to test whether
there is a significant difference between the variances of the measured and predicted
vitamin C values. t-test was conducted to examine whether there is significant difference
between the mean values of the measured and predicted vitamin C values. F-test was
completed before the t-test.

3.7. External Validation of Model

To further evaluate the applicability and validity of the established calibration model,
it is necessary to conduct external validation using a set of independent samples. For
achieving the stable and effective prediction of vitamin C, 40 independent citrus peel
samples were randomly collected from fresh harvested citrus fruit and used to validate the
best optimized PLS model externally. The operation of the external validation was executed
in software Unscramble 10.3X (CAMO, Oslo, Norway).
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4. Conclusions

This study aimed to investigate the potential of NIR (912–1667 nm) combined with
linear algorithms to determine vitamin C contents in citrus peels. NC method was more
appropriate to preprocess the raw NIR spectra, and NC-PLS model constructed with full
NC spectra showed a better performance in predicting vitamin C contents (rP = 0.956,
RMSEP = 13.798 mg/100 g). Fifteen optimal wavelengths (915, 927, 960, 965, 1016, 1028,
1094, 1109, 1397, 1576, 1623, 1642, 1648, 1662, and 1664 nm) were further selected from
NC spectra by SR method and applied to optimize the full band NC-PLS model through
MLR algorithm, resulting in an optimized SR-NC-MLR model with similar good predictive
abilities in predicting vitamin C contents, with rP of 0.949 and RMSEP of 14.814 mg/100 g,
compared with the NC-PLS model. The reasonability and feasibility of the SR-NC-MLR
model was verified by means of F-test and t-test analysis. The validity and suitability
of SR-NC-MLR model was further verified using 40 independent citrus peel samples. It
concluded that the developed NIR-based method is simple, efficient, and can be used for
rapid determination of vitamin C content in citrus peels to facilitate peel recycling.
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