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Objectives. This study is aimed at developing a screening tool that could evaluate the upper airway obstruction on lateral
cephalograms based on deep learning. Methods. We developed a novel and practical convolutional neural network model to
automatically evaluate upper airway obstruction based on ResNet backbone using the lateral cephalogram. A total of 1219 X-
ray images were collected for model training and testing. Results. In comparison with VGG16, our model showed a better
performance with sensitivity of 0.86, specificity of 0.89, PPV of 0.90, NPV of 0.85, and F1-score of 0.88, respectively. The heat
maps of cephalograms showed a deeper understanding of features learned by deep learning model. Conclusion. This study
demonstrated that deep learning could learn effective features from cephalograms and automated evaluate upper airway
obstruction according to X-ray images. Clinical Relevance. A novel and practical deep convolutional neural network model has

been established to relieve dentists’ workload of screening and improve accuracy in upper airway obstruction.

1. Introduction

Upper airway obstruction can result in reduction of breath-
ing or impediment of gas exchange, and it is usually associ-
ated with sleep-disordered breathing (SDB) [1, 2]. The cause
of upper airway obstruction includes polyps, environmental
irritants, allergic rhinitis, and adenotonsillar hypertrophy [3,
4]. Increasing evidence has shown an association between
dentofacial anomalies and obstruction in upper airway.
Lopatiene et al. analyzed examination results including den-
tal casts and radiographs of 49 children with respiratory
obstruction, and they found significant link between nasal
resistance and increase overjet, open bite, and maxillary
crowding [5]. Children with upper airway obstruction may
manifest as mouth breathing, which can result in narrow
maxilla, mandibular skeletal retrognathism, increased lower
facial height, and high palate [6]. Most children with this
type of malocclusion and craniofacial deformity present to
dental clinics complaining of occlusal disorder or dissatisfac-
tion with their profile. Lateral cephalogram was a useful and
common tool for dentists to evaluate the severity of upper

airway obstruction. Although there are multiple other tools
applied to assess upper airway obstruction, including com-
puted tomography (CT), fluoroscopy, magnetic resonance
imaging (MRI), and fibreoptic pharyngoscopy; lateral ceph-
alometry is still an appealing approach for screening upper
airway obstruction in dental clinics as it is a cheap and easily
available technique with less radiation and certain diagnostic
value [7-9]. Cephalometric analysis based on McNamara
method is a classical measurement for airway analysis [10].
However, the landmark-label process is time- and energy-
consuming even for a senior orthodontist. Besides, this
experience-dependent technique is difficult to master for
young dentists and dentists who have not investigated ceph-
alometric measurements such as endodontists or prostho-
dontists, which may lead to missed or delayed diagnosis.
Thus, it would be useful for orthodontists to develop an
automated evaluation method to improve efficiency in upper
airway obstruction using lateral cephalograms.

In the past several years, automated methods based on
deep learning have achieved excellent results in diagnosis,
segmentation, detection tasks, and so on [11-13]. For
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TaBLE 1: Clinical and demographic characteristics of study cohorts.

Training set (N =1099 Testing set (N =120

Characteristic ) )
?f::;;‘ age 12.15 (7-18) 12.02 (7-18)
Sex
Male 545 54
Female 554 66
Clinical evaluation
Obstructive 550 60
Nonobstructive 549 60

example, Mahdi et al. proposed a residual network-based
faster R-CNN model to recognize teeth and evaluate both
positional relationship and confidence score of the candi-
dates. This model showed an F1-score of 0.982 which indi-
cated that deep learning was useful and reliable for dental
assistance [14]. Similarly, deep learning was also used for
identifying the brand and model of a dental implant from
a radiograph with a sensitivity of 93.5% and a specificity of
94.2% [15]. In orthodontics, accurate skeletal classification
can assist orthodontists in making treatment plans. Yu
et al. developed a deep learning model for skeletal classifica-
tion solely from the lateral cephalogram. In that work, deep
learning learned from X-ray imaging labeled by human
experts and exhibited superior performance with >90% sen-
sitivity, specificity, and accuracy for vertical and sagittal skel-
etal diagnosis [16].

In this paper, we developed a novel deep convolutional
neural network (DCNN) based on ResNet backbone for
automated evaluation of upper airway obstruction. Here,
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our study was novel with 4 main contributions. Firstly, this
is the first research to evaluate upper airway obstruction
based on deep learning using lateral cephalograms with high
sensitivity and specificity. Secondly, the heat maps of cepha-
lograms showed a deeper understanding of features learned
by deep learning model. This visualization provided inter-
pretable information in upper airway obstruction based on
deep learning. Finally, our model is lite and practical and
can be deployed in fundamental clinics with less memory
and computational overhead.

2. Materials and Methods

2.1. Dataset. A study flowchart of our study was presented in
Figure 1. Cephalometric radiographs were retrospectively
examined for 1783 cohorts who had initially visited our hos-
pital between March and September 2019. We first excluded
the low-quality images (324 images) and eliminated images
(240 images) where the anatomic structure (soft palate, ton-
gue, or pharyngeal wall) was difficult to recognize. Finally, a
total of 1219 X-ray images of cohorts with lateral X-ray
examination were obtained, of which the numbers of upper
airway obstruction and nonobstruction were 610 and 609,
respectively. Cephalometric radiographs were taken from
X-ray machine Morita X550 (Tube energy 80kV, Tube cur-
rent 10 mA; Morita, Kyoto, Japan). The distance between X-
ray plate and X-ray machine was 180 cm, and the resolution
of X-ray images is 1752 x 1537 (22.9cm x 20.1cm). We
cropped the airway region from the center to the bottom
of original X-ray images with a resolution of 1000 x 500.
The airway regions of X-ray images were randomly divided
into 2 groups: a training set (1099 images) and a testing set
(120 images). Demographic data are shown in Table 1.

The McNamara method was considered a classic cepha-
lometric analysis for evaluation of upper airway dimension
[10]. Linear measurements were performed using Image |
software (Rasband software, W.S., Image J, National Insti-
tutes of Health, Bethesda, MD, http://rsb.info.nih.gov/ij/).
Many studies have applied McNamara method for assess-
ment of upper airway, which can be divided into nasophar-
ynx (upper pharynx) and oropharynx (lower pharynx)
[17-19]. The upper pharyngeal width (UPW) was measured
linearly from a point on the posterior wall of the soft palate
to the posterior pharyngeal wall where there was the greatest
closure of the airway. The measurement of the lower pha-
ryngeal width (LPW) was a linear distance from an intersec-
tion point of the posterior border of the tongue and the
lower border of mandible to the closest point on the poste-
rior pharyngeal wall [17] (Figure 2). In our research, X-ray
images of patients with mixed dentition were manually
labelled as “obstruction” (UPW <12mm or LPW <10 mm)
or “nonobstruction” (UPW>12mm and LPW >10mm),
and the images of patients with permanent dentition were
manually labelled as “obstruction” (UPW <17.4mm or
LPW <10mm) or “nonobstruction” (UPW >17.4mm and
LPW >10mm). All the measurements were carried out by
the two experienced dentists blinded by each other. A third
senior orthodontic specialist with 30 years of experience
was consulted in cases of disagreement. If the three experts


http://rsb.info.nih.gov/ij/

BioMed Research International

still could not get an agreement, the confusing image would
be excluded.

2.2. Deep Learning Model. ResNet-18 is a famous model and
achieved excellent results in the field of image classification
[20]. In this model, the backbone structure consists of two
convolutional layers with skip connection. This backbone
has been proven that it has a strong capacity of feature
extraction in the image classification task. Hence, we chose
ResNet-18 as the backbone to develop a lite and practical
model for automated evaluation of upper airway obstruc-
tion. Regarding our model, the kernel size of two convolu-
tional layers is 3x3 and its stride is 1. To overcome
overparameterization problem, we not only reduce the size
and the number of kernels but also reduce the number of
backbone blocks. The kernel number is 16 in the first back-
bone and the second backbone. Max pooling with the size of
2 x 2 is deployed between two backbone blocks. The features
of airway region are extracted in the first extra convolutional
layer with 5x 5 kernel and 1 stride. And the feature maps
produced by first layer are given to backbone structure. At
the end of backbone structure, fully-connected layer with
softmax switched feature maps into the probability of
obstruction or nonobstruction. The rectified linear unit
(ReLU) is included in every convolutional layer. The archi-
tecture of model is shown in Figure 3.

2.3. Statistical Analysis and Evaluation Criteria. To better
measure the performance of the model, we used evaluation
metrics of sensitivity (SEN), specificity (SPEC), positive pre-
dictive value (PPV), negative predictive value (NPV) and F1-
score [21-24]. And the metrics equations are calculated as
follows:

SEN = 7TP
~ TP+FN’
TN
PEC= ———,
SPEC FP + TN
TP
PPV = ) 1
TP + FP v
T
NPV = 7N
FN + TN
2 * PPV % SEN
Flscore= ———,
PPV + SEN

where the TP, FP, TN, and FN indicated true positive, false
negative, true negative, and false negative, respectively. Pos-
itive/negative means that the model predicts that the X-ray
image is obstructive/nonobstructive, and true/false means
that the prediction is right/wrong. In these metrics, the F1-
score is the most overall metric which indicates the har-
monic mean of PPV and SEN. The highest possible value
of Fl-score is 1, indicating perfect PPV and SEN, and the
lowest possible value is 0, if either PPV or SEN is zero. All
value of metrics is ranged from 0 to 1.

For deeper understanding of the feature in X-ray images,
the heat map with class activation mapping (CAM) was gen-
erated according to the method proposed by Zhou et al. [25].

Figurg 2: Illustration of cephalometric measurements for upper
airway. Upper pharyngeal width (UPW): linear distance from a
point on the posterior wall of the soft palate (the anterior half
part) to the posterior pharyngeal wall where there was the
greatest closure of the airway. Lower pharyngeal width (LPW):
measured from an intersection point of the posterior border of
the tongue and the lower border of mandible to the closest point
on the posterior pharyngeal wall.

This map visually highlights the cephalogram region that is
most informative in evaluation of upper airway obstruction.

3. Results

The study was developed using 1099 X-ray images for train-
ing and 120 X-ray images for testing. All experiments were
performed in Python 3.6 and TensorFlow 1.9 on a single
NVIDIA RTX 2080Ti [26]. We randomly selected 100
images from training set as a validation set to observe train-
ing situation and obtain the highest performance. In the
training phase, we used a learning rate of 0.001 in the Adam
optimizer and used the “Cross-Entropy” loss function with
the batch size of 50. After 30 epochs, automatic evaluation
of upper airway obstruction was performed using the testing
dataset. In many dental applications, VGG16 is a popular
model for classification and diagnosis [27, 28]. Hence, we
also carried out experimental comparison between VGG16
and DCNN. In the testing set, DCNN model showed 0.86
sensitivity, 0.89 specificity, 0.90 PPV, 0.85 NPV, and
0.88 F1-score, respectively. DCNN showed higher perfor-
mance than VGG16 in our study (Table 2).

Figure 4 shows the heat maps created with class activa-
tion mapping. This is an indication of a well-trained model
that effectively uses the information in the cephalogram.
According to the heat maps, the upper airway area was acti-
vated when model received a sample with airway obstruc-
tion. This activated area revealed that model taught itself
according to human annotated conclusion without extra ori-
entation. The processing speed of DCNN was about 5s for
analyzing 120 lateral cephalograms with a single NVIDIA
RTX 2080Ti graphic processing unit.

4. Discussion

Upper airway obstruction, as a hot topic studied by dentists
and otolaryngologists, showed an intimate association with
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FIGURE 3: Preprocessing and model architecture.

4
TaBLE 2: The performance of deep learning model.

Operator SEN SPEC PPV NPV F1-score
VGGl6 0.84 0.86 0.86 0.84 0.85
ResNet-18 0.83 0.86 0.87 0.82 0.85
EfficientNet 0.84 0.88 0.88 0.83 0.86
MobileNet v2 0.85 0.88 0.88 0.85 0.87
DCNN (ours) 0.86 0.89 0.90 0.85 0.88

malocclusion and development of craniofacial complex, and
it was also the main etiological factor of obstructive sleep
apnea syndrome (OSAS) in children [29]. OSAS may lead
to problems which were harmful to children, such as inat-
tention, poor learning, failure to thrive, or even pulmonary
hypertension [30]. However, missed or delayed diagnosis
was common as signs and symptoms of children were not
clear and the experience-dependent diagnosis method was
difficult to master [31]. For children who were in an early
stage of mental and physical development, airway patency
and sleep quality were significant. So, developing a timely
and accurate screen system for upper airway obstruction
was advantageous.

As a two-dimensional analysis method, lateral cephalo-
metric images have long been discussed about its reliability
in assessing pharyngeal volumes. A study consisting of 36
prepubertal children ranging from 4.9-9.8 years old com-
pared the validity of upper airway using MRI and cephalo-
metric measurements, and researchers found that
cephalometric measurements showed significant correla-
tions with MRI measurements. The authors concluded that
the cephalometric radiograph was a useful screening tool
when evaluating nasopharyngeal or retropalatal airway size
[9]. Besides, cephalometric analysis was also investigated as
a useful tool to evaluate OSAS patients [32]. In this paper,

we developed a novel and practical DCNN model to auto-
matically evaluate upper airway obstruction using the lateral
cephalogram. Our data demonstrated that deep learning
method was able to evaluate upper airway obstruction with
high accuracy and improve screening efficiency in dental
clinics.

To the best of our knowledge, so far, there is only one
research that is similar to our research, which applied artifi-
cial intelligence technology to detect patients with severe
obstructive sleep apnea based on cephalometric radiographs
[33]. However, it only focused on the oropharynx but not on
the nasopharynx. Some research reported automatic seg-
mentation of the airway space with convolutional neural
network on CBCT images [34, 35]. We must admit that
CBCT offers information on cross-sectional areas, volume,
and 3D form that cannot be determined by cephalometric
images. However, many studies have confirmed the screen-
ing value of cephalometric images [9, 32], which possesses
lots of advantages, including lower cost, and less radiation
dose. Besides, cephalometric images are more wildly used
by dentists, especially in developing countries and clinics
which cannot afford CBCT machines.

In our study, a DCNN model based on ResNet backbone
was applied for automated evaluation of upper airway
obstruction. Our experimental results revealed that a simpli-
fied model can overcome overparameterization problems to
some extent. In dental applications, the size of dental image
dataset is always smaller than natural image datasets gener-
ally, since the acquisition of data requires the authorization
of the patient. Additionally, professional knowledge is
required in the work of data annotation. Thus, it is difficult
to collect enough high-quality dental samples for training
and testing. Under this condition, a typical model like
VGG16 with a large number of parameters is suffered from
insufficient data so that it can easily overfit the dataset. To
avoid the defects mentioned above, we used ResNet as the
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F1GURE 4: Class activation maps. The red area shows key features discovered by deep learning.

backbone to construct a simplified DCNN model, which
showed better performance than VGG16.

Although labeling landmarks in the lateral cephalogram
were important for orthodontic diagnosis [36-38], errors
in landmark identification method are widespread, necessi-
tating time-consuming manual correction. Hence, we
applied deep learning method to directly classify X-ray
images rather than identification key point methods. Our
model showed good performance in both sensitivity and
specificity. Moreover, our model did not require extra steps
of feature extraction for training or prediction. The heat
maps (Figure 4) also confirmed that the well-trained model
can discover abnormal area in X-ray images by itself without
extra processing.

Nevertheless, our study presented several limitations.
First, although 1219 was a large number within the realm
of dental research, it was far less than the application
requirement of deep learning. Second, our 1219 X-ray
images were produced by Morita x550 at one resolution.
Our model may not be robust at other resolutions, which
should be addressed through appropriate expansion of the
training set with images at other resolutions. Last but not
the least, major improvements for the sensitivity and speci-
ficity of our research may be achieved in the future by
increasing sample size, applying advanced architectures,
optimal training strategies, and data generation.

5. Conclusions

This study presents a deep learning model that can automat-
ically detect upper airway obstruction with higher accuracy
and more time-efliciency, which would reduce the burden
on dentists in clinical work. A simplified DCNN model
based on ResNet backbone structure showed good perfor-
mance for automatic evaluation of upper airway obstruction
based on the lateral cephalogram. However, deep learning is
not completely accurate in the detection of upper airway
obstruction. To avoid false negative diagnosis, regular
follow-ups and reevaluations are required if necessary.
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