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Abstract: Electronic health (eHealth) is a strategy to improve the physical and mental condition
of a human, collecting daily physiological data and information from digital apparatuses. Body
weight and blood pressure (BP) are the most popular and important physiological data. The goal
of this study is to develop a minimal contact BP measurement method based on a commercial
body weight-fat scale, capturing biometrics when users stand on it. The pulse transit time (PTT) is
extracted from the ballistocardiogram (BCG) and impedance plethysmogram (IPG), measured by four
strain gauges and four footpads of a commercial body weight-fat scale. Cuffless BP measurement
using the electrocardiogram (ECG) and photoplethysmogram (PPG) serves as the reference method.
The BP measured by a commercial BP monitor is considered the ground truth. Twenty subjects
participated in this study. By the proposed model, the root-mean-square errors and correlation
coefficients (r2s) of estimated systolic blood pressure and diastolic blood pressure are 7.3 ± 2.1 mmHg
and 4.5 ± 1.8 mmHg, and 0.570 ± 0.205 and 0.284 ± 0.166, respectively. This accuracy level achieves
the C grade of the corresponding IEEE standard. Thus, the proposed method has the potential benefit
for eHealth monitoring in daily application.

Keywords: ballistocardiogram; impedance plethysmogram; pulse transit time (PTT); weight-fat scale;
blood pressure

1. Introduction

The World Health Organization (WHO) released guidance for digital health according
to the review of benefits, harms, acceptability, feasibility, resource use, and equity consider-
ations of digital health interventions [1]. Digital health covers electronic health (eHealth)
and mobile health (mHealth), both of which have been considered as approaches to fighting
the Coronavirus Disease 2019 (COVID-19) pandemic [2,3]. The field of mHealth includes
telecare, telehealth, telemedicine, mobile technology, and the internet of things (IoT). The
field of eHealth comprises not only communication techniques in the health field, but also
includes healthcare services and health monitoring [4,5]. Thus, digital health focuses on
the user, collecting data in real-time from social activities, and using sophisticated analysis
to extract knowledge from these data sources as a means of improving public health and
providing basic services [6].

Some studies have proposed that engaged patients could use sophisticated digital
technologies for self-monitoring and self-care [7,8]. Large amounts of data and information
are measured from such digital apparatuses [9], relating to the past, present, and future
physical and mental health or condition of an individual [10]. Apple and Google have
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recently developed health applications, such as Apple Health and Google Fit, for tracking
fitness and health status [11]. These applications support interaction with various consumer
apparatuses (mobile healthcare) for data integration, helping doctors remotely examine
their patients’ overall health information. Users get to know the real-time status of their
bodies and can adjust their activities or diet for healthy lifestyles [9].

In recent years, wearable devices have been widely used for mobile healthcare. Exer-
cise watches or bands measure the heart rate, step count, and calorie expenditure [12,13].
An electrocardiogram (ECG) patch records a long-term ECG signal [14]; an electromyogram
(EMG) patch detects muscle fatigue in real-time [15]; a reflective photoplethysmograph
(PPG) measures oxygen saturation when exercising [16]; and a light reflection rheograph
(LRR) examines deep vein thrombosis in the calf [17,18]. These wearable devices use IoT
technology to transmit data to mobile platforms to accelerate interactive communication
between users and healthcare providers. Therefore, development of novel or innovative
digital physiological measurement methods will be a main focus for the popularization
of eHealth.

When the heart pumps the blood once, a blood pulse in the aorta transmits to the
peripheral arterioles. This transmission time is called the pulse transit time (PTT) and has
a reciprocal relation to the pulse wave velocity (PWV). Bramwell and Hill [19] proposed
a model to explain the relation between blood pressure (BP) and PWV according to the
Moens-Korteweg equation [20]. Since the blood pulse is caused by the left ventricular
contraction, the R wave of the electrocardiogram (ECG) is typically used as the starting
time of PTT. The foot point of a pulse wave of peripheral vessels is considered the ending
time of PTT. Therefore, Sharwood-Smith proposed the use of PTT to estimate continuous
systolic BP for monitoring its instantaneous drop under anesthesia [21]. In recent years,
many studies have explored techniques for cuffless BP measurement [22], some of which
have been implemented in wearable devices for eHealth [23,24]. Thus, in this study, the
ECG and PPG are used to estimate BP as the reference method.

Mechanical vibration of the aorta caused by heart contraction is transmitted to the
body with multiple degrees of freedom, as measurable by mass sensors, such as strain
gauge or accelerometer, at upper and lower limb locations [25,26]. Such a signal is the
ballistocardiogram (BCG). The J wave of a BCG occurs just after isovolumetric contrac-
tion [27]. The RJ interval has a high relation with the pre-ejection period of the heart [28].
Thus, the J wave of the BCG could be considered the starting time of PTT. Shin et al.
used BCG measured by a MEMS accelerometer placed at the wrist to replace ECG for BP
measurement [29]. Martin et al. used a force sensor placed beneath the foot to acquire
the BCG signal to estimate BP [30]. Liu et al. used a weight scale and PPG probe placed
on the toe for cuffless BP measurement when users stand on the weight scale, exploring
the PTT difference between the measurement methods by ECG and PPG on the finger,
and BCG and PPG on the toe [31]. They found that the delay time between ECG and
BCG was 82.8 ± 22.73 ms, and 61.6 ± 17.47 ms between PPGs on the finger and toe. The
root-mean-square errors (ERMS) of estimated systolic blood pressure (SBP) and diastolic
blood pressure (DBP) were 6.7 ± 1.6 mmHg and 4.8 ± 1.5 mmHg, respectively.

Bioelectrical impedance is a measurable electrical reactance of the ionic conduction
within a body segment, which has a close relation with the volume of this conductor [32].
The fat mass (a non-conductor) of the human body is equal to the difference between
body weight and fat-free mass [33]. The fat-free mass can be measured by a whole-
body impedance measurement with foot-to-foot [34,35] or hand-to-foot methods [36].
The impedance plethysmography (IPG) is the change of reactance when blood flows [37],
which shares the same physical characteristics as that of the PPG. Liu et al. used IPG
measured on the forearm and ECG to perform cuffless BP measurement [38]. Some studies
used a commercial bathroom scale to measure the BCG and IPG by strain gauges and
footpads for the heartbeat detection [39,40]. In the IPG measurement, an alternate current
source, 10 kHz and 1 mARMS, was used to inject through two footpad electrodes beneath
the subject’s toes.
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The body weight-fat scale and blood pressure monitor are the most popular appara-
tuses in eHealth [41–44]. Many studies show that there is a positive relationship between
being overweight or obese and hypertension [45,46]. Thus, daily measurements of body
weight and BP are an important issue for self-care. To encourage the habit of self-monitoring,
the apparatus should be easy and comfortable to use. Thus, the goal of this study is to
explore minimal contact BP measurement based on a commercial body weight-fat scale
when users stand on it. The PTT values were detected from BCG and IPG signals extracted
from four strain gauges (SGs) and four footpads. Four PPT models for estimating BP
were used to explore the reliability and reproducibility of the proposed method. There are
three contributions in this study. First, The BP measurement system was integrated into a
commercial body weight-fat scale. The driving current source for IPG measurement was
supported by the body weight-fat scale. Second, the circuit for the IPG measurements were
supported in the method sector. Third, the accurate differences of cuffless BP measured
by the proposed and reference methods were explored. The delay time between PPG and
IPG on the finger and toe was analyzed. Thus, the proposed method does not require
the installation of any sensor on the body, meaning that the measurement of BP is easy,
unobtrusive, and very practical.

2. Materials and Methods

Figure 1 shows the structure diagram of the measurement system in this study. The
commercial body weight-fat scale is the Omron HBF-371 (Osaka, Japan), which measures
weight and body fat mass. We designed a four SGs circuit [31] and four footpads circuit to
extract BCG and IPG signals from the body weight-fat scale, a portable acquisition device
to sample these signals and transmit them to a notebook PC, and a graphic user interface
(GUI) to display and record these signals in real-time. The portable acquisition device has
eight measuring channels, a 3.0 Bluetooth module, and independent dual power supplies
from a battery [47]. The two reference signals, ECG and PPG, were acquired, displayed,
and recorded synchronously [31]. PTTBCG+IPG and PTTECG+PPG values were extracted from
the four signals. Then, four PTT models were used to estimate BP.
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Figure 1. The structure of the minimal contact blood pressure measurement method.

2.1. Impedance Plethysmography

In bioelectrical impedance analysis, the total longitudinal impedance of the lower
limbs is expressed as

Rb =
RoRn

Ro + Rn
(1)

where Rb is the total impedance that includes the static impedance, Ro, and the alternating
impedance for the blood flow pulse, Rn, [32]. Sensing bioelectrical impedance voltage, VBIP,
is defined as

VBIP = IARb = IA
RoRn

Ro + Rn
(2)

where IA is the constant current. The changed VBIP (impedance plethysmograph, IPG) is
proportional to Rn. Figure 2 shows the schematic circuit of the IPG measurement. The
32 kHz sinusoidal signal, supported by the body weight-fat scale, is amplified by an invert-
ing amplifier (U9A), which drives a constant current (U1A) of 2.5 mA and demodulates
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the IPG by the multiplier (U3). The alternating signal is applied to the body by two foot-
pads (body 1 and body 4 terminals). An instrument amplifier (U2) is used to pick up the
modulated signal through two receiving footpads (body 2 and body 3 terminals). Three
2nd-order lowpass filters (U4A, U5A, U6A) of cutoff frequency 10 Hz filter high frequency
noises, while two 2nd-order highpass filters (U1B, U6B) of cutoff frequency 0.3 filter the
wandering baseline, and the notch filter of cutoff frequency 60 Hz filters the noise of the
power line. Finally, the baseline of the IPG signal is shifted to 1.5 V by an offset shift
circuit (U7B).
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2.2. Digital Signal Processing

All measured signals are filtered to remove the wandering baseline and high frequency
noise with the 4th-order Butterworth bandpass filter of the 0.5 Hz to 10 Hz bandwidth. To
reduce differences of phase lag among different signals, an 8th-order all-pass filter was
designed to equalize the group delay within the passband. Figure 3 shows the ECG (blue),
PPG (red), differential PPG (DPPG, magenta), BCG (black), and IPG (green), and differential
IPG (DIPG, purple). The PTT measured by BCG and IPG signals was defined as the interval
between the J wave of BCG and the foot point of IPG for PTT1, and PTT2 is defined as
the interval between the J wave of BCG and the main peak of DIPG. The Pan-Tompkins
method was utilized to detect the R wave of ECG [48]. The first zero-crossing points of
DIPG and DPPG after the R wave were defined as the foot-point times of IPG and PPG. The
J wave of BCG is the first peak after the R wave. Then the first peaks of DIPG and DPPG
are detected following their first zero-crossing points. In Figure 3, the R wave of ECG, J
wave of BCG, and main peaks of DIPG and DPPG are marked by black dots, as are the foot
points of IPG and PPG. Figure 4 shows the raw (top) and filtered (button) IPG signals.
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dots. These signals are offset to visually separate them.
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2.3. PTT Models for Blood Pressure Estimation

We utilized four models used by Liu et al. [31]:

BP = a × PTT1 + b (3)

BP = a × ln(PTT1) + b (4)

BP = a × PTT1 + b × HR + c (5)

BP =
a

PTT1
+

b
PTT2

+ c × HR + d (6)

where HR is the heart rate. We used linear multi-dimension regression to parameterize
these models [49]. In Equation (7) below, xij is the input variable, yi is the target output
variable, and ŷi is the estimated variable. Additionally, i indexes the ith data, and j indexes
the jth parameter, including PTT1, PTT2, and HR. The regression model is

yi = m0 + m1xi1 + m2xi2 + . . . + mkxik + ei (7)

where ei is the error, and M = [m0, m1, . . . , mk] is the coefficient vector of the model. The loss
function (root-mean-square error), ERMS, is used to evaluate performance of this method:

ERMS = (
1
n ∑n

i=1(yi − ŷi)
2)

0.5
(8)

where n is the number of data points.

2.4. Statistic Analysis

The quantitative data is expressed as the mean ± standard deviation (SD). A two-tailed
paired t-test is used to show the difference of two variables. A p-value of 0.05 or less is
considered statistically significant. The cross-correlation coefficient, r2, is the quantity that
gives the quality of least squares fitting to the original data,

r2 =
[n(∑ xy)− (∑ x)(∑ y)]2

[n ∑ x2 − (∑ x)2][n ∑ y2 − (∑ y)2]
(9)

Furthermore, the precision and agreement between the ground-truth BP and the esti-
mated BP by reference and proposed methods are compared using a Bland–Altman plot.

2.5. Experiment Protocol

Twenty subjects (12 males and 8 females) participated in this study. Their ages were
20.8 ± 1.0 years (from 22 to 19 years of age), their weights were 63.0 ± 16.4 kg (from
115 to 43 Kg), and their heights were 167.3 ± 7.9 cm (from 186 to 152 cm). This experiment
was approved by the Research Ethics Committee of Chung Shan University Hospital
(No. CS2-21194), in Taichung city, Taiwan.

Subjects were asked to rest for five minutes and fill out an informed consent form
before the measurement session. The subjects’ information—including age, weight, height,
medical treatment of illness, and health condition—was recorded. Subjects afflicted with
arrhythmia or asthma were excluded from the experiment. Figure 5 shows a real photo
from this study. The BP measured by a commercial blood pressure monitor (HM-7320,
Omron, Osaka, Japan) is used as the ground-truth BP. The cuff is wrapped on the left upper
arm. The probe of PPG is placed on the middle finger of right hand. Two electrodes of ECG
are placed on the right and left arms to measure the ECG. The subject is asked to stand
on a commercial body weight-fat scale (Omron HBF-371; Osaka, Japan), and follow the
experimental procedure:
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1. Subjects stand on the body weight-fat scale to measure ECG, PPG, IPG, and BCG
signals for five minutes, and they measure BP once as a baseline.

2. Subjects run on a treadmill at a speed of about 6 km/h for at least three minutes, and
8 km/h for the next four minutes. If the SBP is not raised to 20 mmHg higher than the
resting SBP, subjects are requested to run longer.

3. Subjects stand on the commercial body weight-fat scale again, measuring ECG, PPG,
IPG, and BCG signals for six minutes. The BP is measured once a minute when
standing on the body weight-fat scale.

4. Each measurement session requires about 18 min. Subjects are measured four times.
The interval between any two measurement sessions is at least a week.

Sensors 2023, 23, 2318 7 of 16 
 

 

every minute. The qualities of four signals were determined by manual selection in each 
segment. If any one of the four signals measured did not have good quality for at least 10 
s, that segment would be ignored. The PTT1 values and PTT2 values were extracted from 
each heartbeat of four signals, which would be ranked in descending order. The average 
of inter-quartile range of PTT1 and PTT2 values represents the PTT1 and PTT2 within one 
minute. Table 1 shows the number (N) of segments for each subject. The total number of 
PTT data is 291. The maximum changed SBP and DBP are 48 mmHg and 29 mmHg, and 
the minimum changed SBP and DBP are 24 mmHg and 8 mmHg. 

Table 1. Maximum and minimum ground-truth systolic and diastolic BPs and number of useful 
segments for all subjects in this experiment. 

Subject 
(N) 

SBP 
Max.~Min. 

mmHg 

DBP 
Max.~Min. 

mmHg 

Subject 
(N) 

SBP 
Max.~Min. 

mmHg 

DBP 
Max.~Min. 

mmHg 
01 

(N = 15) 161~129 107~91 
11 

(N = 19) 172~124 107~85 

02 
(N = 17) 

148~118 95~69 12 
(N = 15) 

146~105 88~59 

03 
(N = 19) 

148~101 88~67 13 
(N = 14) 

140~112 88~76 

04 
(N = 17) 133~96 74~53 

14 
(N = 13) 128~98 88~76 

05 
(N = 14) 129~96 60~47 

15 
(N = 13) 137~105 90~80 

06 
(N = 13) 

154~118 100~80 16 
(N = 13) 

129~82 94~68 

07 
(N = 15) 150~126 99~85 17 

(N = 12) 147~116 78~70 

08 
(N = 14) 173~134 98~84 

18 
(N = 13) 163~120 106~87 

09 
(N = 12) 

143~113 79~59 19 
(N = 15) 

133~96 85~74 

10 
(N = 15) 

133~96 85~74 20 
(N = 13) 

126~84 87~69 

ps: min. is the abbreviation of minimum, max. is the abbreviation of maximum. 

 
Figure 5. A photo from this experiment shows a subject standing on a commercial body weight-fat
scale. The finger of right hand wears the PPG probe, a cuff is wrapped around the left arm, and two
electrodes of the ECG are placed on the right and left arms.

Table 1 shows the maximum and minimum ground-truth systolic and diastolic BPs
of all subjects across the four measurements. Four signals were partitioned into segments
every minute. The qualities of four signals were determined by manual selection in each
segment. If any one of the four signals measured did not have good quality for at least 10 s,
that segment would be ignored. The PTT1 values and PTT2 values were extracted from
each heartbeat of four signals, which would be ranked in descending order. The average of
inter-quartile range of PTT1 and PTT2 values represents the PTT1 and PTT2 within one
minute. Table 1 shows the number (N) of segments for each subject. The total number of
PTT data is 291. The maximum changed SBP and DBP are 48 mmHg and 29 mmHg, and
the minimum changed SBP and DBP are 24 mmHg and 8 mmHg.
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Table 1. Maximum and minimum ground-truth systolic and diastolic BPs and number of useful
segments for all subjects in this experiment.

Subject
(N)

SBP
Max.~Min.

mmHg

DBP
Max.~Min.

mmHg

Subject
(N)

SBP
Max.~Min.

mmHg

DBP
Max.~Min.

mmHg

01
(N = 15) 161~129 107~91 11

(N = 19) 172~124 107~85

02
(N = 17) 148~118 95~69 12

(N = 15) 146~105 88~59

03
(N = 19) 148~101 88~67 13

(N = 14) 140~112 88~76

04
(N = 17) 133~96 74~53 14

(N = 13) 128~98 88~76

05
(N = 14) 129~96 60~47 15

(N = 13) 137~105 90~80

06
(N = 13) 154~118 100~80 16

(N = 13) 129~82 94~68

07
(N = 15) 150~126 99~85 17

(N = 12) 147~116 78~70

08
(N = 14) 173~134 98~84 18

(N = 13) 163~120 106~87

09
(N = 12) 143~113 79~59 19

(N = 15) 133~96 85~74

10
(N = 15) 133~96 85~74 20

(N = 13) 126~84 87~69

ps: min. is the abbreviation of minimum, max. is the abbreviation of maximum.

3. Results

The estimated BPs by Equations (3)–(6) based on the proposed and reference meth-
ods were separately compared to ground-truth BP. ERMS and r2 were used to describe
performances of the two methods. Table 2 shows the results of estimated SBP and DBP
with Equation (3). When using the reference method, the ERMSs are 7.3 ± 2.1 mmHg
and 4.8 ± 1.8 mmHg, respectively. When using the proposed method, the ERMSs are
10.2 ± 2.2 mmHg and 5.2 ± 2.0 mmHg, respectively. The r2s of the reference method
are 0.510 ± 0.272 and 0.204 ± 0.215, respectively. Then, the r2s of the proposed method are
0.163 ± 0.168 and 0.081 ± 0.106, respectively.

Table 3 shows the results of estimated SBP and DBP using Equation (4). When us-
ing the reference method, the ERMSs are 7.2 ± 1.8 mmHg and 4.7 ± 1.7 mmHg, respec-
tively. However, when using the proposed method, the ERMSs are 9.9 ± 2.2 mmHg and
4.9 ± 1.9 mmHg, respectively. The r2s of the reference method are 0.538 ± 0.231 and
0.212 ± 0.192, respectively. Then, the r2s of the proposed method are 0.198 ± 0.201 and
0.126 ± 0.213, respectively.

Table 4 shows the results of estimated SBP and DBP with Equation (5). When us-
ing the reference method, the ERMSs are 6.2 ± 1.5 mmHg and 4.4 ± 1.5 mmHg, respec-
tively. However, when using the proposed method, the ERMSs are 7.3 ± 2.1 mmHg and
4.5 ± 1.8 mmHg, respectively. The r2s of the reference method are 0.678 ± 0.168 and
0.321 ± 0.246, respectively. Then, the r2s of the proposed method are 0.570 ± 0.205 and
0.278 ± 0.290, respectively.

Table 5 shows the results of estimated SBP and DBP with Equation (6). When using
the reference method, the ERMSs are 6.0 ± 1.7 mmHg and 4.1 ± 1.6 mmHg, respectively.
When using the proposed method, the ERMSs are 7.2 ± 2.2 mmHg and 4.4 ± 1.9 mmHg, re-
spectively. The r2s of the reference method are 0.716 ± 0.162 and 0.439 ± 0.292, respectively.
Then, the r2s of the proposed method are 0.618 ± 0.203 and 0.370 ± 0.275, respectively.
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Table 2. Results of estimated SBP and DBP with Equation (3) for the reference and proposed methods.

Subjects

Reference Method Proposed Method

SBP DBP SBP DBP

ERMS
(mmHg) r2 ERMS

(mmHg) r2 ERMS
(mmHg) r2 ERMS

(mmHg) r2

01 4.7 0.845 3.2 0.482 10.7 0.190 4.5 0.000
02 9.8 0.023 8.5 0.010 9.9 0.001 8.4 0.027
03 9.3 0.532 4.9 0.435 12.4 0.177 6.1 0.129
04 11.2 0.272 7.4 0.216 19.4 0.482 6.7 0.355
05 9.6 0.064 3.3 0.262 7.8 0.376 3.7 0.083
06 8.9 0.284 7.4 0.000 10.6 0.000 7.4 0.012
07 7.0 0.305 3.9 0.263 7.9 0.099 4.3 0.091
08 8.1 0.550 4.7 0.074 12.0 0.002 4.9 0.001
09 9.0 0.010 6.3 0.001 8.6 0.099 5.8 0.141
10 8.0 0.558 5.1 0.034 11.2 0.130 5.1 0.022
11 9.3 0.595 5.1 0.041 14.5 0.018 5.0 0.104
12 4.4 0.875 4.6 0.343 10.7 0.258 4.4 0.389
13 4.1 0.778 2.9 0.033 8.6 0.011 2.9 0.052
14 7.4 0.448 3.4 0.008 6.6 0.561 3.3 0.079
15 6.1 0.450 1.7 0.641 7.3 0.209 2.8 0.038
16 5.7 0.864 6.3 0.439 13.9 0.202 8.3 0.016
17 4.0 0.828 2.8 0.000 7.5 0.383 2.8 0.000
18 6.0 0.790 5.6 0.628 13.1 0.000 9.1 0.007
19 6.6 0.580 2.6 0.000 9.9 0.049 2.6 0.015
20 7.8 0.545 5.6 0.166 11.6 0.012 6.5 0.060

Mean
± SD

7.3
2.1

0.510
0.272

4.8
1.8

0.204
0.215

10.2
2.2

0.163
0.168

5.2
2.0

0.081
0.106

ps: SD, SBP, DBP are the abbreviations for standard deviation, systolic blood pressure, and diastolic blood
pressure, respectively.

Table 3. Results of estimated SBP and DBP with Equation (4) for the reference and proposed methods.

Subjects

Reference Method Proposed Method

SBP DBP SBP DBP

ERMS
(mmHg) r2 ERMS

(mmHg) r2 ERMS
(mmHg) r2 ERMS

(mmHg) r2

01 6.0 0.751 3.5 0.385 10.7 0.200 4.5 0.001
02 9.7 0.044 8.4 0.031 9.6 0.057 8.0 0.127
03 9.1 0.552 4.9 0.435 13.0 0.089 6.5 0.014
04 9.8 0.441 6.3 0.433 5.7 0.807 3.0 0.871
05 9.1 0.146 3.4 0.236 7.2 0.463 3.5 0.161
06 8.4 0.363 7.4 0.009 10.5 0.009 7.4 0.004
07 6.9 0.310 3.9 0.246 7.8 0.132 4.4 0.030
08 7.8 0.578 4.7 0.085 12.1 0.000 4.9 0.001
09 8.0 0.229 5.4 0.263 8.5 0.117 5.9 0.114
10 6.9 0.669 5.0 0.060 11.1 0.138 5.2 0.015
11 9.4 0.586 5.2 0.016 14.0 0.084 5.0 0.073
12 5.6 0.800 4.6 0.318 11.5 0.137 3.8 0.531
13 4.3 0.755 3.0 0.011 8.4 0.053 2.9 0.038
14 7.3 0.452 3.4 0.010 7.1 0.489 3.2 0.117
15 6.0 0.468 1.9 0.557 8.1 0.029 2.8 0.033
16 4.5 0.915 5.9 0.511 13.0 0.301 8.4 0.000
17 4.1 0.820 2.8 0.001 7.3 0.425 2.8 0.000
18 5.8 0.800 6.7 0.459 11.1 0.275 8.9 0.050
19 6.9 0.532 2.6 0.000 9.7 0.073 2.6 0.027
20 7.8 0.546 5.6 0.178 11.2 0.079 5.1 0.318

Mean
± SD

7.2
1.8

0.538
0.231

4.7
1.7

0.212
0.192

9.9
2.2

0.198
0.201

4.9
1.9

0.126
0.213

ps: SD, SBP, DBP are the abbreviations for standard deviation, systolic blood pressure, and diastolic blood
pressure, respectively.
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Table 4. Results of estimated SBP and DBP with Equation (5) for the reference and proposed methods.

Subjects

Reference Method Proposed Method

SBP DBP SBP DBP

ERMS
(mmHg) r2 ERMS

(mmHg) r2 ERMS
(mmHg) r2 ERMS

(mmHg) r2

01 5.9 0.771 3.6 0.418 7.4 0.643 3.8 0.352
02 7.9 0.402 7.1 0.355 7.9 0.406 6.9 0.398
03 6.5 0.787 4.9 0.471 8.5 0.634 6.7 0.018
04 7.4 0.705 5.6 0.583 4.8 0.873 3.0 0.883
05 7.3 0.503 3.1 0.420 6.4 0.616 3.5 0.236
06 8.4 0.421 7.6 0.034 8.1 0.463 7.7 0.021
07 7.0 0.345 4.0 0.250 7.9 0.161 4.6 0.031
08 5.3 0.824 4.8 0.115 5.2 0.829 5.0 0.029
09 6.0 0.613 5.5 0.312 6.0 0.604 5.8 0.230
10 6.3 0.749 5.1 0.103 7.0 0.686 5.1 0.107
11 9.5 0.601 5.1 0.101 13.9 0.149 5.1 0.117
12 5.8 0.800 4.5 0.401 9.5 0.461 3.7 0.610
13 4.4 0.764 3.0 0.038 7.3 0.344 3.0 0.051
14 7.5 0.483 3.5 0.015 7.4 0.489 3.2 0.181
15 5.1 0.645 2.0 0.559 5.3 0.621 2.2 0.474
16 4.0 0.941 5.6 0.598 6.2 0.857 3.6 0.835
17 4.3 0.820 3.0 0.002 6.2 0.627 3.0 0.003
18 5.8 0.825 4.9 0.744 10.3 0.443 9.1 0.110
19 6.2 0.653 2.6 0.097 5.0 0.776 2.7 0.043
20 3.7 0.908 2.9 0.802 5.4 0.803 2.7 0.823

Mean
± SD

6.2
1.5

0.678
0.168

4.4
1.5

0.321
0.246

7.3
2.1

0.570
0.205

4.5
1.8

0.278
0.290

ps: SD, SBP, DBP are the abbreviations for standard deviation, systolic blood pressure, and diastolic blood pressure,
respectively.

Table 5. Results of estimated systolic and diastolic blood pressures with Equation (6).

Subjects

Reference Method Proposed Method

SBP DBP SBP DBP

ERMS
(mmHg) r2 ERMS

(mmHg) r2 ERMS
(mmHg) r2 ERMS

(mmHg) r2

01 4.9 0.858 2.0 0.839 7.7 0.650 3.9 0.362
02 7.4 0.518 7.1 0.399 7.6 0.493 6.9 0.432
03 7.0 0.767 5.1 0.474 5.7 0.848 5.0 0.479
04 6.7 0.771 4.5 0.750 5.1 0.870 3.0 0.890
05 7.7 0.488 2.3 0.693 6.4 0.646 3.0 0.481
06 8.8 0.440 7.6 0.132 8.6 0.463 7.4 0.185
07 6.5 0.493 4.1 0.289 8.2 0.189 4.5 0.159
08 5.5 0.828 5.1 0.096 4.7 0.873 5.3 0.029
09 5.9 0.658 3.9 0.689 6.2 0.627 6.0 0.263
10 6.5 0.748 5.2 0.154 7.2 0.692 5.0 0.209
11 9.4 0.633 4.7 0.282 14.1 0.179 4.8 0.271
12 3.4 0.938 4.6 0.425 9.4 0.520 3.5 0.662
13 4.2 0.800 2.8 0.240 7.2 0.398 3.1 0.066
14 7.9 0.482 3.7 0.023 5.7 0.725 3.4 0.162
15 5.4 0.642 1.3 0.820 5.3 0.657 2.2 0.519
16 3.7 0.953 5.0 0.711 6.2 0.868 2.7 0.916
17 4.2 0.848 3.2 0.019 5.8 0.704 3.2 0.006
18 5.1 0.879 4.5 0.809 11 0.438 9.5 0.143
19 6.4 0.662 2.7 0.130 5.8 0.725 2.3 0.327
20 3.6 0.914 2.9 0.803 5.7 0.802 2.6 0.860

Mean
± SD

6.0
1.7

0.716
0.162

4.1
1.6

0.439
0.292

7.2
2.2

0.618
0.203

4.4
1.9

0.370
0.275

ps: SD, SBP, DBP are the abbreviations for standard deviation, systolic blood pressure, and diastolic blood pressure,
respectively.

According to the results presented in Table 5, Equation (6) has the best performance
for the proposed method. Bland–Altman plots are used to analyze the agreement between
two different measurement methods. Figure 6 shows a Bland–Altman plot of estimated
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SBPs by Equation (6) and ground-truth SBPs. Figure 6a represents the reference method
whose limits of agreement are 10.6 mmHg and −10.4 mmHg, and Figure 6b represents the
proposed method whose limits of agreement are 12.8 mmHg and −12.5 mmHg. Figure 7
shows a Bland–Altman plot of estimated DBPs by Equation (6) and ground-truth DBPs.
Figure 7a represents the reference method whose limits of agreement are 7.3 mmHg and
−7.2 mmHg, and Figure 7b represents the proposed method whose limits of agreement are
7.4 mmHg and −7.2 mmHg.
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In Tables 2–5 it can be seen that performance of the reference method was better than
that of the proposed method. Therefore, in Table 6, we explored the difference of PTT1 and
PTT2 between the reference and proposed methods. We used the paired t-test to compare
the differences of PTT1 and PTT2 data between the reference and the proposed methods.
PTT1ECG (164.8 ± 22.0 ms) and PTT2ECG (227.1 ± 28.5 ms) were significantly lower than
PTT1BCG (298.9 ± 80.6 ms) and PTT2BCG (364.1 ± 89.8 ms).

Table 6. The statistic of PTT1 and PTT2 measured by the reference and proposed methods.

PTT1ECG (ms) PTT1BCG (ms) PTT2ECG (ms) PTT2BCG (ms)

Mean 164.6 298.9 227.1 364.1
SD 22.0 80.6 28.5 89.8

p-value 0.0 0.0
ps: SD is the abbreviation of standard deviation.

Since the ECG and BCG separately belong to the electric and mechanical signals,
there is a delay time (DT) between the two signals. Moreover, PPG and IPG are both
plethysmograms. Given that the measured locations are different, there is also a DT
between the two signals. In Figure 3, the ECG and PPG are the phase lead of BCG and
IPG. Table 7 shows the delay time (DTECG-BCG) between the ECG and BCG, and the delay
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time (DTPPG-IPG) between the PPG and IPG. The number of heartbeats used to calculate the
PTT1 and PTT2 is 4042. Notably, DTECG-BCG (82.1 ± 20.3 ms) is significantly lower than
DTPPG-IPG (120.7 ± 40.3 ms).

Table 7. The statistic of delay time (DTECG-BCG) between the ECG and BCG, and delay time
(DTPPG-IPG) between the PPG and IPG.

DTECG-BCG (ms) DTPPG-IPG (ms)

Mean 82.1 120.7
SD 20.3 40.3

p-value 0.000
ps: SD is the abbreviation of standard deviation.

4. Discussion

The accuracy of cuffless BP measurement for individual subjects depends upon the
reference methods (noninvasive or invasive method), the calibrated moments (immediately
following the measurement, one day after, or one month after), and BP states (exercising,
resting, or medication) [50,51]. Therefore, cuff-calibration BP measurement devices would
yield small errors in estimating subsequent BP. However, because of the calibration, these
results merely reflect inter-individual differences in the reference BP levels. For calibration-
free BP measurement devices, higher accuracy of BP estimation depends on the small BP
range of the participant cohort, and the overall results did not reveal the hemodynamic
measurement of individual subjects. Thus, cuffless BP measurement devices are not
recommended for clinical practice [52]. However, these innovative techniques for cuffless
BP measurement could be suitable for tracking BP changes in users with a comfortable
measurement. Tracking the long-term trend of BP is very important information in eHealth.
This study’s innovation was using a commercial body weight-fat scale to perform the BP
measurement. This technique has the advantage of convenience with minimal contact.

The performance of BP measurement using the reference method did not mirror that
of previous studies [51]. In Table 5, the ERMSs of SBP and DBP measured by the reference
method are only 6.0 ± 1.7 mmHg and 4.1 ± 1.6 mmHg; their r2s are 0.716 ± 0.162 and
0.439 ± 0.292, respectively. There are three main issues here. Firstly, the BP of subjects
was raised by the exercise, which changes depend on inter-individual differences. Thus,
the maximum BP changes of SBP and DBP approached 48 mmHg and 29 mmHg, and
the minimum BP changes were 24 mmHg and 8 mmHg. Secondly, the post-exercise BP
decreases—that is, measured BP is dynamic. Therefore, the accuracy of a commercial BP
monitor would also decrease [53]. Thirdly, the reference BP was repeatedly measured
once a minute, and it was difficult to synchronize the PTT. Therefore, for the proposed
method, the ERMSs of SBP and DBP are 7.2 ± 2.2 mmHg and 4.4 ± 1.9 mmHg, while the
r2s are 0.618 ± 0.203 and 0.371 ± 0.275, as shown in Table 5. According to the standard
developed by the Institute of Electrical and Electronics Engineers (IEEE) [54], the accuracy
of the proposed method reaches a C grading. However, these results were very close to
those of the reference method.

Liu et al. developed an IPG ring to replace the PPG probe, extracting PTT from the
ECG and IPG signals. The r2 between SBP and PTT is merely 0.528 [38]. Moreover, Liu
et al. proposed a cuffless BP measurement with the BCG and PPG signals [31]. When a
user stood on a weight scale, the BCG signal was measured from the strain gauge of the
weight scale and the PPG signal was measured from the PPG probe placed on a toe. The
ERMSs of SBP and DBP were 6.7 ± 1.60 mmHg and 4.8 ± 1.47 mmHg, and the r2s of SBP
and DBP were 0.606 ± 0.142 and 0.284 ± 0.166. These results closely matched those of our
proposed method. However, the advantage of our approach is that PTT is extracted from
the strain gauges and foot pads of the body weight-fat scale. The disadvantage is that the
signal-noise ratio (SNR) of IPG is lower than that of PPG. Thus, the number of heartbeats
used in this study was 4042, somewhat fewer than 4364 [31], since a higher quality IPG
signal was hard to acquire.
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As seen in Table 6, PTT1ECG and PTT2ECG are significantly lower than PTT1BCG and
PTT2BCG. However, in Liu et al. [31], PTT1ECG and PTT2ECG were significantly higher than
PTT1BCG and PTT2BCG. The pulse waves detected by the foot pads of IPG, and the PPG
probe placed on a toe should have a similar PTT in the two studies. Interestingly, however,
the DT between PPG (finger) to IPG (leg) (120.7 ± 40.3 ms) was greater than the DT between
PPG (finger) to PPG (toe) (61.6 ± 17.47 ms). In bioelectrical impedance measurements,
the human body is divided into five inhomogeneous segments, two for the upper limbs,
two for the lower limbs and one for the trunk [32]. The bioelectrical impedance includes
the impedances of tissue and blood fluid [55]. Moreover, impedance of tissue is much
higher than that of blood fluid. The leg-to-leg impedance of tissue bears a relation to the
fat-free mass of one’s body, a property which has been exploited in the commercial fat
scale. However, the blood fluid in the lower limbs not only has arterial blood flow, but also
venous blood flow (rheography). Thus, the pulse wave detected by the foot pads of the
IPG could not be considered a unique arterial pulse at a fixed distance.

The main limitation of the proposed method is that subjects must stand in a stable
position because the SNRs of IPG and BCG all are lower than PPG and ECG. Moreover,
ECG and PPG are not sensitive to any shaking or swaying of the body. However, when
users with sarcopenia or Parkinson’s disease stand on a commercial body weight-fat scale,
stable BCG and IPG are difficult to measure. Some digital signal processing methods, such
as the adaptive filter [56], empirical mode decomposition [15], or principal component
analysis [57], could be used to remove motion artifacts from the BCG and IPG signals in
order to overcome this problem. However, if users, such as those afflicted with diabetes,
have poor circulation in their lower limbs, their IPG will not be measured reliably. Therefore,
they are not likely to be suitable candidates for using this method to measure BP. However,
one advantage of the proposed method is the ability to make BP measurement without
installing any sensors on the body.

5. Conclusions

This study used the PTT extracted from the BCG and IPG signals—measured using
a commercial body weight-fat scale and a standing subject—to estimate BP according to
four different models. In terms of the performance of the proposed method, the expected
result was worse than that of the reference method. However, ERMSs of estimated SBP
and DBP by the proposed method were 7.2 ± 2.2 mmHg and 4.4 ± 1.9 mmHg, and the
r2s were 0.618 ± 0.203 and 0.371 ± 0.275. These results achieve a C grading according to
the corresponding IEEE standard. Thus, this method could be implemented in a minimal
contact system to easily measure BP in the daily life, which has the potential to benefit
eHealth management in the future.
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