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Abstract: Co-amorphous systems (COAMS) have raised increasing interest in the pharmaceutical
industry, since they combine the increased solubility and/or faster dissolution of amorphous forms
with the stability of crystalline forms. However, the choice of the co-former is critical for the formation
of a COAMS. While some models exist to predict the potential formation of COAMS, they often focus
on a limited group of compounds. Here, four classes of combinations of an active pharmaceutical
ingredient (API) with (1) another API, (2) an amino acid, (3) an organic acid, or (4) another substance
were considered. A model using gradient boosting methods was developed to predict the successful
formation of COAMS for all four classes. The model was tested on data not seen during training and
predicted 15 out of 19 examples correctly. In addition, the model was used to screen for new COAMS
in binary systems of two APIs for inhalation therapy, as diseases such as tuberculosis, asthma, and
COPD usually require complex multidrug-therapy. Three of these new API-API combinations were
selected for experimental testing and co-processed via milling. The experiments confirmed the
predictions of the model in all three cases. This data-driven model will facilitate and expedite the
screening phase for new binary COAMS.

Keywords: machine learning; gradient boosting; co-amorphous; molecular descriptors; inhalation
therapy

1. Introduction

Most of the marketed inhalation products target local lung diseases, such as chronic
obstructive pulmonary disease (COPD) and asthma. Another important area for pulmonary
drug delivery is the treatment of tuberculosis. In all these cases, a multidrug-therapy ap-
plying different active pharmaceutical ingredients (APIs) is necessary, which still depends
on the administration of multiple different commercial products. Administering an inhal-
able glucocorticoid (IGC), together with either a long-acting beta-adrenoreceptor agonist
(LABA) or a long-acting muscarinic receptor antagonist (LAMA), has become the mainstay
of long-term therapy to relieve symptoms of asthma as well as COPD [1]. On the other
hand, combinations of short-acting beta adrenoreceptor agonists (SABA) and short-acting
muscarinic receptor antagonists (SAMA) are used as quick-relief medications. They are
commonly administered in acute asthma attacks and show a stronger bronchodilator re-
sponse than single APIs [2]. The treatment of tuberculosis is usually more complex and
requires a multidrug regime therapy administered over a long period [3]. In the initial
intensive phase, a combination of first-line drugs is required for at least two months. In the
continuation phase, a combination of two or three drugs is used for at least four months to
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sterilize lesions in the lung. So far, anti-tuberculosis drugs that are administered via the
oral route, or parenterally, have been designed. Meanwhile, inhalable anti-tuberculosis
drug formulations have also gained considerable research interest, since they offer direct
delivery of the API to the local therapeutic target in the respiratory tract [4–7].

Therefore, co-processed systems comprised of two APIs (used in treatment of the afore
mentioned diseases) are suggested in order to reduce dose variability and enhance patient
compliance, by reducing the number of different medications to take, as well as leaner and
more economic manufacturing of the same. Such formulations will provide processing
benefits as they are produced in a single step and thus unit operations, for example mixing
of different APIs, becomes dispensable. For solid oral dosage forms, crystalline products
are often preferred due to their stability. However, co-crystals have a fixed stoichiometry
and the resulting dose-ratios may not comply with clinical requirements [8]. In this work
we propose co-amorphous systems (COAMS) that combine improved stability properties
with a wider range of possible dose ratios [9].

Generally, COAMS have been described as a promising solution to stabilize amor-
phous forms and combine their advantages (e.g., increased solubility, faster dissolution
rates, and potentially higher bioavailability) with the stability of crystalline forms [10].
COAMS are defined as homogenous single-phase systems comprised of two or more
molecules, stabilized predominantly through intermolecular interactions. Typically, an
API is combined with a low molecular weight compound, the so-called co-former, which
can be either another API or an excipient. Depending on the co-former used, COAMS can
be divided into several classes: (a) amino acid based COAMS, (b) drug based COAMS,
(c) organic acid based COAMS, and (d) other COAMS [11]. Experimental methods to
obtain COAMS include co-melting or melt quenching [12], solvent evaporation [13], spray-
drying [14] or freeze-drying [15], and milling [16].

An appropriate co-former selection is crucial for successful co-formability. However, a
lack of systematic, predictive, and computational methods for co-former selection has been
identified [17]. So far, co-former selection has mainly been done on a case-by-case basis,
based on synergistic effects and/or combination therapy, previous studies, physicochemical
properties, or structural analysis. Approaches include the prediction of the miscibility
of two compounds involving (a) Hansen Solubility parameters [18], (b) Flory–Huggins
parameter [12], (c) co-former selection based on physicochemical properties of the co-
former like glass transition temperature, melting point and molecular flexibility [18], or
(d) certain other molecular descriptors [19,20]. More details and a good overview of the
existing literature on the rational selection of co-formers can be found in the recent review
by Yarlagadda et al. [21].

There is continued need for a predictive model that is able to identify potential COAMS
(involving two compounds) in a time- and cost-effective screening process. The aim is to be
able to make predictions about the hypothetical formation of a COAMS via the calculation of
the molecular descriptors even before the synthesis of a new active ingredient. To date, the
abilities of predictive screening tools for COAMS formations are limited, since they focus on
a restricted set of compounds only. For example, the predictive identification of co-formers
was studied for five APIs, with the selection of co-formers limited to amino acids [11,19].
Based on Partial Least Square analysis-discriminant analysis (PLS-DA), a predictive model
was built and validated with a single API (mebendazol). The overall accuracy, being the
percentage of correct predictions of the model, was 81% [11]. In order to build a more
general model for predicting COAMS, we created a dataset containing information on
combinations of two substances already described in the literature (including all classes
mentioned earlier) to be used as training data for a machine learning (ML) approach.

ML has revolutionized the processing of data in many industries by enabling data-
driven predictions [22]. By calibrating a large number of independent parameters, ML
attempts to recognize patterns in data and to map underlying relationships in the form of
mathematical functions. Generally, ML techniques can be split into two categories, being
either supervised or unsupervised [23]. The first category requires labelled training data,
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such as for example annotated images or data records with an assigned category, as in the
present case with COAMS and non-COAMS. Supervised ML includes methods such as
decision trees or neural networks. Unsupervised ML detects patterns in datasets without
requiring prior knowledge about the data and includes methods such as clustering.

The review articles by Lou et al., and Nagy et al. provide a good overview on the
application of ML tools in solid oral dosage forms [24], and the application of artificial
neural networks (ANN) including ML in pharmaceutical manufacturing [25]. Some spe-
cific examples where ML tools were applied in the pharmaceutical industry are process
monitoring and control of hot-melt extrusion [26], understanding tablet properties [27],
the prediction of co-crystal formation [28], and understanding the parameter space for the
calibration of simulations [29]. Machine learning models have also been widely used in
the last few years to predict properties of molecules based on their structure. In particular,
in drug discovery such methods have been shown to be very successful [30]. Numeri-
cal values describing the molecular structure have also been used to predict for example
sweetness [31] or bitterness [32]. Other examples include the prediction of the formation of
co-crystals [33].

In our case, a decision tree based model, using a gradient boosting classifier from
the Python package XGBoost [34], was developed to predict the successful formation of
COAMS. In order to avoid bias, a cross-validation approach was used and 50 models were
trained independently after hyper-parameter-tuning. The predictions from the 50 created
models were then averaged to obtain a final value for the prediction. The resulting data-
driven model was used for computationally identifying API-API co-particle formulation
systems, with the ultimate goal of better therapeutic prospects for asthma/COPD or
tuberculosis patients (through enhancing patient compliance by reducing the number of
medications to take). In addition, this approach could help to make manufacturing simpler
and leaner.

A predictive ML model for COAMS formation would not only be beneficial for inhala-
tion therapy in the screening phase, to save time and cost, but also in other pharmaceutical
fields, for example for identifying co-formers for promising new but poorly soluble drugs.
The range of values within which the application of the model is trustworthy is shaped by
the underlying data. The general workflow for constructing the predictive ML model, such
as selection of the ML tool, the hyper-parameter-tuning, and the split of data into training
and test data, would remain mostly the same on similar, but novel data. Hence, we foresee
that the model could be easily adapted to other application areas by changing or expanding
the underlying data.

2. Materials and Methods
2.1. Data Collection
2.1.1. Composition of Data

Data of COAMS reported in the literature was the basis for developing the ML model.
This included information on pharmaceutical co-amorphous systems described in the
literature, as well as systems that were tested for co-amorphization, but that did not form a
co-amorphous system. Besides the identity of the two compounds and the information on
COAMS formation (COAMS or non-COAMS), also their molar ratio and the preparation
technique (either via a thermodynamic or kinetic pathway [35]) were added. Additional
data on the stability and properties of the formed COAMS were added, if available. How-
ever, the choice of parameters studied was not uniform among the different research reports,
and the stability experiments performed in each case differed, for example, in terms of
temperature or humidity settings. Consequently, data on stability was used for cleansing
purposes but not for model building. COAMS for which no stability data were available
were removed from the list. Further, data curation was performed on systems that were
listed multiple times and, dependent on the molar ratio and/or the preparation technique,
either listed as COAMS or non-COAMS. For example, if one system was reported several
times as COAMS and only in one molar ratio, and/or with a certain preparation technique
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non-COAMS. These subtle differences were not expected to be learned sufficiently well by
any model with the amount of training data available. Hence, they were deemed inconsis-
tencies and removed. Only with a larger available dataset is it possible to make these more
in-depth differentiations. Additionally, systems which were tested repeatedly in various
molar ratios, and with different techniques, were kept in the list a maximum of three times.
The most common molar ratios were 1:1, 1:2 and 2:1. These steps were undertaken to
ensure the diversity of the training data in order to obtain a valid, generalisable model.

We divided the data into four classes based on the combination of the API with (1) an-
other API, (2) an amino acid, (3) an organic acid, or (4) another substance. Our database
now lists COAMS from all four classes. After data cleaning and curation, the database
contained 244 systems (Supplementary Material Table S1). On the basis of individual
compounds, this resulted in 47 APIs and 40 co-formers.

2.1.2. Training and Test Data

The collected data was split into training data and test data. The test data was decided
to account for 1/12 of the data (19 rows). In order to determine this, random splits were
performed and a suitable, representative selection of test data was chosen. The criterion
for this was that examples of all four classes, and both non-COAMS and COAMS, should
be included in a similar proportion as in the training data. The training data was used for
the ML model building and hence composed of 225 systems: 69 class-1 systems, 90 class-2
systems, 46 class-3 systems, and 20 systems from class-4. Of these, 154 are COAMS and 71
are non-COAMS.

The test data, which was not included in the training data for model building, was
composed of 12 positive (COAMS) and 7 negative (non-COAMS) examples from 13 APIs
and 15 co-formers.

2.2. Descriptor Selection

The canonical SMILES (simplified molecular-input line-entry system) strings of all
compounds from the training data and the test data were collected from PubChem® (Na-
tional Library of Medicine [36], Bethesda, MD, USA). The SMILES is a specification in the
form of a line notation for describing the structure of chemical species. With the Python
package MORDRED (a molecular-descriptor calculation package [37]), over 1800 available
molecular descriptors were determined for each compound. The number of calculated
descriptors exceeds the number of training data by an order of magnitude. This is generally
not recommended, because as a consequence the parameters of the model cannot be trained
sufficiently. Hence, the number of molecular descriptors was reduced to 29, based on pre-
vious models in COAMS modelling [11,18,19] and mechanistic considerations (regarding
mechanisms involved in COAMS stabilisation like, e.g., the number of hydrogen bond
donor/acceptors or the acidic/basic group count). Alternatively, an automatic selection
could have been performed, which chooses the descriptors based on their predictive power
on the data. However, it would remain unclear whether the descriptors selected in this way
would actually be representative or simply work best with the available data. Hence, an
approach based on a literature review and mechanistic considerations was chosen instead.
The selected descriptors are listed in Table 1. These molecular descriptors served as input
factors for the ML model.

For each pair of substances (forming either COAMS or non-COAMS), the absolute
value of the difference between the API and co-former values of the molecular descriptors
was calculated. This resulted in 29 input features. Another four input features were calcu-
lated to describe hydrogen bonds and acid/base interactions between the systems. Here, the
relationship of donors and acceptors is more relevant. Consequently, respective parameters
were calculated based on methods from Chambers et al. [11]. These four additional input
features are: nAB (absolute difference of nAcid of substance 1 and nBase of substance 2),
nBA (absolute difference of nBase of substance 1 and nAcid of substance 2), nHBDA (abso-
lute difference of nHBDon of substance 1 and nHBAcc of substance 2), nHBAD (absolute
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difference of nHBAcc of substance 1 and nHBDon of substance 2). Further, the preparation
technique (thermodynamic or kinetic) was added as an input feature. In total, this resulted
in 34 input features.

Table 1. Selected molecular descriptors and respective abbreviations.

ABC Atom bond
connectivity index Diameter Topological diameter RNCS Relative negative

charge surface area

nAcid Acidic group count Topo-ShapeIndex Topological shape
index RPCS Relative positive

charge surface area

nBase Basic group count nRot Rotatable bonds count TASA Total hydrophobic
surface area

nAromAtom Aromatic atoms count SLogP Wildman-Crippen
log P TPSA Total polar surface

area

nAromBond Aromatic bond count TopoPSA Topological polar
surface area RASA Relative hydrophobic

surface area

nAtom Number of all atoms naRing Aromatic ring count RPSA Relative polar surface
area

nHeavyAtom Number of heavy
atoms apol Atomic polarisability fMF Molecular framework

ratio

nHetero Number of hetero
atoms bpol Bond polarisability Vabc ABC van der Waals

volume

nH Number of H atoms nHBAcc Number of hydrogen
bond acceptor VAdjMat Vertex adjacency

information

MW Molecular weight nHBDon Number of hydrogen
bond donors

2.3. Modelling Tool

Generally, ML methods are statistical tools for approximating the dependency of one
or several output variables on one or several input variables. One well-known example is
linear regression. In order to also capture non-linear dependencies, most ML techniques
typically use a combination of mathematical functions, e.g., [22]. In order to validate and
test a model, the available data is usually split into training, validation, and test data. The
training data is used to calibrate the available parameters of the approximation function
equation, whereas the validation data is used during training to, for example, avoid over-
fitting. The test data is used after training to evaluate the performance and generalisability
of a model on unseen data. In order to avoid the observed accuracy of a model being only
due to a fortunate choice of the validation data, cross-validation is performed. For any type
of cross-validation, the part of the training data kept for validation is typically varied and
the average accuracy for a model type is noted.

In this model, as a first step the molecular descriptors named in Section 2.2 (Table 1)
were calculated for each entry in the data (training and test data) obtained from the
literature. This resulted in a table containing both substances for forming the COAMS or
non-COAMS as well as the molecular descriptors for each of them. As a target output value
for the prediction, a binary classification into non-COAMS (0) and COAMS (1) was used.
Several ML methods are suitable for this task of binary classification. In our case, due to
the small size of the training data, a pre-selection was made after in-depth analysis of the
underlying mathematical concepts [38]. Popular ML methods include for example, random
forest (RF) [39], extreme gradient boosting (XGB) [40], k-nearest-neighbors (KNN) [41],
support vector machine (SVM) [42], and artificial neural networks (ANN) [43]. The first
two methods are based on a combination of decision trees. The underlying concept is a
sequence of binary trees, where each node in each tree represents a yes/no decision [44].
This makes them scale invariant and due to the relatively small number of parameters
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that need to be determined, they are well-suited for small datasets. The third method,
KNN, is a graph-based approach working best with uniformly scaled data, but it also
produces satisfactory results when only a small amount of data is available. The very
popular ANN is an application of iterated matrix multiplications, with typically non-linear
functions applied in each step. For the approximation of functions on many variables, as
in this case where we have 34 input factors, very large weight matrices would have to
be trained. Hence, this method is in general not well-suited for small datasets and was
therefore not considered.

Based on the preference to tune a small number of parameters during the training, the
following methods were selected for investigation: RF (Python, scikit-learn 0.24.2), XGB
(Python, XGBoost 1.4.2), SVM (scikit-learn 0.24.2), and KNN (Python, scikit-learn 0.24.2).
There are several different ways to cross-validate a model. One common method is k-fold
cross-validation, which is performed by using 10–20% of the data as the validation data,
where these 10–20% are shifted across the data so that the validation data for all training
runs are pairwise disjoint sets. In particular, for smaller datasets the two models with
disjoint validation, and hence training data, can be quite different in their performance due
to a lucky or unlucky choice of this dataset split. To avoid such a bias, and in order to obtain
a more balanced, statistically representative model, here a different form of cross-validation
was chosen. It can be easily tested that the resulting model in tree-based methods such as
XGB depends on the order of the rows within the dataset. This effect is particularly visible
when the size of the dataset is relatively small. The order of the data in this approach was
randomly shuffled before each run, and 15% of the training data were randomly selected
as validation data for this individual model. This method of cross-validation is described
and compared in [45]. Here, the predictions of the models from 50-training runs, with a
random 85%/15% split for training and individual validation data, were averaged for all
three ML methods. Figure 1 illustrates the split of training data for each training run into
the training and validation parts, as well as the completely separate unseen test data (an
additional 19 systems) for testing the performance of the resulting combined model.
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Figure 1. Split of training data with 50-fold cross-validation and additional test data. The selection of
the validation data is performed randomly each time.

For each ML technique, hyper-parameter tuning was performed via a grid search,
where all possible combinations of hyper-parameter values were tested if there was more
than one parameter. Table 2 shows an overview of the methods and hyper-parameter
ranges. For each ML method, training was performed with all pairwise combinations of
values for the hyper-parameters.

The performance of the tested ML methods was evaluated based on the training
accuracy as well as the validation accuracy. The accuracy was determined based on the
percentage of correct predictions.
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Table 2. Tested ML methods and hyper-parameters with ranges used during hyper-parameter-tuning.

ML Method Hyper-Parameter Description Values

Random forest N_estimators Number of trees [3,5,8,10,15]

XGBoost_classifier
N_estimators Number of trees [3,5,8,10,15]

Max_depth Depth of the individual trees [2,3,5,7,10,12,15]

SVM

KNN k Number of neighbours used for
a prediction [3,5,8,10,15]

2.4. Application

In many cases, the treatment of lung diseases is based on a combination of pairs of
APIs. Predicting the formation of COAMS is therefore an ideal application of the developed
ML model. Consequently, 35 common APIs used in the treatment of asthma, COPD, and
tuberculosis [46,47] were identified. A complete list of the APIs considered can be found in
Supplementary Material (Tables S2 and S3).

For all these APIs, the previously selected molecular descriptors (see Section 2.1.1) were
calculated based on the canonical SMILES of the APIs. For testing the generated ML model
to predict co-amorphous API-API combinations out of these APIs for inhalation therapy, all
possible API-API combinations were selected and the difference of the respective molecular
descriptors calculated and used as input features. The molar ratio was set at 1:1 and the
preparation method as either thermodynamic or kinetic. This resulted in a list of 666 new
combinations in total.

2.5. Distance from Training Data—Uncertainty Factor

The applicability of the generated ML model to predict the formation of COAMS
in novel combinations of substances is restricted by their similarity to the training data
used. Results for API combinations whose molecular descriptors deviate significantly from
those of the training data are therefore less reliable. Consequently, the distance of all new
combinations to the training data was calculated by using the Euclidean distance between
these two 34-dimensional vectors, which corresponds to the length of the path between
them. This distance was then considered in addition to the predicted score when evaluating
new systems. Further, a high value for the predicted score was desired since this reflects a
higher certainty of the model prediction. Accordingly, promising new COAMS are selected
based on a high predicted score (close to 1) and a short distance from the training data. An
uncertainty factor (UF)for positive predictions (p values ≥ 0.5), combining the predicted
score and distance from the training data was introduced as:

Equation (1): Definition of the uncertainty factor (UF).

UF(x) =
d(x, T)
p(x)4 (1)

The formula in Equation (1) to obtain the UF was determined so that it scales predic-
tions based on their distance from the training data. In order to achieve this, the Euclidean
distance was divided by the fourth power of the predicted value. The UF was calculated
for all new systems with a predicted score of 0.5 or higher (a large probability to form
COAMS). Here, d(x, T) is the distance of a new combination x from the training data T,
and p(x) is the predicted score ranging from 0.5 to 1. The fourth power of the predicted
score in the denominator has the effect that systems with a predicted value for p greater
than but close to 0.5 are given a very high UF. Such predictions are then considered highly
doubtful and are questionable when selecting systems for experimental testing. The factor
UF was calculated for all API-API combinations considering a thermodynamic as well as a
kinetic preparation method. Since results were comparable, those for kinetic methods only
are shown.
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2.6. Experimental Model Validation
2.6.1. Materials

Experimental ML model validation was done on three examples, two positively
predicted COAMS and one negatively predicted COAMS. The selection was determined
by the availability of APIs intended for the inhalation therapy in-house. Consequently,
glycopyrronium bromide (GB, Chiesi Pharmaceutics, Parma, Italy), budesonide (BUD, TCI
Deutschland GmbH, Eschborn, Germany), ethambutol (ETH, TCI Deutschland GmbH,
Eschborn, Germany), and streptomycin sulphate (STR, TCI Deutschland GmbH, Eschbor,
Germany) were used.

2.6.2. Milling Expriments

For initial experimental model validation, milling, a common kinetic method described
for co-amorphization, was chosen. One gram mixtures of the two selected APIs were pre-
weighed in a molar ratio of 1:1. A list of the three API combinations, the weights used, the
predicted values and the distances from the training data are reported in Table 3.

Table 3. API combinations for the milling experiments. The APIs were combined in a molar ratio of
1:1. The respective weights are given in the Table.

API 1 API 2 Model
Prediction

Distance from
Training Data

budesonide (BUD) 574.84 mg glycopyrronium
bromide (GB) 425.16 mg 0.98 (COAMS) 74.2

glycopyrronium
bromide (GB) 179.34 mg streptomycin

sulphate (STR) 821.02 mg 1 (COAMS) 411.0

ethambutol (ETH) 390.66 mg glycopyrronium
bromide (GB) 608.88 mg 0 (non-COAMS) 89.3

The APIs were weighed on an analytical balance (XP205DR, Mettler Toledo, Leicester,
UK). Then the mixtures were placed in a 50 mL mixing cylinder together with a stainless-
steel ball (20 mm diameter). Afterwards, the cylinder was placed in a Retsch cryomill
(Retsch GmbH, Haan, Germany) operated without nitrogen. Milling was done at 25 Hz for
10 min. After 5 min the mill was stopped and a 5 min break was made to avoid overheating
and degradation of the APIs. After a second milling cycle of 5 min, samples were stored in
a desiccator.

2.6.3. X-ray Powder Diffraction (XRPD) Analysis

The individual APIs (before milling) and the milled API-API blends were immediately
analysed via XRPD (maximum time from milling to analysis was around 1 h). The analysis
was performed with a Siemens D5005 (in Bragg-Brentano geometry equipped with a Cu-
Anode (λ = 1.54186 A) operated at 40 kV and 40 mA. The measurements were performed
in a 2 Theta range between 4◦ and 40◦ with a step size of 0.04◦ and a time per step of 2 s. A
scintillator detector was used for counting the X-rays.

3. Results and Discussion
3.1. Model Performance—Accuracy

Based on the training data, 50 individual models were built for all ML techniques and
hyper-parameter combinations from Table 2. For the predictive model, the average of those
50 predictions was used. Table 4 summarizes the performance of each tested method on all
data and separately on the validation part. The performance of each method was evaluated
in Table 4 with the respectively best hyper-parameter choice.
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Table 4. Comparison of ML methods’ performance.

Data KNN SVM XGBoost Classifier Random Forest

Training data 97% 89% 97% 97%

Validation data 84% 83% 85% 85%

As can be seen in Table 4, except for SVM all methods are quite similar in their
performance. Since KNN is highly scale sensitive, for training all input features’ value
ranges are scaled to be mapped into the interval [0, 1] to obtain some uniformity. This,
however, could lead to skewed results in the generalisation. Hence, a tree-based method
was chosen. As such, gradient boosting is less dependent on a fortunate hyper-parameter
choice, and was selected as the modelling tool, with 18 estimators and a maximum depth
of 6. We averaged the predictions of 50 models (each of them predicting 1 or 0 for COAMS
or non-COAMS, respectively), resulting in a higher overall accuracy. This increases the
model’s overall applicability to new data, as required for future application. If at least
half of the individual ML models output the value 1 (i.e., from a threshold value of 0.5),
the combined overall ML model will predict the successful formation of a COAMS (see
Figure 2). The value p reflects the probability for forming a COAMS. If the value is very
close to one, then it is very likely that a system is COAMS. However, if the value is equal
to, or only slightly greater than, 0.5, the model will predict a system to be COAMS but with
a low certainty. This dynamic was considered when applying the model to new systems.
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Figure 2. Outline of the combined overall ML model when making predictions for new data.

On average, the individual XGBoost classifier models achieved an accuracy of 97%.
When combined, the overall model then achieved an accuracy of 100% on the training
data. In more detail, 70 out of 71 non-COAMS samples, and all 157 COAMS samples, were
predicted correctly. Figure 3a summarizes the accuracy of the combination of 50 XGBoost
classifier models on the training data. However, since every system in the dataset will
have very likely been part of the training data in most of these 50 models, this is neither
surprising nor an indicator for high overall accuracy. Hence, for more reliable information
on the performance of this model, it is necessary to evaluate the accuracy with additional
data that was never used in the training. When using the test data (see Section 2.1.2) as
input for the model, this resulted in an accuracy of 79%. Based on 19 additional systems
(12 COAMS, 7 non-COAMS), 10 out of 12 COAMS and five out of seven non-COAMS were
identified correctly, while two non-COAMS were falsely predicted to be co-amorphous.
Figure 3b summarizes the accuracy achieved during testing.

3.2. Relevance of Molecular Descriptors

Black box models are generally not desirable, because a comprehensible computational
path is a prerequisite for the credibility of its conclusions. Several predictive modelling
techniques offer the possibility to extract information about the importance of each input
factor after training. For example, multivariate analysis of co-former selection for naproxen
identified crystallization tendency, glass transition temperature (Tg), and molecular flexibil-
ity as relevant factors [18]. In this case, physicochemical parameters were either determined
experimentally (e.g., Tg from DSC experiments) or via in silico calculations (e.g., logP,
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aromatic ring number or topological polar surface area (TPSA)), using different programs,
for example ACD/Percepta (Advanced Chemistry Development Inc., Toronto, Canada)
or Molecular Operating Environment (Ryoka Systems Inc., Tokayo, Japan)). Other earlier
models investigated selected systems from a single class of COAMS only by calculating
descriptors via COSMOquick, a program calculating, among other things, the interaction
parameters between two compounds. In that case, a large value of molecular weight, the
sum of the difference between hydrogen bond donors and acceptors for both substances, a
relatively small value for excess enthalpy of mixing, excess energy of hydrogen bonding,
and the difference in the Hansen Solubility parameter for the co-former and the API [11]
were found favorable for the formation of COAMS.
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The priority for the present modelling approach was for the input parameters (SMILES
combined with selected MORDRED descriptors) to be easily accessible, and to generate
a comprehensible and reliable model to predict the formation of COAMS across all four
classes. For the latter, the identification of the most critical individual chemical parameters
of each substance involved is highly complex. In COAMS, to stabilize the amorphous
form, mechanisms range from intermolecular interactions like hydrogen-bonding and
ionic interactions (salt formation), to non-functional interactions (e.g., molecular mixing).
Accordingly, which mechanism finally drives the formation of a selected COAMS depends
on the individual partners and thus on the class [17,48].

Tree-based models, such as extreme gradient boosting, allow easy extraction of critical
features from the final model, providing detailed understanding of the relative contribution
of each input factor to the model’s predictive decisions. In XGBoost, the importance is
calculated for each single decision tree by the amount that each attribute node improves
the prediction, weighted by the number of observations that this node has been used
for [49]. The overall score for the importance of each feature is then averaged over all trees
in the model. If all input factors are contributing equally to the prediction, the relative
importance of each is simply 1/n, where n is the number of input factors. However, the
relative importance of an individual input factor actually depends on the composition and
order of data within the training data. For example, if a single parameter varies little within
the training data, then it may consequently be underestimated in the prediction. Indeed, it
is possible that this exact parameter has a central role for the formation of a COAMS in a
system that has not been covered so far. Therefore, a large heterogeneity in the training
data is the basis for the validity of the model.

Additionally, the trees in an XGBoost classifier are built based on the order of the
data within the dataset. In relatively small datasets, such as the present one, it is not
uncommon to observe a strong dependency of the calculated feature importance on the
order of the data. Meaning, if the data is shuffled, in the sense that rows are randomly re-
arranged, the importance of individual features can, under certain circumstances, be rather
different. Since we have 34 input features, the threshold for deeming a factor important is
1/34 = 0.029, with higher values indicating more significance of the corresponding factor to
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the final prediction. In order to obtain reliable and stable indicators for feature importance,
10 repetitions of training the entire model, each comprised of 50 XGBoost classifier models,
were undertaken. Within these, the feature importance from each repetition was evaluated
by using the method feature_importances_ from XGBoost classifier. In all repetitions,
the order of the impact of each factor remained the same, although the absolute values
varied slightly, as is to be expected. Based on our training data, for our predictive ML
model the following parameters were identified to be mainly contributing to COAMS
formation (Figure 4): RASA (0.056 ± 0.015), fmF (0.055 ± 0.025), nBase (0.053 ± 0.019),
nH (0.047 ± 0.019), nRot (0.45 ± 0.025), Topo (Shape) (0.043 ± 0.015), and preparation
technique (0.066 ± 0.038) (mean ± SD from 10 evaluations).
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For all input features, the average value for COAMS and non-COAMS was compared.
If a feature, which is the difference in absolute values for this input factor, was signif-
icantly smaller in COAMS than in non-COAMS, it was concluded that high similarity
in this molecular descriptor was beneficial for the formation of COAMS. For example, a
small value of the difference in relative hydrophobic surface area (RASA) promotes the
formation of COAMS in comparison to non-COAMS. So, if this parameter is more similar
for two compounds, the formation of a COAMS is more likely. This also applies for the
molecular framework ratio (fmF) and the topological shape index (Topo (Shape)). Whereas,
all formed COAMS showed a larger value for the difference of nRot, nH and nBase. So,
to form a COAMS, two substances should preferably differ in these parameters. fmF [50]
and Topo(Shape) are shape descriptors of the molecule and related to the appearance of a
substance, and it seems that the more similar two substances are in this regard the more
likely it is that a COAMS is formed.

The rotable bond count (nRot) gives the number of bonds which allow free rotation
around themselves. These are defined as any single bond, not in a ring, bound to a non-
terminal heavy atom, excluding amide C–N bonds due to their high rotational energy
barrier [51]. Substances with high nRot, are assumed to be flexible in orientating and if
two substances are diverse in this parameter they are more likely to approach, and to
interact, with each other.

It is not surprising that the preparation technique has been shown to play a major
role in the prediction of COAMS. The model has learned from training data where certain
systems work with one technique only. Selecting an appropriate preparation technique
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has been shown to be crucial to achieving a satisfactory performance of the final products.
Usually, properties of the two substances, e.g., drug and co-former, both influence the
selection of the preparation method [10]. For example, heat sensitive substances cannot
be processed via melt-quenching, or certain substances have been shown to only form
COAMS with a specific preparation technique such as carvedilol and amino acids, where a
COAMS was formed after spray-drying, but ball milling of the same substances was not
successful in co-amorphization [52].

Interestingly, parameters like nHDon and nHAcc, and their cross relations, were not
deemed important, unlike in previous studies [11]. This is most likely due to the fact that,
compared to these studies, where only amino acids were investigated as co-formers, we
considered COAMS from four different classes. This involves more different co-former
types besides amino acids and consequently also more variety in mechanisms involved in
stabilizing the COAMS, so that overall this factor was not identified as being important in
our study.

3.3. Modelling Performance—Application

To test the suitability of the model for the field of inhalation therapy, 35 APIs used in the
treatment of asthma, COPD and tuberculosis were selected. As mentioned, its applicability
to predict the formation of COAMS in novel combinations of substances is restricted by
their similarity to the training data used. Consequently, the UF (Equation (1)) considering
precision and distance to the training data was introduced. A graphical description of
the predictions for all new API-API combinations (blue dots), and their distance from the
training data, is visualized in Figure 5 together with the test data. Combinations with a
high score (close to 1 on the y-axis) are likely to form co-amorphous systems. The horizontal
distance of the individual points from the y-axis provides information about the similarity
of the new combination to the training data.
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The UF values for all possible API-API systems considered ranged from 37 to 11,578.
The lower the UF, the more accurate the prediction. The 100 combinations with the low-
est UF were selected to be considered for future screening. This corresponds to those
combinations with a UF below 77, likely forming COAMS.

As mentioned in the introduction, administering IGCs together with LABAs or
LAMAs has become the mainstay of long-term therapy of asthma as well as COPD.
Products on the market combining two individual APIs from these classes are, for exam-
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ple, salmeterol/fluticasone (Seretide®, GSK, Durham, NC, USA), formoterol/budesonide
(Symbicort®, AstraZeneca, Cambridge, UK), beclomethasone/formoterol (Foster®, Chiesi,
Parma, Italy), mometasone/formoterol (Dulera®, Merck, Germany), and fluticasone/formo-
terol (Flutiform®, Mundipharma, Frankfurt, Germany). Promising combinations identified
by our model are mometasone—bambuterol (prediction 1.0, UF 57) or mometasone—
glycopyrronium bromide (prediction 0.98, UF 58), and budesonide—tiotropium (prediction
0.98, UF 70) or budesonide—glycopyrronium bromide (prediction 0.98, UF 74). They
yielded both a high predicted score and an acceptable UF. A combination of SABA and
SAMA to be administered in acute asthma identified by our ML model is fenoterol—
ipratropium (prediction 0.94, UF 74). A general trend of the COAMS formation for systems
containing quaternary amine anti-cholinergic drugs with ICS and beta-blockers warrants
further molecular level mechanistic investigation.

For the treatment of tuberculosis, respective first line drug combinations identified
by our model are for example ethambutol—pyrazinamide (prediction 0.98, UF 47) and
ethambutol—isoniazid (prediction 0.98, UF 59).

With regard to the predictability of the developed model, there is a new COAMS
system recently described in the literature that was not included in our dataset, budesonide
and theophylline [53]. The prediction of our generated ML model for this combination was
0.94 and the distance from the training data 71.9; a first indicator confirming the predictive
power of the model. Experimental validation of the model was initially done for 3 systems
(2 positively predicted and one negatively predicted API-API combination), and results are
presented in the section below.

3.4. Experimental Model Validation

For the initial model validation, three relatively clear systems with respect to prediction
and UF/distance were deliberately chosen. Further, selection criteria were the availability
of APIs for inhalation therapy in-house, cost of the APIs, and having at least one therapeutic
relevant system included. Based on these criteria, two systems with high predicted scores
(1 and close to one) and a low and medium distance (74.2 and 411.0), and one example
with a very low predicted score (0) and low distance (89.0) were selected. Table 5 lists the 3
API-API combinations that were co-processed via milling.

Table 5. List of API-API combinations for experimental model validation, the prediction, distance
and XRPD result.

API 1 API 2 Prediction Distance XRPD Results

GB STR 1 411.0 COAMS
BUD GB 0.98 74.2 COAMS
ETH GB 0 89.3 non-COAMS

Figure 6 shows XRPD patterns of the starting materials and the three co-milled samples.
Each of the graphs (Figure 6a–c) shows the two starting materials (API 1 and API 2) and
the corresponding co-milled sample.

Except for streptomycin sulphate (STR), all starting materials (APIs) were crystalline,
indicated by their characteristic diffraction pattern. STR as a starting material did not
show any characteristic Bragg peaks, which is a clear indication of an amorphous material.
Glycopyrronium bromide (GB) showed characteristic peaks at 2θ of 5.22◦, 10.80◦, 14.36◦,
21.52◦ and 27.44 [54,55]. Budesonide (BUD) showed characteristic peaks at 2θ of 5.99◦,
11.95◦, 14.42◦, 15.36◦ and 15.96◦ indicating its crystalline nature. These data were in
agreement with previously published data [56]. Ethambutol (ETH) showed three intense
characteristic crystalline peaks at 2θ of 7.86◦, 15.48◦ and 23.25◦ [57].

Looking at the co-milled API-API combination STR-GB, the crystalline peaks of the
GB starting material disappeared, and only a background signal was visible, indicating
a co-amorphous system (Figure 6a). For co-milled BUD-GB, also the characteristic Bragg
peaks of GB and BUD starting material disappeared, showing the typical background for an
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amorphous material (Figure 6b). By contrast, the co-milled GB-ETH sample still indicated
characteristic peaks from GB as well as ETH starting materials (Figure 6c). This matches
with the prediction from the developed ML model (Table 5).
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4. Conclusions and Outlook

In this study, we used literature data to build a molecular descriptor-based ML model
for predicting the potential of binary drug combinations to form COAMS. In contrast to
previously reported predictive models, we used input data from four classes of COAMS
(combinations of an API with (1) another API, (2) an amino acid, (3) an organic acid, or
(4) another substance). The accuracy of the generated ML model was 79%. The applicability
of the model was tested on 35 APIs used in the therapy of asthma, COPD, and tuberculosis
with the goal of predicting promising co-amorphous API pairs for improved therapy.

A simple tool for a quick screening for the potential formation of co-amorphous
systems was successfully created. With this, it is possible to reduce the experimental effort,
and save time and cost. Further, the workflow to develop the model can easily be applied
to other applications by changing the input data.

In a next step, the model will be further experimentally validated with the goal
of identifying promising co-amorphous API-API combinations for inhalation therapy.
Therefore, API-API combinations that are clinically relevant based on current therapy
regimes, and that are close to the original training data (examples mentioned above), will
be tested. Regarding clinical relevance, further tests about efficacy, safety, etc., are necessary,
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and will have to be considered in a later phase. In order to further optimize the model, and
to determine the limits up to which the prediction is fairly reliable, additionally, carefully
selected systems with a variety of precision and distance values will be tested. The selection
of these systems will aim to improve the coverage of the data space. This will provide
the basis for a fine-tuned ML model, which will then be able to more accurately predict a
broader range of COAMS, not only for the therapy of lung disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15020347/s1, Table S1. Results Literature Review
(Data used for Model Building and Testing); Table S2. List of APIs used in the treatment of COPD
and Asthma (Input for Model Application test); Table S3. List of APIs used in the treatment of
Tuberculosis (Input for Model Application test).
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