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Tis study is to evaluate the feasibility of deep learning (DL)models in themulticlassifcation of refux esophagitis (RE) endoscopic
images, according to the Los Angeles (LA) classifcation for the frst time. Te images were divided into three groups, namely,
normal, LA classifcation A+B, and LA C+D. Te images from the HyperKvasir dataset and Suzhou hospital were divided into
the training and validation datasets as a ratio of 4 :1, while the images from Jintan hospital were the independent test set. Te
CNNs- or Transformer-architectures models (MobileNet, ResNet, Xception, EfcientNet, ViT, and ConvMixer) were transfer
learning via Keras. Te visualization of the models was proposed using Gradient-weighted Class Activation Mapping (Grad-
CAM). Both in the validation set and the test set, the EfcientNet model showed the best performance as follows: accuracy (0.962
and 0.957), recall for LA A+B (0.970 and 0.925) and LA C+D (0.922 and 0.930), Marco-recall (0.946 and 0.928), Matthew’s
correlation coefcient (0.936 and 0.884), and Cohen’s kappa (0.910 and 0.850), which was better than the other models and the
endoscopists. According to the EfcientNet model, the Grad-CAM was plotted and highlighted the target lesions on the original
images. Tis study developed a series of DL-based computer vision models with the interpretable Grad-CAM to evaluate the
feasibility in the multiclassifcation of RE endoscopic images. It frstly suggests that DL-based classifers show promise in the
endoscopic diagnosis of esophagitis.

1. Introduction

Gastroesophageal refux disease (GERD) is a condition in
which gastroesophageal refux leads to esophageal mucosal
lesions and troublesome symptoms [1, 2]. It is classifed into
refux esophagitis (RE) withmucosal injuries and nonerosive
refux disease (NERD) only with symptoms [3]. Recently, the
prevalence of RE has increased in Eastern Asia, due to the
westernized lifestyle and diet [4, 5].Te severe complications
of RE include ulcer bleeding and strictures. Even though RE-
induced death is rare, these severe complications are related
with signifcant morbidity and mortality rates [6].

According the Japan’s 3rd guideline [3] and the Lyon
Consensus [1], the paradigm of GERD diagnosis hinges on
the identifcation of esophageal mucosal lesions and then the
grading of the severity of esophagitis. In general, GERD is
generally evaluated by clinical symptoms or responses to
antisecretory therapy; however, the diagnosis required en-
doscopy and refux monitoring [7]. Endoscopy is necessary
to the grading of esophagitis, which plays a key role in the
algorithms for the diagnosis and treatment of GERD [3].Te
Los Angeles (LA) classifcation is the most widely used and
validated scoring system to describe the endoscopic ap-
pearance of esophageal mucosa and stratify its severity [8].
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Deep learning (DL) is a statistical learning method that
empowers computers to extract features of raw data, in-
cluding structured data, images, text, and audio, without
human intervention. Te remarkable progress of DL-based
artifcial intelligence (AI) has reshaped various aspects of
clinical practice [9]. DL presents a signifcant advantage in
the felds of computer vision to analyze medical images and
videos containing gigantic quantities of information [10]. In
gastroenterology, AI is increasingly being integrated into
computer-aided diagnosis (CAD) systems to improve le-
sions detection and characterization in endoscopy [11]. To
our best knowledge, there were no previous reports con-
cerning the application of DL in the endoscopic classifca-
tion of RE.

In this multicentral retrospective study, we aimed to
evaluate the feasibility of DL models in the multi-
classifcation of RE endoscopic images, according to the LA
classifcation.

2. Methods

2.1. Datasets. Subjects who underwent the upper endoscopy
were recruited from two hospitals as follows: (1) Suzhou:Te
First Afliated Hospital of Soochow University and (2)
Jintan: Afliated Hospital of Jiangsu University, between
2015 and 2021. In the two centers, subjects were excluded if
they have (1) esophagitis of other etiologies, e.g., pills-
induced esophagitis, eosinophilic, radiation, and infectious
esophagitis; (2) esophageal varices; (3) esophageal squamous
cell cancer. Tis study was approved by the Ethics Com-
mittee ofTe First Afliated Hospital of Soochow University
and conducted in accordance with the Helsinki Declaration
of 1975 as revised in 2000 (the IRB approval number
2022098). All participants signed statements of informed
consent before inclusion. Besides, the Z-line endoscopic
images were also obtained from an open dataset, Hyper-
Kvasir, which now is the largest dataset of the gastrointes-
tinal endoscopy (https://datasets.simula.no/hyper-kvasir/)
[12]. Te dataset ofers labeled/unlabeled/segmented image
data and annotated video data from Bærum Hospital in
Norway. Te characteristic of the datasets was shown in
Figure 1. Each endoscopic image of Z-line was determined
and labeled as normal, LA classifcation A+B (LA A+B), or
LA classifcation C+D (LA C+D) by three rich-experienced
endoscopists, based on the LA classifcation. Te endoscopic
devices in our hospital include Olympus GIF-Q260, GIF-
H290, and Fuji EG-601WR, while in the HyperKvasir
dataset, they include Olympus and Pentax at the Department
of Gastroenterology, Bærum Hospital.

2.2. Models

2.2.1. CNNs-Based Architectures. Pretrained convolutional
neural networks (CNNs) include convolutional layers, av-
erage pooling layers, and fully connected layers, with ReLU
activation. Besides, two dense layers (ReLU activation) and
one dense layer (Softmax activation) were added on the top
of the pretrained CNNs layers for feature extraction, as
shown in Figure 2(a).

2.2.2. Transformer-Based Architectures. Transformer is
characterized by synchronous input based on the self-
attention mechanism. Te Transformer encoder consists
of three main components, namely, input embedding,
multihead attention, and feed-forward neural networks.
Similar as the CNNs, following them, three dense layers
(ReLU or Softmax activation) were added on the top of the
pretrained Transformer-based architectures.

2.2.3. Pretrained Models. Te six CNNs-or Transformer-
architectures models, i.e., MobileNet (MobileNet V1),
ResNet (ResNet50 V2), Xception (Xception V1), Ef-
cientNet (EfcientNet V2 small), ViT (ViT B/16), and
ConvMixer (ConvMixer-768/32) were selected. Tese
computer vision models were previously trained on the
ImageNet database (https://www.image-net.org). Te pre-
trained models and parameters were obtained from Keras or
TensorFlow Hub (https://hub.tensorfow.google.cn/).

2.3. Training and Validation

2.3.1. Implementation. Te CNNs-or Transformer-
architectures models were transfer learning via Keras
(TensorFlow framework as backbone). Te Adam optimizer
and the categorical cross-entropy cost function, with a fxed
learning rate of 0.0001 and a batch size of 32, were compiled
in the training of models. A link to the codes concerning the
training procedure could be obtained here on https://osf.io/
4tdhu/?view_only=b279429b6a284ad885da7cad79126df7.

2.3.2. Target Training. Endoscopic images of Z-line were
saved as JPEG format. All images were rescaled to 331× 331

HyperKvasir

Normal = 717
LA (A+B) = 509
LA (C+D) = 186

Train set
Normal = 1,214
LA (A+B) = 807
LA (C+D) = 309

Test set
Normal = 300

LA (A+B) = 200
LA (C+D) = 100

Validation set
Normal = 303

LA (A+B) = 202
LA (C+D) = 77

Normal = 800
LA (A+B) = 500
LA (C+D) = 200

Suzhou

Model developing

Jintan

Figure 1: Te characteristic of the datasets.
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pixels and then the pixel values were normalized from 0 to
255 to 0 to 1. Based on the LA classifcation, the images were
divided into three groups, namely, normal, LAA+B, and LA
C+D. Images from the HyperKvasir dataset and Suzhou
hospital were divided into the training and validation
datasets as a ratio of 4 :1. Te fowchart of the study was
plotted in Figure 2(b).

2.3.3. External Test. A total of 600 endoscopic images (as
JPEG format) from Jintan hospital were the external test set,
including 300 normal, 200 LA A+B, and 100 LA C+D
(Figure 2(b)). Te endoscopic devices in Jintan hospital
include Olympus GIF-Q260 and GIF-H290.

2.3.4. Comparison with Endoscopists. To further evaluate the
performance of the models, the images from the test dataset
were determined by two endoscopists (junior, fve-year
endoscopic experience, and senior, more than ten-year
experience).

2.3.5. Visualization of the Model. Te visualization of the
models was proposed using Gradient-weighted Class Acti-
vation Mapping (Grad-CAM) [13]. Grad-CAM uses the
class-specifc gradient information into the fnal convolu-
tional layers of CNNs-based architectures to create

projecting maps of the key areas in the images without
retraining. Based on the best multiclassifcation model, the
Grad-CAM technology was to ofer inferential explanation
on the original images.

2.4. Statistical Analysis. Te training of the models was
performed on Python (version: 3.9) and TensorFlow (2.8.0).
Te performance was mainly evaluated by accuracy and
recall. True positives (TP), true negatives (TF), false positives
(FP), and false negatives (FN) were enumerated to assess the
classifers. Formulas were as follows: Accuracy� (TP+TN)/
(TP + FP+ FN+TN), recall�TP/(TP+ FN), Marco-
recall�mean recalls, Matthew’s correlation coefcient
(MCC)� (TP ∗ TN− FP ∗ FN)/√(TP+ FP) (TP + FN)
(TN+ FP) (TN+FN), and Cohen’s kappa k� (p0− pe)/
(1− pe) (p0: relative observed agreement among raters; pe:
hypothetical probability of chance agreement).

3. Results

3.1. Performance in the Validation Set. Te confusion matrix
of the six models in the validation set was plotted in
Figure 3(a). Te EfcientNet model showed the highest
accuracy of 0.962, followed by the ConvMixer model (0.950)
and Xception (0.938) (Table 1). Te recalls for LA A+B and
LA C+D of the EfcientNet model were 0.970 and 0.922,

MobileNet/ResNet/Xception/EfcientNet/ViT/ConvMinxer Relu Sofmax

Normal

Grade A, B

Grade C,D

5
1

1
0
2
4 2

Endoscopic images of
esophagitis Backbones Feature extraction Fully-connected

layers Classifier

(a)

CNNs architecture
DL-based CV models:

ResNet, Xception, EfficientNet

Pre-training on
ImageNet

Normal zline

LA classification: C LA classification: D

LA classification: A LA classification: B

Train + Validation sets:1
HyperKvasir + Suzhou

Pretrained models:2
CNNs + Transformer

Target training:3
Best model EfficientNet

Test set:4
Jintan

Transformer architecture
DL-based CV models:

ViT, ConvMixer

(b)

Figure 2: Te fowchart of the study.

Journal of Healthcare Engineering 3



while its Marco-recall was 0.946. In term of multiclass
metrics, itsMCC and Cohen’s kappa were also highest (0.936
and 0.910).

3.2. Performance in the Test Set. Te confusion matrix in the
test set was plotted in Figure 3(b)). Te EfcientNet model
still presented the best performance. Its accuracy was 0.957,
followed by ConvMixer (0.943) and Xception (0.936) (Ta-
ble 1). Moreover, the recalls for LA A+B and LA C+D of
the EfcientNet model were 0.925 and 0.930, while its
Marco-recall reached 0.928, better than the other models. In
term of multiclass metrics, its MCC and Cohen’s kappa were
still highest (0.884 and 0.850).

3.3. Comparison with the Endoscopists. In the test set, the
junior endoscopist presented an accuracy of 0.916, recalls for
LA A+B 0.885 and LA C+D 0.840, Marco-recall 0.863,
MCC 0.820, and Cohen’s kappa 0.780 (Table 1). In the
meantime, the senior endoscopist showed an accuracy of
0.945, recalls for LA A+B 0.905 and LA C+D 0.890, Marco-
recall 0.898, MCC 0.864, and Cohen’s kappa 0.830.

3.4. Te Grad-CAM Heatmap. According to the gradient
information of the last convolution layer of the EfcientNet
model, the Grad-CAM was plotted and highlighted the le-
sions of the original images (Figure 4). Te left column
displays the original endoscopic images. Te middle column
illustrates the Grad-CAM heatmap on the output of the last
convolution layer. Te right column shows the Grad-CAM
heatmap added to the original endoscopic images, in which
the highlighted regions refect the lesions determined by the
EfcientNet model.

Te left column displays the original endoscopic images.
Te middle column illustrates the Grad-CAM heatmap on
the output of the last convolution layer. Te right column
shows the Grad-CAM heatmap added to the original

endoscopic images, in which the highlighted regions refect
the lesions determined by the EfcientNet model.

4. Discussion

Tis study proposed a series of multiclassifcation computer
vision models with the interpretable Grad-CAM to evaluate
the feasibility of DL in the endoscopic images of RE,
according to the LA classifcation. Six CNNs-or
Transformer-architectures models were developed and the
EfcientNet model showed practicable performance, better
than the endoscopists.

In 1999, Lundell et al. [8] developed the LA classifcation
to describe the mucosal appearance in endoscopy and to
assess its correlation with the clinical changes in patients
with RE. It was developed for the purpose of stratifying
clinically relevant severity of RE. According to the LA
classifcation, type A is defned as one (or more) mucosal
break, no longer than 5mm-long, that does not extend
between the tops of two mucosal folds; type B is defned as
one (or more) mucosal break, more than 5mm, that still
does not extend between the tops of two folds; type C is
defned as one (or more) mucosal break that is continuous
between the tops of two or more mucosal folds but which is
no longer than 3/4 of the esophageal circumference; type D is
defned as one (or more) mucosal break that is more than 3/4
of the circumference [8]. According to the Japan 2021
guideline [3] and the ACG 2021 guideline [7], RE is classifed
into mild RE (grade A or B of LA classifcation) and severe
RE (grade C or D), in which the latter was defned as the high
grade of RE, based on the Lyon Consensus [1]. Te strati-
fcation is essential to the detailed diagnosis and the
decision-making of therapy [3]. Tus, in this study, we la-
beled the images and trained the multiclassifcation models
based on the forementioned guidelines. AI is being widely
applied in a variety of clinical settings aiming to improve the
management of the gastrointestinal diseases [14]. DL is
a subset of machine learning that can automatically extract

Table 1: Performance metrics of models and endoscopists.

Models Accuracy Matthew’s
correlation coefcient Cohen’s kappa

Validation dataset
MobileNet 0.916 0.859 0.820
ResNet 0.931 0.884 0.850
Xception 0.938 0.896 0.860

EfcientNet 0. 62 0. 36 0. 10
ViT 0.933 0.888 0.850

ConvMixer 0.950 0.916 0.890
Test dataset

MobileNet 0.916 0.821 0.780
ResNet 0.933 0.846 0.810
Xception 0.936 0.852 0.810

EfcientNet 0. 57 0.884 0.850
ViT 0.938 0.854 0.820

ConvMixer 0.943 0.861 0.820
Junior endoscopist 0.916 0.820 0.780
Senior endoscopist 0.945 0.864 0.830

Te bold fgures indicate the highest numeric values.
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Figure 3: Confusion matrix of the models.
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features of input data via artifcial neural networks, orga-
nized as CNNs and Transformer [15]. Te past fve years
witness a series of studies assessing the performance of DL in
the diagnosis of esophageal diseases [16–22]. Te main
application is the computer vision task, consisting of the
detection and segmentation lesions in esophageal endo-
scopic images or video [23, 24]. Te CAD system is designed
to detect and diferentiate lesions based on the mucosal/
vascular pattern, to stratify the progression of the diseases or
to assist the decision-making of therapy [20, 25, 26]. Te
remarkable advantage is reducing the workload of endo-
scopists and improving diagnostic accuracy [27, 28].

Recently, Visaggi et al. [29] performed a meta-analysis
concerned machine learning in the diagnosis of esophageal
diseases. According to their review, there were a total of 42
studies. Among them, nine were focused on Barrett’s
esophagus and three were about GERD [30–32]. In terms of
DL, Ebigbo et al. [33] developed a real-time endoscopic

system to classify normal Barrett’s esophagus and early
esophageal adenocarcinoma, which showed an accuracy of
89.9%. Similarly, a CAD system by de Groof et al. [19] was
used to improve the detection of dysplastic Barrett’s
esophagus. Te ResNet/UNet-based system showed the
performance of high accuracy detection and near-perfect
segmentation, better than general endoscopists. One month
ago, Tang et al. [17] trained a multitask DL model to di-
agnose esophageal lesions (normal vs. cancer vs. esoph-
agitis). According to their report, the model achieved a high
accuracy (93.43%) in complex classifcation, as well as
a satisfed coefcient (77.84%) in semantic segmentation.
Guimaraes et al. [18] proposed a CNNs-based multi-
classifcation model (normal vs. eosinophilic esophagitis vs.
candidiasis). In the test set, the model presented a fne global
accuracy (0.915), higher than endoscopists.

In this multicentral study, six CNNs-or Transformer-
architectures computer vision models were transfer
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Figure 4: Grad-CAM heatmap.
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learning to the multiclassifcation of RE endoscopic im-
ages, according to the LA classifcation. Te EfcientNet
model displayed the highest accuracy and Marco-recall.
EfcientNet is a CNNs architecture and scaling method
that uniformly scales all dimensions with a set of fxed
scaling coefcients [34]. Tere are various models
designed to improve training efciency, e.g., Transformer
blocks in Transformers-architectures models. But ex-
pensive overhead depending on parameter size comes as
an issue. EfcientNetV2 is the successor of EfcientNet,
which is a family of models optimized for foating point
operations and parameter efciency. In 2021, Google
used a combination of training-aware neural architecture
search, scaling to further optimize the training speed and
parameter efciency to develop this new family [35].
EfcientNetV2 overcomes some of the training bottle-
necks and outperforms the V1 models. Moreover,
compared with Transformer-architectures models, Ef-
cientNet shows advantage in this small dataset with
limited computing power. In the comparison with the
endoscopists, the EfcientNet model also showed ad-
vantages both in accuracy and recall. Interpretability for
a DL model has been one of the essential respects.
Computer scientists and medical practitioners are
showing more concerns about the inference of AI during
the development of models, especially in the feld of
computer vision. Terefore, lastly, we proposed the
Grad-CAM technology to visualize the inferential ex-
planation on the original images.

Our study has some limitations. To begin with, we only
focus on esophagitis caused by refex, rather than various
etiologies, e.g., radiation, eosinophilic, and pill-induced
esophagitis. Further studies, based on medical history and
biopsy, are required to develop more complex classifers for
esophagitis. Besides, the images dataset was limited, while
video fles were not involved in the analyzation. Tis study
still required more data for validation. Lastly, we did not
deploy the models in endoscopic devices. We believe that
this study may contribute to the future deployment in the
actual practice.

5. Conclusions

In this study, we developed a series of DL-based computer
vision models with the interpretable Grad-CAM to evaluate
the feasibility of AI in the multiclassifcation of RE endo-
scopic images for the frst time. It suggests that DL-based
classifers show promise in the endoscopic diagnosis of
esophagitis. In the future, it is necessary to investigate the
multimodal fusion in the classifcation of RE, integrating
endoscopic images, clinical symptoms, esophageal
pH monitoring, etc.
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