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Abstract: In order to reduce the loosening of dental implants, surface modification with hydroxyap-
atite (HA) coating has shown promising results. Therefore, in this present study, the sol-gel technique
has been employed to form a tantalum and strontium ion-doped hybrid HA layer coating onto the
titanium (Ti)-alloy substrate. In this study, the surface modification was completed by using 3%
tantalum pent oxide (Ta2O5), 3% strontium (Sr), and a combination of 1.5% Ta2O5 and 1.5% Sr as
additives, along with HA gel by spin coating technique. These additives played a prominent role
in producing a porous structure layer coating and further cell growth. The MG63 cell culture assay
results indicated that due to the incorporation of strontium ions along with tantalum embedded
in HA, cell proliferation increased significantly after a 48 h study. Therefore, the present results,
including microstructure, crystal structure, binding energy, and cell proliferation, showed that the
additives 1.5% Ta2O5 and 1.5% Sr embedded in HA on the Ti–substrate had an optimized porous
coating structure, which will enhance bone in-growth in surface-modified Ti-implants. This mate-
rial had a proper porous morphology with a roughness profile, which may be suitable for tissue
in-growth between a surface-modified textured implant and bone interface and could be applicable
for dental implants.

Keywords: dental materials; implants; titanium; surface texture; HA; tantalum pent oxide; strontium;
composite; in vitro; implantology

1. Introduction

Titanium and its alloys are used as load-bearing implants in orthopedic applications
and in dental implantations due to their biocompatibility [1]. Even though implants with
titanium material have achieved a high success rate, failures have occurred in the early
stages due to primary stability, peri-operative contamination, and overload are the causes
for implant failure [2]. Proper surface preparation on titanium surface plays a beneficial
role for better osseointegration [3]. Initially, changes in the surface roughness of titanium
have improved bonding, such as bone ingrowth between bone and implant contact [4].
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Infections related to biofilm are one of the representations and lead to implant loosening [5].
To overcome this issue, the chemical treatment on the surface titanium implants had shown
prominent early bone formation around implants [6]. The micro and nano texturing by
micromachining laser-based treatments had been tried on a titanium implant. Their surface
texturing improved the adhesive bonding, which was evaluated by a shear test on a lap
joint configuration of Ti6Al4V alloy when compared with a plain surface [7]. Some other
researchers performed texturing based on micro-electrical discharge [8]. In another study,
surface modification was completed by considering textures, namely spherical, diagonal,
moon patterns and honeycomb patterns [9]. For the prevention of implant infection, coat-
ing materials having biodegradable polymers in combination with calcium phosphate on
titanium and titanium alloy surfaces were investigated [10]. One of the widely used ceram-
ics for coating is hydroxyapatite (HA) bioceramic coating material [11]. HA is the most
biocompatible, stable, and bone-like structure [12]. A tantalum pentoxide (Ta2O5) coating
deposited onto a titanium substrate promoted the formation of an apatite layer, which can
enhance the bioactivity of the substrate, and the coating also exhibited corrosion resistance
by forming a bi-layered structure [13–15]. Another coating that promoted osseointegra-
tion on titanium was strontium ion, and this coating material formed dense new bone
through an in vivo study [16,17]. A similar kind of work was conducted with strontium
(Sr) alone [18] and with Sr combined with silver oxide (Ag2O) coated on titanium [19,20].
Their results showed good bone formation without any toxicity.

After a thorough review of the related research studies, it has been noticed that the
sol-gel technique is one of the most facile methods. In the present study, we aimed to
apply the sol-gel method to a hybrid HA layer coating on a surface-modified Ti-substrate.
HA has been selected as the base coating ceramic material on the surface-modified Ti-
substrate as per our prediction made in a theoretical study [21]. HA had been shown
to be the best coating material among the widely used ceramic coating materials since it
produced the lowest residual stress during compressive load transfer from the crown to
the implant [22]. In this regard, doping with tantalum and strontium in HA showed better
corrosion resistance and bone-in growth of the coating [11,13,18–20]. Therefore, 3wt%
Ta2O5 or 3wt% Sr was added to HA, and a combination of 1.5wt% Ta2O5 or 1.5wt% Sr was
added to HA to prepare hybrid HA coating materials on Ti substrates using the sol gel
process. This investigation also aimed to precisely analyze the morphological, chemical,
structural surface characteristics, and binding energy properties of tantalum or strontium
in combination with HA.

2. Materials and Methods
2.1. Sol Gel Preparation

The four different gels, such as hydroxyapatite (HA) [23], HA with a combination of
strontium (Sr) [24], or tantalum pentoxide (Ta2O5), were produced [25]. All the additive
reagents (minimum 99.0% purity) were purchased from Alfa Aesar, Russia. Initially, for
the preparation of HA (Ca10(PO4)6(OH)2), a 60 mL solution of a 1:4 (w/v) ratio of calcium
nitrate to ethanol was stirred for 30 min at a constant speed of 1000 rpm using a magnetic
hot plate. Another 60 mL solution of a 1:5 (v/v) ratio of phosphoric acid (H3PO4) to
ethyl alcohol was prepared by stirring for 30 min at a constant speed of 600 rpm at room
temperature. After preparation, the later solution was mixed with the first solution drop
wise with continuous stirring at 900 rpm, and the temperature increased gradually up to
80 ◦C for 16 h until a thick solution of HA was formed. For the preparation of sol-gel of
(3wt% Ta2O5 + 97wt% HA), in a 10 mL solution of a 12.3:1 (w/v) ratio of Ta2O5 to ethanol,
the 15 mL of phosphoric acid (30% H3PO4) containing 5% (w/w) pure polyethylene glycol
(PEG, MW400) was added and kept stirring vigorously for 2 h to get a transparent. In this
study, excess phosphate group of not toxic H3PO4 was used to form strong bond between
the coating and substrate [26,27]. Furthermore, the additive gel was added to the 4 g freshly
prepared HA gel as mentioned above and stirred for 30 min at 900 rpm constantly until
a homogeneous mixture was obtained. A similar process was followed to prepare the



Materials 2023, 16, 1499 3 of 18

sol-gel of (3wt% Sr + 97wt% HA), where a 10 mL solution of a 12.3:1 (w/v) ratio of Sr was
used instead of Ta2O5. Similarly, for the preparation of sol-gel of (1.5wt% Ta2O5 + 1.5wt%
Sr + 97wt% HA), a 10 mL solution of a 12.3:1 (w/v) ratio with an equal amount of Ta2O5 and
Sr was used instead of only Ta2O5 or Sr. The sample codes of coatings that were applied to
a Ti substrate and their compositional details are illustrated in Table 1.

Table 1. The sample codes of coating and their compositional details.

Sample Code of Coating Sample Details

HA HA coated Ti
TaHA 3% Ta2O5 + 97% HA coated Ti
SrHA 3% strontium (SR) + 97% HA coated Ti
SrTaHA 1.5% strontium (SR) + 1.5% Ta2O5 + 97% HA coated Ti

2.2. Surface Modification of Titanium

Commercial titanium (Ti) plates of grade 5 were used as substrates. The commercial
Ti plates were then polished by using emery papers of different grades, such as 400, 600,
and 1200, successively. Initially, a plain Ti plate of 30 mm × 30 mm was surface-modified
with the desired design, i.e., ‘U’ shape, obtained from our previously reported work [28],
using a wire electrical discharge machine (EDM, Sodick model Ezeecut plus/EZ01) with
brass wire of 0.25 mm diameter used as the tool electrode at an electrode pulse current of
1 to 3 amps. After surface modification, the samples were made into 10 mm ×10 mm with
2 mm thick plates as shown in Figure 1.
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Figure 1. Surface modification of titanium sample with ‘U’ shape using electrical discharge ma-
chine (EDM).

2.3. Sol-Gel Coating

The surface-modified substrates were initially preheated up to 50 ◦C, and they were
fabricated layer-by-layer of HA using spin coating at 3000 rpm for 20 s (see Figure 2) [29].
In this method, the micro bubbles were minimized, and a uniform coating on titanium
subtracts was obtained by storing the coated samples in a vacuum desiccator. Prior to the
sintering process, the coated specimen was heated to 150 ◦C initially in a hot-air oven with
the first layer of HA, and it was then allowed to calcine again in the oven at 200 ◦C for
15 min; in the second step, the same specimen was coated with another layer of HA for
developing the HA coating sample. However, for the other coatings, named as TaHA, SrHA,
and SrTaHA, the corresponding gels of TaHA, SrHA, and SrTaHA were separately applied
drop wise (nearly 59.8 mg) on the first HA layer being coated over the Ti substrate [30]. All
the TaHA, SrHA, and SrTaHA gel coated samples were calcined at 200 ◦C for 15 min (see
Figure 3).
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2.4. Sintering Steps

The all-calcined gel-coated specimens were sintered at 500 ◦C. The sintering process
was performed very slowly in a 3-step sintering technique for doping the tantalum and
strontium ions into the HA using a PID controller in a programmable muffle furnace [30,31].
In the first step, the samples are heated up to 100 ◦C for 1 h. Furthermore, in second step,
the temperature was raised to 350 ◦C and held for 2 h. Finally, the temperature was again
raised to 500 ◦C with isothermal soaking for 11/4 h followed by furnace cooling to get fine,
crack-free crystallization [30].
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2.5. Characterizations

After sintering, all the coated specimens were analyzed precisely. The crystal structure
property was characterized by X-ray diffraction (XRD) using an X-ray diffractometer (XPert
Pro, PANalytical, Almelo, The Netherlands) in the diffraction angle 2θ range of 10–90◦.

The microstructures of the sintered sample specimens were analyzed using an inverted
metallurgical microscope (BX-KMA-LED, Olympus, Tokyo, Japan) and a high-resolution
scanning electron microscope (HRSEM, Apreo S, Thermosceintific, Waltham, MA, USA). All
the HRSEM images were captured in the secondary electron mode. The energy dispersive
spectroscopy (EDS) that is in-built with the HRSEM machine was used to check the presence
of several elements used in the sol-gel process.

Fourier-transformed infrared (FTIR) spectra of the coated specimens were recorded
at a wavenumber range of 400–4000 cm−1 with an FTIR spectroscope (IRTRACER 100,
SHIMADZU, Kyoto, Japan). This analysis was performed to better understand the presence
of functional groups and their interaction with the coated surfaces. X-ray photo electron
spectroscopy (XPS) was employed to identify the chemical constituents and elemental
states of the different coated Ti samples very precisely. The binding energy of the samples
for their constitute elements tantalum (Ta), carbon (C), phosphorus (P), calcium (Ca) and
oxygen (O) was computed form the XPS result. A non-contact, 3D surface topography was
recorded by Optical Profilometer (MicroXAM-800, KLA corporation, Milpitas, CA, USA).

A nanoindentation study was conducted at both lower (20 mN) and higher (100 mN)
loads to evaluate the local mechanical properties of the coating material by using NIOS
Nanoscan (Ostec Corporation Group, Moscow, Russia). The indenter’s shape was a Berkovich
triangular pyramid diamond Nano indenter.

An in-vitro immersion test was conducted for the coated samples by immersing them
in simulated body fluid for seven days at room temperature according to the protocol
reported previously [29]. Osteoblast-like MG63 cells (Sigma Aldrich, Burlington, MA, USA)
were studied in a culture assay on the porous coated materials in 24-well culture flasks
ingrown in Dulbecco’s modified Eagle medium (DMEM, Gibco, Grand Island, NY, USA)
supplemented with 10% fetal bovine serum (FBS, Bio-west) and 1% penicillin-streptomycin
(Pen-Strep antibiotic). The culture cells at a density of 0.5 × 104 cells/mL cells/well
(96-well plate) were incubated in a 24-well tissue culture plate at 37 ◦C in a 5% CO2 and
95% humidified air atmosphere for 24 h and 48 h [32,33]. The cell viability was determined
by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The
MTT yellow dye was dissolved in phosphate-buffered saline, PBS (Himedia, Maharashtra,
India), which was used to react with the live MG63 osteoblast-like cells. As a result, the
tetrazolium salt was reduced to purple formazan crystals by the metabolic activity of the
mitochondrial succinate dehydrogenase enzyme. Then dimethyl sulfoxide solution (DMSO,
Sigma Aldrich, St. Louis, MO, USA) was used to dissolve the formazan crystals [34,35]. It
helped to measure the optical density (OD) intensity of the purple colour solution which
directly attributed to the concentration of live cells present [36]. The dissolved formazan
crystals had an absorbance maximum of 575 nm when scanned in a plate reader (Thermo
Fisher Scientific, Waltham, MA, USA). The OD values were recorded for computing the
cell proliferation rate. In this study, a control contained cells without any specimen,
a surface-modified titanium without any coating referred as vehicle control, and different
four coatings as samples were used for in vitro cell culture study. Triplicates of each
specimen were employed for this study. Apart from OD measurement, cell proliferation
behaviour was also conducted by cell morphology test using optical microscopy.

3. Results and Discussion
3.1. XRD Study

X-ray diffraction patterns of surface-modified titanium substrate, HA-coated Ti,
3% Ta2O5 gel coated Ti, 3% Sr gel coated Ti, and 1.5% Ta2O5 + 1.5% Sr coated Ti are
depicted in Figure 4, respectively. The doping of the tantalum and strontium ions into
the HA was confirmed by an XRD study. The crystallite size (t) was calculated using the
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Debye–Scherer relation (Equation (1)) [37] for different phases (viz., Ti, Ta2O5, and TiP2O7),
and the peak intensity ratios for (001) Ta2O5 to (002) Ti and (630) TiP2O7 to (002) Ti of XRD
samples are illustrated in Tables 2 and 3, respectively.

t =
kλ

βcosθ
(1)

where, k is shape factor considered as a most widely used constant value of 0.89, λ is wave-
length of CuKα radiation (i.e., 1.54056Å), β is half width full maxima, FWMH (included
instrumental broadening), and θ is Braggs’ angle.
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Table 2. Crystallite size of different phases of samples obtained in XRD.

Samples Crystallite Size in nm

Phases
U-Shaped

Surface
Modified Ti

HA SrHA TaHA SrTaHA

HA(111) - 22.31 86.70 94.36 113.22
TiP2O7(660) - 7.76 30.04 41.51 36.09
HA(210) - 7.73 28.77 40.64 33.39
Ti(100) 43.01 43.01 32.82 32.82 38.00
Ti(002) 195.33 193.21 2727.67 154.58 220.92
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Table 3. Peak intensity ratio of different phases found in XRD.

XRD
Plane Peak HA SrHA TaHA SrTaHA Peak Intensity Ratio of

Sample/Specific Crystal Planes

HA(111) 0.100 0.7951 0.6262 0.3741 IHA(111)/IHA(111) in HA
TiP2O7(660) 0.100 1.0649 0.7458 0.4812 ITiP2O7(660)/ITiP2O7(660) in HA
HA(210) 0.100 0.9952 0.5923 0.4608 IHA(210)/IHA(210) in HA
Ti(100) 0.7837 0.5261 0.4167 0.2964 ITi(100)/ITi(100) in Ti
Ti(002) 0.9793 0.7155 0.4758 0.6293 ITi(002)/ITi(002) in Ti

Based on Figure 4, it has been found that XRD peaks of the surface-modified titanium
substrate resembled α-Ti phase of hexagonal crystal structure (JCPDS No. 00-005-0682).
The crystallite size at (111) was increased with the doping of Ta and Sr in the SrTaHA
specimen compared with HA. For TiP2O7, the peak of the HA(210) crystal plane increased
for TaHA. Moreover, the amorphous nature of HA specimens individually doped with
Ta and Sr shown in Figure 4c,d, respectively, was found to decrease in the HA sample
doped with Ta and Sr together, showing more crystalline peaks in Figure 4e, which might
be due to less porosity. It is a supportive indication of strong bond formation between the
Ti substrate and SrTaHA coating.

3.2. Microstructure Analysis

After sintering, all the coated specimens were analyzed with a morphological study
using an optical microscope as well as an HRSEM. The elemental analysis was recorded
by EDS for sintered HA, TaHA, SrHA, and SrTaHA-coated titanium samples. Both optical
and HRSEM microstructures are shown in Figures 5 and 6, respectively. The results
showed that the pore size distribution obtained through ImageJ Software was found to
be in the range of 8.5 to 25.7 µm for HA, 18 to 89.3 µm for TaHA, 234.1 to 326.6 µm for
SrHA, and 60.48 to 107 µm for SrTaHA. The porous structure has many advantages for
the cell adhesion functionality of the scaffold biomaterials [28,38–40]. Furthermore, the
direct contact between the substrate and the coating was possible due to the presence of
micropores. For HA, the pore size was found to be limited up to 25.7 µm, but with the
doping of additives, the pore size increased up to 326.6 µm.
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Figure 6. High resolution scanning electron microscopic images of (a) HA, (b) TaHA, (c) SrHA, and
(d) SrTaHA.

The elemental existence of the desired elements present in the coated samples is
evidently depicted in Figure 7. In this study, commercial Ti alloys are composed of Ti,
aluminium (Al), and vanadium. The Al peak in all the materials appeared as an excess
amount attributed to the Al stub used in SEM performance.

3.3. FTIR Spectroscopy

Figure 8 represents the FTIR spectra of surface-modified titanium substrates, with
HA, TaHA, SrHA, and SrTaHA-coated samples. It can be observed that the metallic
Ti substrate’s surface-modified substrate did not present any significant IR peaks since
there was no functional bond present in Ti alloy, but the other four coated samples had
shown some significant IR peaks, which attributed to coating materials. After coating
Ti-substrate with HA, a small peak around 3400 cm–1 was found for molecular O–H in
addition to the significant peaks at around 920 cm–1 and 1050 cm−1 correspond to P-O
phosphate groups present in HA [37]. A small peak at around 1320 cm–1 attributed to Sr–O
might be formed during processing, as was found for the SrHA-coated sample [41]. The
peaks at wavelengths of 558 and 619 cm–1 attributed to the O≡3Ta or Ta–O–Ta stretching
vibrations [41], and the peak at 2328 cm–1 may be attributed to Ta–O vibration mode, found
for TaHA coated samples [42,43]. Both Ta–O and Sr–O peaks were found in addition to the
peaks at around 937 cm–1 and 1020 cm–1 that correspond to P–O of pyrophosphate from
titanium pyrophosphate (Ti2P2O7) for the SrTaHA coating samples [44].
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3.4. Surface Roughness Measurement

Among the surface topology parameters, the average surface roughness (Ra) is one of
the important parameters [45]. As shown in Figure 9, the surface-modified titanium coated
with HA, TaHA, SrHA, and SrTaHA coatings showed surface profiles and variations
in Ra values of 0.474, 0.478, 0.58, and 0.514 µm, respectively. Initially, HA had a lesser
surface roughness compared with a combination of tantalum or strontium. In this study,
strontium-doped HA showed the highest surface roughness compared with the other
coated samples. After combining tantalum and strontium in HA, the coating showed lower
surface roughness compared with SrHA. As found in Figures 6 and 9, the surface roughness
and porosity had higher values for SrTaHA and SrHA compared with HA coating [46,47].
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3.5. XPS Analysis

The XPS results shown in Figure 10 represent the surface chemistry of the three selected
samples, such as sintered TaHA, SrHA, and SrTaHA-coated samples. The binding energy
(BE) shifting of the elements present at the coating surface indicates the type of chemical
bonding formation at the surfaces, as illustrated in Table 4. The related XPS peaks also
resemble those of the HA coating, as shown in our previous study [30] and other studies [48].
The binding energies of the elements present in HA have shifted slightly because of Ta and
Sr. The XPS spectra of various elements presented in all the coated materials at a selected
binding energy region are depicted in Figure 11.
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Table 4. Binding energy (BE) and atomic percentage of the elements present at the coated surface.

Elements TaHA SRHA SRTaHA Origin
BE [eV] At% BE [eV] At% BE [eV] At%

O1s 532.2 52.6 532.5 55.4 532.2 58.8 Ta2O5
C1s 284.7 38.2 284.7 24.7 284.7 20.9 C–C of PEG
Ca2p 347.38 0.1 347.99 0.4 347.41 0.3 HA
P2p 133.8 8.9 134.3 17 134.4 16.9 Pyrophosphate
Ta4f 24.7 0.3 - - 24.95 0.4 Ta2O5
Sr3d - - 134.7 2.6 134.54 2.6 Strontium



Materials 2023, 16, 1499 12 of 18

Materials 2023, 16, x FOR PEER REVIEW 12 of 18 
 

 

Table 4. Binding energy (BE) and atomic percentage of the elements present at the coated surface. 

Elements TaHA SRHA SRTaHA Origin 
 BE [eV] At% BE [eV]  At% BE [eV] At%  

O1s 532.2 52.6 532.5 55.4 532.2 58.8 Ta2O5 
C1s 284.7 38.2 284.7 24.7 284.7 20.9 C‒C of PEG 
Ca2p 347.38 0.1 347.99 0.4 347.41 0.3 HA 
P2p 133.8 8.9 134.3 17 134.4 16.9 Pyrophosphate 
Ta4f 24.7 0.3 - - 24.95 0.4 Ta2O5 
Sr3d - - 134.7 2.6 134.54 2.6 Strontium 

 
Figure 10. XPS spectra with all elements of (a) TaHA (b) SrHA and (c) SrTaHA coatings. 

 
Figure 11. XPS spectra of various elements present in all the coated materials at selected binding 
energy region. 

Figure 10. XPS spectra with all elements of (a) TaHA (b) SrHA and (c) SrTaHA coatings.

Materials 2023, 16, x FOR PEER REVIEW 12 of 18 
 

 

Table 4. Binding energy (BE) and atomic percentage of the elements present at the coated surface. 

Elements TaHA SRHA SRTaHA Origin 
 BE [eV] At% BE [eV]  At% BE [eV] At%  

O1s 532.2 52.6 532.5 55.4 532.2 58.8 Ta2O5 
C1s 284.7 38.2 284.7 24.7 284.7 20.9 C‒C of PEG 
Ca2p 347.38 0.1 347.99 0.4 347.41 0.3 HA 
P2p 133.8 8.9 134.3 17 134.4 16.9 Pyrophosphate 
Ta4f 24.7 0.3 - - 24.95 0.4 Ta2O5 
Sr3d - - 134.7 2.6 134.54 2.6 Strontium 

 
Figure 10. XPS spectra with all elements of (a) TaHA (b) SrHA and (c) SrTaHA coatings. 

 
Figure 11. XPS spectra of various elements present in all the coated materials at selected binding 
energy region. 
Figure 11. XPS spectra of various elements present in all the coated materials at selected binding
energy region.

3.6. Immersion Test

An in vitro immersion study was conducted for coated samples by immersing them
in a simulated body fluid (SBF) solution for seven days at 37 ◦C. The freshly prepared
body fluid (Hank‘s solution), which is the same as human body fluid (0.42 g of KCl2, 0.21 g
of NaHCO3, 0.25 g of CaCl2, 0.063 g of KH2PO4, and glucose), was used at pH 7 for this
analysis [33,49]. The immersion test was carried out for up to seven days, and the different
weight changes and corresponding pH values of the four coated samples are illustrated
in Table 5. The qualitative optical images of the immersion test results are depicted in
Figure 12, where apatite crystals are visible on the samples, with more on HA and TaHA
samples. Except SrHA, all the samples showed increased in weight indicating the appetite
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formation on the samples. However, negative change in weight by SrHA indicates that
coating material partially dissolved in the solution.

Table 5. Weight change ratio of the samples.

Composition Initial Weight pH Day 5 pH Day 7 pH

(mg) Change in
wt%

Change in
wt%

HA 908 7 1.38 7.32 1.76 7.98
TaHA 960.3 7 2.24 7.11 1.33 7.74
SrHA 1025.3 7 −4.78 7.24 −4.80 7.74

SrTaHA 957 7 1.42 7.54 0.76 7.64
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3.7. Nano Indentation

At a lower load, i.e., 20 mN, the hardness results were found as lesser values 0.1,
0.284, 0.139, and 0.29 GPa, respectively, due to less contact area where the corresponding
Young’s modulus were 3.9, 21.1, 7.6, and 35.75 GPa for HA, TaHA, SrHA, and SrTaHA,
respectively. At a higher load i.e., 100 mN, the hardness results were found as lesser values
0.069, 0.411, 2.892, and 0.293 GPa, respectively, and their corresponding Young’s modulus
for HA, TaHA, SrHA, and SrTaHA are 43.55, 61.96, 77.71, and 57.21 GPa, respectively. At
a higher load, Young’s modulus values were closer to the standard values. Figure 13 shows
the corresponding nanoindentation load vs displacement graph of the samples. It has been
observed that no discontinuity was observed in both loading and unloading data, which
indicates no cracks are propagated throughout the indentation measurement at lower loads
(20 mN) [50]. However, at higher loads (100 mN), all the samples had shown crack behavior,
but TaSrHA coating showed relatively less crack behavior. It has to be emphasized that
the addition of strontium ions and tantalum ions may distort the molecular structure of
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HA and, thus, the surface energy of the doped HA coating, as other ions had shown some
effect on the HA by different researchers [51,52]. As a result, surface roughness as well as
modulus of the coating had changed [46,47].
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3.8. MTT Assay: Cell Proliferation

In the MTT assay, surface-modified Ti was used as a vehicle control, and the other
four were used as coating samples. The optical density results of these samples after 24 h
and 48 h are shown in Figure 14. The OD data indicate the number of cells present on
the surface of the coating samples. In this study, the MTT crystals being dissolved in PBS
reacted with the cells present in the respective wells [34,35]. The higher OD represents the
larger quantity of cells present in the well and, thus, on the coating samples.
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Figure 15 presents the morphology and nature of the osteoblast-like cells after reacting
with the four different coating materials for 24 and 48 h. It has been observed that the
MG63 cells tend to be spheroidal in nature with time, as found in controls and other coating
materials. It has also been found that the MG63 cell distribution at 24 h for SrHA was better,
and after 48 h, both the combinations of strontium and tantalum, i.e., SrTaHA, had shown
a better result with a higher number of cell growth. This result also evidently supports the
OD data of the MTT assay.
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4. Conclusions

In the present study, the commercial Ti-plate was successfully surface-modified with
a desired shape (i.e., ‘U’) suitable texture for coating using a wire cutting process. The
textured Ti substrates were further coated with four different coatings of HA, TaHA, SrHA,
and SrTaHA using a sol-gel method where the role of tantalum and strontium ions doping
on the hydroxyapatite has been compared. The average pore size of the porous coatings
was found to be the minimum for HA (8.5 µm) coating, but by introducing strontium, the
average pore size became higher and was found to be the maximum value of 326.6 µm for
SrHA coating. Interestingly, after doping with strontium and tantalum ions together, the
pore size was optimized to 107 µm for SrTaHA, which would help to grow the cells with
appropriate support. Furthermore, the higher surface roughness value of SrTaHA resulted
in a higher HA(111) crystallite size in SrTaHA coating compared with HA coating, which
can be attributed to the effect of Sr on HA crystal structure. The in vitro osteoblast-like cell
culture study via MTT assay indicates that the coated samples underwent an attractive
bioconjugate process even after 2 days. This in vitro cellular assay result indicates that the
SrHA and SrTaHA coatings have shown excellent biocompatibility with the osteoblast-like
cells. Since best cell proliferation was shown in the SrTaHA coating, the newly developed
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surface-modified coated Ti alloy by strontium and tantalum ions doped SrTaHA would
have many potential functions in dental implantation applications.
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