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Abstract: Several theories have been proposed to explain the mechanisms of substance use in
schizophrenia. Brain neurons pose a potential to provide novel insights into the association between
opioid addiction, withdrawal, and schizophrenia. Thus, we exposed zebrafish larvae at 2 days
post-fertilization (dpf) to domperidone (DPM) and morphine, followed by morphine withdrawal.
Drug-induced locomotion and social preference were assessed, while the level of dopamine and the
number of dopaminergic neurons were quantified. In the brain tissue, the expression levels of genes
associated with schizophrenia were measured. The effects of DMP and morphine were compared
to vehicle control and MK-801, a positive control to mimic schizophrenia. Gene expression analysis
revealed that α1C, α1Sa, α1Aa, drd2a, and th1 were up-regulated after 10 days of exposure to DMP
and morphine, while th2 was down-regulated. These two drugs also increased the number of positive
dopaminergic neurons and the total dopamine level but reduced the locomotion and social preference.
The termination of morphine exposure led to the up-regulation of th2, drd2a, and c-fos during the
withdrawal phase. Our integrated data implicate that the dopamine system plays a key role in the
deficits in social behavior and locomotion that are common in the schizophrenia-like symptoms and
opioid dependence.

Keywords: addiction; behavior; calcium channel; domperidone; dopamine; morphine; schizophrenia;
zebrafish

1. Introduction

Substance use disorders and schizophrenia often co-occur. According to epidemiologi-
cal studies, patients with schizophrenia have serious problems with alcohol dependence,
smoking, and illicit drug dependence [1–3]. Addiction to several drug classes, including
cannabis, methamphetamine, and cocaine, occurs commonly in patients with schizophre-
nia [2]. The prevalence of these substance use disorders is significantly elevated among
schizophrenics compared to individuals with other psychiatric diagnoses or the general
population [4–6]. Patients with first episode psychosis were more likely to be cannabis
users [7], and therefore adolescent cannabis might increase the risk of schizophrenia [8–10].
Moreover, illicit drugs worsen schizophrenia symptoms, limit treatment compliance, in-
crease psychotic relapse and hospitalization, and increase the risks of readmission and
suicide [11–17]. There are some explanations for the link between schizophrenia and ad-
diction, and one of them suggests that these two disorders are influenced by a common
biological trait.

Dopaminergic dysfunction is thought to play a role in the biological hypotheses of
both schizophrenia and addiction. It was suggested that dopaminergic hyperactivity could
be responsible for the positive symptoms of schizophrenia [18]. Patients with schizophre-
nia show increases in subcortical synaptic dopamine content [19,20] and increased basal
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dopamine synthesis capacity [21–23]. On the contrary, the negative symptoms are associ-
ated with dopaminergic deficiency in the prefrontal cortex [18,24]. Due to the heterogeneity
of negative symptoms, certain symptoms such as motivation impairment, underlying
avolition, asociality, and anhedonia can derive from specific dopamine (DA) pathophysio-
logical mechanisms [25]. Dopaminergic innervations from the ventral tegmental area to
the basolateral amygdala are involved in emotional processing and associative learning
of rewarding and aversive stimuli. An anatomical difference in these projections between
males and females indicates sex differences in motivational and emotional behaviors and
related psychiatric dysfunctions [26]. Alterations of the DA-dependent response of the
ventral striatum to reward anticipation could be the cause of these motivational deficits,
which are associated with a reduced sensitivity to reinforcers and pleasure [25,27]. Elevated
striatal DA levels, which may be important in schizophrenia, are attributable to deficits in
glutamate synapses and synaptic plasticity [28].

Addiction is a dysregulation by a pathological imbalance of the brain’s reward systems.
Most of the drugs of abuse induce the increase of extracellular DA concentration in the
limbic regions, including the nucleus accumbens (NAc) [29,30], via interaction of different
DA receptors [31]. These psychoactive drugs include stimulants [32,33], nicotine [34],
alcohol [35], and marijuana [36]. Increases in DA levels are crucial in coding, predicting,
and motivating the acquisition of reward [37]. Through conditioning of motivation of
reward procurement, a neutral stimulus which is linked with the reinforcer, activates rapid
DA release in the striatum, encoding reward-directed behaviors [38].

Various clusters of dopaminergic neurons with different anatomical positions and
functions are localized in the diencephalon, mesencephalon, and the olfactory bulb [39].
DA is synthesized in the neurite of dopaminergic neurons, regulated by a set of enzymes
including tyrosine hydroxylase (TH) and dopa decarboxylase (DDC). The amino acid tyro-
sine is converted into 3,4-dihydroxyphenylalanine (DOPA), the precursor of DA by TH, a
rate-limiting enzyme in DA biosynthesis. Following that, DDC catalyzes the irreversible
decarboxylation of DOPA, followed by the production of DA [40,41]. Finally, DA is released
at the nerve terminals to activate post-synaptic DA (D1- or D2-type) receptors, and presy-
naptic D2-type autoreceptors. D1- and D2-type receptors are linked to stimulation and
inhibition of adenylate cyclase respectively, where the latter is involved in the regulation of
DA synthesis, metabolism, and release [42,43].

The firing of an action potential in response to depolarization of neurons relies on
a number of different types of voltage-gated ion channels that are permeable to sodium,
potassium, chloride, and calcium. The former three ions support a predominantly electro-
genic role, while calcium ions alter membrane potentials and serve as important signaling
entities [44]. Voltage-gated calcium channels (CaVs) are categorized into two major groups.
High voltage-activated (HVA) channels are activated by large membrane depolarizations,
while low voltage-activated (LVA) channels are triggered by smaller voltage changes [45,46].
L-type calcium channels (LTCCs or Cav1), members of the high-voltage activated family,
are widely expressed in the central nervous system [47]. LTCCs have been suggested to
mediate DA D2 receptors (D2R) responses [48]. Recently, genes encoding CaVs have been
implicated in psychiatric disorders [49–51]. Notably, cacna1 gene encoding CaV subunit
alpha 1, the pore-forming α1 subunit, has been associated with schizophrenia, as elucidated
by previous genetic and biological studies [52–56]. However, the role of these CaV-encoding
genes in the pathophysiology of schizophrenia remains unexplored.

Zebrafish (Danio rerio) are fast-emerging as a powerful model to study psychiatric
diseases due to its numerous advantages [57]. Zebrafish possess about 70% gene homology
to humans [58] and share similar brain architecture with humans [59]. Furthermore,
neurotransmitter systems are conserved between zebrafish and mammals, allowing for
the translation of neurotransmission changes and associated developmental and disease
pathways [60]. The dopaminergic system in zebrafish, which is fully formed by 96 h post-
fertilization (hpf), has been widely studied [61]. Another important advantage is their high
fecundity, which makes them easy for high-throughput drug screening [57]. Lastly, their
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transparency at early stages of development allows for non-invasive in vivo imaging using
transgenic reporter lines.

Considering drug abuse and negative symptoms in schizophrenia are largely related
to the DA activity in the ventral striatum [30,62–65], it is suggested that there is a pos-
sible link between addiction and schizophrenia. Based on the considerable comorbidity
between schizophrenia and drug abuse, we were interested in using a zebrafish model to
elucidate the differential effects of morphine and domperidone (DMP), a D2R antagonist
on dopaminergic neurons leading to alterations in gene expression, dopamine synthesis,
locomotor, and social behaviors.

2. Results

The short-term exposure to MK-801 significantly enhanced their locomotion activity.
In contrast to MK-801, DMP and morphine reduced swimming activity (Figure 1A). When
the larvae were exposed to these three drugs for 10 days, we observed a depression of loco-
motor activity (Figure 1B). Increased locomotor activity in zebrafish larvae in response to
morphine withdrawal was observed after the termination of short- and long-term morphine
exposure (Figure 1C,D). Apart from the difference in locomotor activity, all treated groups
demonstrated a different travelling distance from the control group. When comparing
with locomotor activity (Figure 1A,B), the short- and long-term treated larvae showed
a similar trend in travelling distance (Figure 2A,B). However, the morphine withdrawal
groups displayed a different swimming pattern. Although they crossed the central line
with higher frequency (Figure 1C,D), they merely swam close to the central line, resulting
in low travelling distance (Figure 2C,D).

While the controls exhibited a strong, positive, assortative preference toward con-
specifics, the other three treated groups, by contrast, showed significantly decreased so-
ciability (Figure 3A,B). During the morphine withdrawal periods, the larvae still did not
preferentially associate with conspecifics (Figure 3C,D). The larvae from all the treated
groups displayed different degrees of avoidance to conspecifics (Figure 4).
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Figure 1. Effects of (A) short-term (F (3, 140) = 42.92, p = 0.01) and (B) long-term (F (3, 140) = 114.29,
p = 0.00) exposure to MK801, DMP, and morphine, and after withdrawal of (C) short-term
(t (70) = 35.30, p = 0.00) and (D) long-term (t (70) = 177.64, p = 0.00) morphine treatment on the
locomotor activity. Data expressed as mean ± SEM, n = 12 of 3 independent experiments. Different
alphabets indicate statistically significant values, p < 0.05. Drug abbreviation: DMP, domperidone.
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displayed different degrees of avoidance to conspecifics (Figure 4). 
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Figure 2. Effects of (A) short-term (F (3, 140) =46.84, p = 0.01) and (B) long-term (F (3, 140) = 124.51,
p = 0.01) exposure to MK801, DMP, and morphine, and after withdrawal of (C) short-term
(t (70) = 32.81, p = 0.04) and (D) long-term (t (70) = 184.32, p = 0.01) morphine treatment on the
total distance travelled of zebrafish larvae (mm/5 min). Data expressed as mean ± SEM, n = 12
of 3 independent experiments. Different alphabets indicate statistically significant values, p < 0.05.
Drug abbreviation: DMP, domperidone.
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Figure 3. Effects of (A) short-term (F (3, 140) =42.92, p = 0.00) and (B) long-term (F (3, 140) = 114.29,
p = 0.00) exposure to MK801, DMP, and morphine, and after withdrawal of (C) short-term
(t (70) = 35.31, p = 0.03) and (D) long-term (t (70) = 177.64, p = 0.00) morphine treatment on the social
preferences of zebrafish larvae (sec/5 min). Data expressed as mean ± SEM, n = 12 of 3 independent
experiments. Different alphabets indicate statistically significant values, p < 0.05. Drug abbreviation:
DMP, domperidone.
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Figure 4. Tracked trajectories for control, MK801, DMP and morphine treated larvae after being
subjected to conspecific larvae. Effects of (A) short-term and (B) long-term exposure to MK801, DMP
and morphine, and after withdrawal of (C) short-term and (D) long-term morphine treatment on the
social preference. Drug abbreviation: DMP, domperidone.

Dopaminergic neurons were seen distributed in brain regions mainly in the periven-
tricular nucleus of posterior tubercule (TPp), posterior tuberculum (PT), caudal hypotha-
lamus (Hc), and locus coeruleus (LC). A noticeable increase was seen in the distribution
of dopaminergic neurons, especially in the PT region, between the control and the drug-
treated larvae (Figure 5A,B). Exposure to drugs, particularly MK801, was associated with a
significant increment of dopaminergic cell number (Figure 6A,B). Nonetheless, during the
morphine withdrawal, there was no significant difference in the number of dopaminergic
neurons between the control and the morphine treated group (Figures 5C,D and 6C,D).
Histograms (Figure 7A,B) show that all treatments increased concentration of DA, reflect-
ing increment of dopaminergic cell number. However, DA levels remained high during
morphine withdrawal (Figure 7C,D).
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Figure 5. Distribution of dopaminergic neurons in Tg (dat: EGFP) zebrafish. Representative confocal
images showing the location of dopaminergic nuclei in the brains of the larval zebrafish following
(A) short-term and (B) long-term exposure to MK801, DMP, and morphine, and after withdrawal of
(C) short-term and (D) long-term treatment of morphine. Drug abbreviation: DMP, domperidone.
Other abbreviations: LC, locus coeruleus; PT, posterior tuberculum; TPp, posterior tubercule.
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Figure 6. Effects of (A) short-term (F (3, 28) = 19.32, p = 0.00), (B) long-term (F (3, 28) = 10.74, p = 0.00)
exposure to MK801, DMP, and morphine, and after withdrawal of (C) short-term (t (14) = 18.78,
p = 0.00) and (D) long-term (t (14) = 6.33, p = 0.02) morphine treatment on cell counts in the PT region
of the zebrafish larvae brain. Data expressed as mean ± SEM, n = 8. Different alphabets indicate
statistically significant values, p < 0.05. Drug abbreviation: DMP, domperidone. Other abbreviation:
PT, posterior tuberculum.
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Figure 7. Effects of (A) short-term (F (3, 32) = 20.09, p = 0.00) and (B) long-term (F (3, 32) = 22.17,
p = 0.00) exposure to MK801, DMP, and morphine, and after withdrawal of (C) short-term
(t (16) = 206.7, p = 0.00) and (D) long-term (t (16) = 56.83, p = 0.00) morphine treatment on the
DA concentration (pg/mL) of the zebrafish larvae brain. Data expressed as mean ± SEM, n = 50
of 3 independent experiments. Different alphabets indicate statistically significant values, p < 0.05.
Drug abbreviation: DMP, domperidone. Other abbreviation: DA, dopamine.
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We found that eif4bp1 was up-regulated by all short-term drug treatments. In contrast,
α1Sa, drd2a, and th2 were down-regulated. Of the three drug treatments, only morphine
down-regulated th1 (Figure 8A). After long-term drug treatments, the gene expression
changed more dramatically as compared to short-term treatments. α1C, α1Sa, α1Aa, drd2a,
and th1 were up-regulated by all three drugs. Among these genes, MK-801 gave the
most prominent effect to α1C, α1Sa, and α1Aa, while DMP and morphine extensively up-
regulated drd2a and th1. C-fos was up-regulated by MK-801 and DMP, whereas eif4bp1 was
up-regulated by both MK-801 and morphine. Th2 was the only gene down-regulated after
long-term drug treatments (Figure 8B). When the larvae underwent morphine withdrawal
after short-term morphine exposure, c-fos, th2, and drd2a were down-regulated while th1
and eifbbp1 were up-regulated (Figure 8C). After long-term exposure to morphine, α1Aa,
c-fos, drd2a, th1, and eif4bp1 remained up-regulated during withdrawal. Surprisingly, the
expression of th2 was highly up-regulated (Figure 8D).
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(t (16) = 7.49, p = 0.01), drd2a (t (16) = 18.02, p = 0.00), th1 (t (16) = 18.11, p = 0.01), th2 (t (16) = 28.78,
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Int. J. Mol. Sci. 2023, 24, 4088 9 of 18

3. Discussion

DA neurons are characterized by the expression of D2R [66]. Findings suggest elevated
density of D2R in the brains of schizophrenia patients [19,67]. The encoding gene, drd2
expression, was found to be related with negative symptoms and positively correlated with
the deficit syndrome severity [68]. There are two drd2 orthologs in zebrafish, drd2a and drd2b,
due to the whole genome duplication in teleosts [69], which show a similarity of 27% and
66%, respectively, with human drd2 [70]. In the current study, all short-term drug exposures
led to suppression of drd2a. However, the long-term exposure to these drugs induced
upregulation of drd2a. NMDA antagonists such as MK-801 and 3-(2-carboxypiperazin-
4-yl)-propyl-1-phosphonic acid, a competitive NMDA receptor antagonist, have been
reported to upregulate postsynaptic drd2 [71–74]. These antagonists block the presynaptic
NMDA receptors on the dopaminergic projections [75,76] and inhibit the release of DA,
which results in an upregulation of postsynaptic drd2. Our observations regarding drd2a
elevation in long-term morphine treated and morphine withdrawn larvae further support
the previous finding regarding the association of increased drd2 to morphine dependence
and withdrawal [77]. In the present study, confocal microscopy analysis revealed that the
elevation of drd2a could be explained by the increased number of DA neurons.

TH is a rate-limiting enzyme which catalyzes the transformation of L-tyrosine to the
dopamine precursor (L-DOPA). This enzyme has been widely used as a molecular marker
of dopaminergic neurons. In zebrafish, TH is coded by th1 and th2 [78,79]. We found that
the expression of th1 after long-term drug treatments was comparable with the increase of
dopaminergic neurons. The increase of th1 was reflected by the number of DA neurons,
and this was further verified by the raise of DA level. In contrast, the expression of th2 was
significantly reduced in this study. Unlike th1, which is widely expressed in various brain
regions [79], the expression of th2 is restricted to the preoptic nucleus and the cerebrospinal
fluid-contacting neurons in the PT, and the intermediate and caudal hypothalamus, where
there is little co-expression of th1 [79,80]. These th2-expressing neurons are involved in
the maintenance of normal levels of spontaneous activity and production of swimming
behaviors [81,82]. Our data support the reduction of th2 expression could be associated
with the low number of movements after short- and long-term exposure to MK-801, DMP
and morphine. The highly expressed th2 in the larvae during morphine withdrawal after
long-term morphine exposure might be reflected by their hyperactive swimming behavior.

As an immediate early gene, c-fos serves as a marker of neuronal activation [83]. It has
been reported that MK-801 increased c-fos expression in the schizophrenia rat model [84].
The MK-801-induced c-fos expression in the long-term treatment group is in line with
previous findings. Surprisingly, morphine failed to induce c-fos expression after long-term
exposure. An increase of c-fos expression was observed only after termination of long-term
morphine treatment. Previous studies reported that morphine does not induce FOS [85,86].
However, opiate withdrawal increases the expression of the c-fos in different brain regions,
such as the NAc, amygdala, and GABAergic tail of the ventral tegmental area [87–90].
Although c-fos mRNA in zebrafish has been evaluated following various experimental ma-
nipulations [91], the effect of D2R antagonist on c-fos expression has not been investigated
in the larval brain. The blockade of D2R in the prefrontal cortex was reported to induce
c-FOS expression in the dorsomedial striatum, dorsolateral striatum, NAc shell, lateral
septal nucleus ventral part, and bed nucleus of the stria terminalis in mice [92]. This could
explain the significant upregulation of c-fos after long-term DMP treatment.

Voltage-gated calcium channels (Cavs) are transmembrane proteins activated by de-
polarization of membrane potential. Classically, dysfunction of Cavs has been linked to
neurological disorders including Parkinson’s disease, ataxia, migraine, and neuropathic
pain [93]. Cavs are being considered as molecular targets to treat several neurological
conditions including psychiatric disorders [50]. Cav1 channel subfamily comprises Cav1.1.
Cav1.2, Cav1.2, and Cav1.4 channels, while the Cav2 channel subfamily comprises Cav2.1,
Cav2.2, and Cav2.3. These channels are involved in the release of neurotransmitters. Cal-
cium ion influx via Cav1 postsynaptic channels activates phosphorylation of cyclic-AMP
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response element binding protein (CREB) [94–97] and NFATc4 neuronal nuclear tran-
scription factors [98]. Cav2.1 and Cav2.2 channels play a vital role in the release of fast
transmitters such as GABA, acetylcholine, and glutamate [99,100]. In the current study,
genes encoding Cav1.1, Cav1.2, and Cav2.1 were up-regulated by long-term drug treat-
ments. The up-regulation of these Cavs will lead to a sustained activation of CREB in the
NAc, which leads to anhedonia-like and pro-depression-like symptoms [101,102]. This
could be further supported by our previous study, where creb1 was up-regulated after
treatment with DMP and morphine [103]. The upregulation of these Cavs will also allow
excessive influx of calcium ions inside the cells. The overloaded calcium will reduce the
amount of ATP production while increasing the accumulation of reactive oxygen species
and release of cytochrome C that induces apoptosis of neuronal cells [104]. Excessive
accumulation of calcium ions in the mitochondria of the neurons can also lead to excessive
neuronal firing and eventually cause neuronal death. The dysfunction of mitochondria can
lead to several diseases, including intellectual disability [105]. Moreover, a gain-of-function
mutation in Cav1.2 causes Timothy syndrome [106], which is associated with neurological
developmental defects, including manifestation of neuropsychiatric phenotypes [106–108].
This can be reflected by the lower social preference in all the MK-801, DMP, and morphine-
treated larvae. Noteworthily, for the morphine withdrawn larvae, low social preference
was still shown, and this could be due to the high expression of α1Aa which encodes Cav2.1.

The eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), encoded
by eif4ebp1, is one member of a family of small proteins that act as repressors of mRNA
translation initiation by binding the mRNA cap-binding protein eIF4E [109]. The activity of
phosphatidylinositol 3-kinase (PI3K)/AKT pathway negatively regulates the transcription
of EIF4EBP1 via mechanistic target of rapamycin (mTOR) [110]. The significance of mTOR
in neuron development and its regulation of translational control and protein synthesis
implicated that mTOR is involved in the pathology of schizophrenia [111–114]. Although
the role of mTOR was not tested in the current study, upregulation of eif4ebp1 after drug
exposure and morphine withdrawal could be explained by the downregulation of pi3k and
akt1 in our previous study [103].

4. Materials and Methods
4.1. Zebrafish Strains and Housing Conditions

Wild-type zebrafish embryos at 0 hpf were collected from Danio Assay Laboratories
Pvt. Ltd., University Putra Malaysia, Serdang, Selangor, Malaysia. Transgenic Tg (dat:EGFP)
zebrafish embryos were obtained from Jeffrey Cheah School of Medicine and Health
Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia, after 2 hpf. This
strain was developed by the Center for Advanced Research in Environmental Genomics,
Department of Biology, University of Ottawa. The embryos were maintained at 27 ◦C
in embryo medium (5 mM sodium chloride (NaCl), 0.17 mM potassium chloride (KCl),
0.33 mM calcium chloride (CaCl2), and 0.33 mM magnesium sulfate (MgSO4), pH 7.4).
Unfertilized, unhealthy, and dead embryos were discarded. The hatched larvae were fed at
7 days post-fertilization (dpf) with live paramecium. All experiments were done with the
approval of animal ethics by Universiti Tunku Abdul Rahman Research Ethics and Code
of Conduct (U/SERC/18/2020). Visual screening was performed within the time frame
of experimental procedure to monitor the health of the zebrafish larvae by removing the
larvae with abnormal mortality, heartbeat, and swimming activity.

4.2. Drug Optimization and Treatments

The optimization of maximum-tolerated concentration (MTC) of each drug and iden-
tification of its optimal condition in inducing schizophrenia were based on our previous
study [103]. At 2 dpf, both strains of the zebrafish were dosed at MTC according to the
short- (3 days) and long-term (10 days) treatment protocols. DMP and morphine were
added to the embryo medium at a final concentration of 3.13 µM and 0.80 µM, respec-
tively. Additionally, 5.0 µM of dizocilpine (MK-801) (Sigma-Aldrich, Saint Louis, Missouri,
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USA), a schizophrenia-mimicking compound, was used as a positive control, while embryo
medium served as vehicle control. Three groups (n = 50 /group) of embryos were examined
for the effect of short- and long-term treatments. Another two groups of embryos were
assessed for withdrawal syndrome five days after the termination of short- and long-term
morphine treatments.

4.3. Behavioral Analyses

Calculating the total number of crossings is a simple and effective method to determine
the locomotor activity of zebrafish [115,116]. Our assay was modified from the method
of Boehmler et al. (2007) [115]. A single vertical line was drawn on the bottom of a clear
petri dish (60 mm × 15 mm) which divided the dish into 2 equal halves. Three larvae
were placed in the petri dish filled with embryo medium at 27 ◦C. Locomotor activity
was measured for 30 s by counting the number of times each larva crossed the line. Total
distance traveled was also used as a measure of locomotor activity. A recording camera at
30 frames per second was positioned above the arena. Videos were captured for 5 min and
processed using ToxTrac [117]. Each treatment was subjected to 12 independent trials with
3 independent experiments.

4.4. Social Preference

The experimental tank (14 cm length, 7 cm width, 5 cm height) was separated by a
transparent divider into exposure compartment and conspecific compartment (Figure A1).
To avoid lateral bias in zebrafish cohorts, the left/right location of target/conspecific larvae
were alternated between the trials. The target larvae were pre-exposed to a drug or drug-
free water (control) for 20 min. Control or drug-exposed zebrafish (n = 12 in each group)
were introduced individually to the central zone of the apparatus, temporarily separated
(by transparent sliding dividing doors) from the two arms of the corridor.

The larva was subjected to an initial 30-s acclimation interval in order to reduce
transfer/handling stress. The larva was allowed to explore the apparatus for 5 min. Videos
were captured to record the time of each larva spent near the conspecific compartment.

4.5. Gene Expression Analysis by Real-Time PCR

The larvae were euthanized by rapid cooling in ice water (0–4 ◦C) for at least
20 min [118]. Total RNA from the dissected brains of zebrafish larvae pool (n = 50) was
extracted using TRIzol reagent (Thermo Fisher Scientific, Waltham, Massachusetts, USA),
with three independent pools used for each treatment [119]. The quality of RNA was
assessed by gel electrophoresis and the total RNA concentration was determined using
spectrophotometer. The double-stranded cDNA was synthesized using a Tetro cDNA
Synthesis Kit (Bioline, London, UK). Eight genes related to the dopaminergic circuitry were
selected. The primers used to amplify these genes are presented in Table 1. Quantitative
real-time PCR was performed using the SensiFAST™ SYBR® No-ROX kit (Bioline, Lon-
don, UK) in a qTOWER3 G real-time thermal cycler (Analytik Jena, Jena, Germany) with
beta actin (β-actin) as the housekeeping gene. cDNA was diluted in series ranging from
100 ng/µL to 0.01 ng/µL to generate a standard curve. All reactions were performed in
triplicate. The relative expression of each gene was calculated from the average CT (cycle
threshold) readings at each point of the standard curve using the formula E = 10 (1/slope).
Expression of genes of interest was then normalized to the housekeeping gene.

4.6. Total Protein Purification

Zebrafish larvae were washed with cold phosphate buffered saline (PBS) and stored
overnight at−20 ◦C. Cell lysis was conducted by two freeze–thaw cycles. The pooled larval
brain tissue was homogenized in PBS containing 1% Triton-X and sonicated for 10 min.
The homogenates were centrifuged at 5000× g for 5 min. The supernatant was collected,
and subsequently the protein concentration was determined using Bradford assay. The
purified protein was subjected to biochemical assays immediately.
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Table 1. Primer sequences of candidate genes.

Protein Gene Primer Sequences (5′→ 3′) GenBank Accession No References

Cav1.2 α1C
F: ACGGAGTCACTCTCCGACAC

XM_009300335 [120]R: AGAGAGGGCACAGGCTGATA

Cav1.1a α1Sa
F: TCTATAGGCGTGCTGGAGGT

NM_001146150 [120]R: GCTATCTGCGAGCTGTAGGG

Cav2.1a α1Aa
F: TGCTACCCAGCCACATGATA

ENSDARG00000037905 [120]R: TGGTAGAGAGTGAGGGTAAA

Dopamine receptor D2a drd2a
F: TGGTACTCCGGAAAAGACG

NM_183068 [121]R: ACTCGGGATGGGTGCATTTC

c-FOS c-fos F:GCAGAGCATTGGCAGGAG DQ003339 [122]R: CCCTTCGGATTCTCCTTTTCT

Tyrosine hydroxylase 1 th1
F: GACGGAAGATGATCGGAGACA

XM_682702.1 [123]R: CCGCCATGTTCCGATTTCT

Tyrosine hydroxylase 2 th2
F: CTCCAGAAGAGAATGCCACATG

NM_001001829.1 [124]R: ACGTTCACTCTCCAGCTGAGTG
Eukaryotic translation initiation
factor 4E-binding protein eif4ebp1 F: AACGACAAGGTGCAAAGAC

NM_199645 [125]R: GTGGTTGGAATTGCCTGACT

Beta actin (β-actin) actb1
F: AAGCTGTGACCCACCTCACG

AF057040 [126]R:GGCTTTGCACATACCGGAGC

4.7. Biochemical Assay

The concentration of DA was determined using the commercial enzyme-linked im-
munosorbent assay (ELISA) kits (Cusabio Biotech®, Houston, Texas, USA) according to the
manufacturer’s instructions. The optical density (OD value) of each well was determined
at 450 nm for the assay.

4.8. Confocal Microscopy

Tg (dat:EGFP) larvae were treated with 1-phenyl-2-thiourea (0.003% phenylthiourea,
Sigma-Aldrich, Saint Louis, Missouri, USA) to prevent pigment formation. Preceding the
treatments, the larvae were fixed by 4% paraformaldehyde (PFA) overnight at 4 ◦C and
stored in PBS until analysis. Prior to imaging, each larva was embedded in 2% low melting
point agarose gel (Sigma, Darmstadt, Germany). A small incision was made to allow the
dorsal of the larvae to face down in order to image the brain region. The brain image of the
larva was then captured by the laser scanning confocal microscope (Nikon C1si, Nikon Inc.,
Tokyo, Japan) and the NIS Elements AR software version 4.1 (Nikon Inc., Tokyo, Japan).
The dopaminergic neurons in the PT were determined based on the z-stacks of confocal
images using the ImageJ (Bethesda, Maryland, USA) 3D object counter plugin described by
Tay et al. [127].

4.9. Statistical Analysis

All results were expressed as mean ± SEM. The differences between samples were
analyzed using the one-way analysis of variance (ANOVA) followed by post-hoc Tukey’s
test. Means comparisons between the control and withdrawal groups were performed
using Student’s t-test. All statistical tests were performed using Statistical Program for
Social Sciences Statistical Program for Social Sciences (SPSS version 22). A p-value of less
than 0.05 (p < 0.05) was considered statistically significant.

5. Conclusions

In summary, our study, which integrated behavioral, biochemical, gene expression,
and confocal microscopy imaging data in drug-treated zebrafish larvae, revealed that
there is an association between opioid addiction and schizophrenia. The alterations in
dopaminergic neurons, calcium channels, and gene expression induced by DMP and
morphine could contribute to the abnormal locomotor and social behaviors. Future work is
required to elucidate the specificity of these changes in the context of these two disorders.
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