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Cross-platform normalization enables machine
learning model training on microarray and RNA-seq
data simultaneously
Steven M. Foltz 1,2, Casey S. Greene 1,3,4✉ & Jaclyn N. Taroni 1,2✉

Large compendia of gene expression data have proven valuable for the discovery of novel

biological relationships. Historically, most available RNA assays were run on microarray,

while RNA-seq is now the platform of choice for many new experiments. The data structure

and distributions between the platforms differ, making it challenging to combine them

directly. Here we perform supervised and unsupervised machine learning evaluations to

assess which existing normalization methods are best suited for combining microarray and

RNA-seq data. We find that quantile and Training Distribution Matching normalization allow

for supervised and unsupervised model training on microarray and RNA-seq data simulta-

neously. Nonparanormal normalization and z-scores are also appropriate for some applica-

tions, including pathway analysis with Pathway-Level Information Extractor (PLIER). We

demonstrate that it is possible to perform effective cross-platform normalization using

existing methods to combine microarray and RNA-seq data for machine learning applications.
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The union of large and diverse compendia of gene expres-
sion data with machine learning approaches has enabled
the extraction of cell type-specific networks1 and the dis-

covery of new biological patterns associated with cellular
responses to the environment2. Integrative analyses of multiple
microarray cohorts have uncovered important signatures in
human infection3,4. Sequencing-based RNA assays have certain
advantages over array-based methods, namely quantitative
expression levels, a lack of dependence on current annotations,
and a higher dynamic range5. As a result, researchers have
increasingly adopted this technology for their gene expression
experiments.

RNA-sequencing (RNA-seq) assays represent a growing share
of new gene expression experiments. In February 2022, the ratio
of summarized human microarray to RNA-seq samples from
GEO and ArrayExpress was close to one to one (1.13:1), meaning
that half of all summarized human samples come from either
platform, although RNA-seq overtook microarray data as the
leading source of new submissions to ArrayExpress in 20186–9.
Integrative analyses of gene expression requires the combination
of these data types—a task of utmost importance for rare diseases
or understudied biological processes and organisms where all
available assays will be required to discover robust signatures or
biomarkers. Thus, effective strategies for combining data from the
two platforms—perhaps in a manner that leverages both the
advantages of RNA-seq and the abundance of microarray data—
are paramount to transcriptomic and functional genomic
experiments going forward.

Much work has been performed to develop methods for
effectively combining multiple cohorts or batches of gene
expression data, but no method has been widely adopted for the
problem of combining mixtures of array and RNA-seq platform
data4,10–16. Quantile normalization (QN) is a widely used nor-
malization technique originally utilized for microarray data17,
and it has also been adopted for RNA-seq data normalization18

and in some cases, cross-platform normalization19. Probe Region
Expression estimation Based on Sequencing (PREBS) was devel-
oped to make RNA-seq and microarray data more comparable,
but this method requires raw reads and probe specific informa-
tion and may not be feasible for large-scale public data efforts20.
Training Distribution Matching (TDM) was developed by our
group to make RNA-seq data more comparable to microarray
data from transcript abundances specifically for machine learning
applications21. In that work, it was demonstrated that QN, TDM
and a method from the analysis of graphs, nonparanormal nor-
malization (NPN), had good performance in the supervised
learning evaluation. However, combining array and RNA-seq
platforms was not evaluated. Recent efforts to integrate single-cell
RNA-seq data across experiments and modalities has generated
many new approaches22,23.

Here, we present a series of experiments to test what nor-
malization approaches can be used to combine microarray and
RNA-seq data for supervised machine learning and unsupervised
machine learning, including pathway analysis. We chose subtype
and mutation status prediction for our supervised machine
learning tasks because they are commonly used in cancer
genomics studies and the labels are well-defined in our data. Our
unsupervised machine learning results focus on pathway analysis
since this is an important downstream application for under-
standing biologically relevant gene expression patterns. Given
the broader dynamic range of RNA-seq data, this work focuses
on the problem of normalizing RNA-seq data to a target dis-
tribution of array data. We specifically add varying numbers of
RNA-seq data to our training sets to assess at what point per-
formance begins to suffer. We find that QN, TDM, NPN, and
standardized scores are all suitable for some use cases, with the

widely adopted QN performing well for machine learning
applications in particular.

Results
We performed a series of supervised and unsupervised machine
learning evaluations to assess which normalization methods are
best suited for combining data from microarray and RNA-seq
platforms. We evaluated seven normalization approaches for all
methods: LOG, NPN, QN, QN (CN), QN-Z, TDM, and stan-
dardizing scores (z-scoring; Z), plus untransformed data for
comparison (UN) added as an additional negative control.

Non-paranormal normalization, quantile normalization, and
training distribution matching allow for training subtype and
mutation classifiers on mixed platform sets. We trained models
to predict subtype from our BRCA and GBM training sets with
varying numbers of samples from the RNA-seq platform. We
used these models to predict subtype on holdout data sets com-
posed entirely of microarray data or RNA-seq data (Fig. 1). We
trained three commonly used classifiers: LASSO logistic regres-
sion, linear SVM, and random forest. Kappa statistics were used
to assess performance, in addition to AUC, sensitivity, and spe-
cificity (Supplementary Data 1). Although each metric showed
similar results, we focused on Kappa statistics for our inter-
pretation of model performance to directly incorporate the multi-
class and imbalanced nature of our data sets. We visualize the
BRCA Kappa statistics for varying numbers of samples from
RNA-seq in the training data in Fig. 2 and show GBM results in
Supplementary Fig. 3. (Note that the pipeline in Fig. 1a–c was
repeated ten times.) The three classifiers showed the same trends
across normalization approaches overall, suggesting that the
normalization approaches recommended herein will generalize to
multiple classification methods.

Importantly, for BRCA, there were appreciable differences
between normalization methods (Fig. 2). GBM results showed
similar results but with less distinction between methods
(Supplementary Fig. 3) and lower Kappa values than BRCA
overall. Such differences may come from the type of RNA-seq
data used (RSEM counts for BRCA, UQ-FPKM for GBM), the
size of training data sets used (BRCA 348 samples, GBM
102 samples), or how well each cancer’s subtypes are defined by
gene expression. Log-transformation demonstrated among the
worst performance. This is expected as we consider this method
to be a negative control and it was previously shown to be
insufficient to make RNA-seq data comparable to microarray21.
We also saw that z-scoring data resulted in the most variable
performance. This is not unexpected because the calculation of
the standard deviation and mean will be highly dependent on
which samples are selected from each platform and the random
selection of RNA-seq samples to be included in the training set
does not consider subtype distribution, which may not be
known in practice. We found that NPN, QN, QN-Z, and TDM
all performed well when moderate (i.e., not extreme) amounts of
RNA-seq data were incorporated into the training set. These
results are consistent with the high performance of these three
methods in our case study of training entirely on microarray
data and using solely RNA-seq as a test set21. These three
methods performed well on both the microarray and RNA-seq
holdout sets. QN followed by z-scoring (QN-Z) showed similar
results to QN without z-scoring. Untransformed data (UN)
showed poor performance at all titration levels.

Quantile normalization did not perform well at the extremes
(0 and 100% RNA-seq data). We attribute this loss of
performance to the lack of reference distributions in these
cases—for all other amounts of RNA-seq (10–90%), the set of
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microarray data is used as a reference distribution for both the
RNA-seq data included in the training set as well as for the
holdout set (see Methods and Data). This result reiterates
the importance of drawing training and holdout sets from the
same distribution, as is well-documented in the machine
learning literature, and highlights the necessity of proper
cross-platform normalization.

We also predicted TP53 and PIK3CAmutation status in BRCA
and GBM. We report results for TP53 prediction in GBM in

Fig. 3 (others in Supplementary Figs. 4–5), using delta Kappa, the
difference in Kappa between models with true labels and null
models with mutation labels randomized within subtype. This
was necessary because mutation class imbalance differs between
molecular subtypes. Delta Kappa values close to zero indicate
little improvement of the true model over the null model.
Although delta Kappa values were mostly positive, indicating an
improvement of the true label models over the null models, there
was little difference in performance between normalization

Cross-platform normalization
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Fig. 1 Overview of supervised and unsupervised machine learning experiments. a TCGA matched samples (520 from BRCA, 150 from GBM) run on both
microarray and RNA-seq were split into a training set (2/3) and test set (1/3). b RNA-seq samples were titrated into each training set, 10% at a time
(0–100%), resulting in eleven training sets for each normalization method. Each RNA-seq sample replaces its matched microarray sample. Cross-platform
normalization methods were applied to each training set independently. c We used three supervised algorithms to train classifiers (molecular subtype and
mutation status of TP53 and PIK3CA in both BRCA and GBM) on each training set and tested on the microarray and RNA-seq test sets. The test sets were
projected onto and back out of the training set space using unsupervised Principal Components Analysis to obtain reconstructed test sets. The subtype
classifiers trained in step 3A were used to predict on the reconstructed test sets. Pathways regulating gene expression were identified using the
unsupervised method PLIER.
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methods or across RNA-seq titration levels among LOG, NPN,
QN, QN-Z, and TDM. Z and UN results varied widely across the
spectrum of RNA-seq titration level. PIK3CA mutation predic-
tion in GBM showed negligible improvement over the null
model, possibly due to the low proportion of samples with
mutations (n= 10 out of 98 samples in training) (Supplementary
Fig. 5b).

Suitable normalization methods for unsupervised learning
depend on the downstream application
Downstream analysis of pathways regulating gene expression. We
ran PLIER24 to identify pathways significantly associated with at
least one latent variable in gene expression data derived from a
single platform (microarray only or RNA-seq only) or mixed-
platform (combination of microarray and RNA-seq). Here, we
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Fig. 2 BRCA subtype classifier performance on microarray and RNA-seq test data. a Median Kappa statistics from 10 repeats of steps 1–3 A from Fig. 1
and for seven normalization methods (and untransformed data) are displayed. Median values are shown as points, and approximate 95% confidence
intervals are shown around each median defined as +/−1.58*IQR/sqrt(n) with IQR= interquartile range and n= number of observations60. LOG log2-
transformed, NPN nonparanormal normalization, QN quantile normalization, QN (CN) quantile normalization with CrossNorm, QN-Z quantile
normalization followed by z-score, TDM Training distribution matching, UN untransformed, Z z-score.
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Fig. 3 GBM TP53 mutation classifier performance on microarray and RNA-seq test data. a Median delta Kappa statistics from 10 repeats of steps 1–3 A
from Fig. 1 and for seven normalization methods (and untransformed data) are displayed. Median values are shown as points, and approximate 95%
confidence intervals are shown around each median defined as +/−1.58*IQR/sqrt(n) with IQR= interquartile range and n= number of observations60.
Delta Kappa measures the difference in Kappa values between a null model and a model built with true labels. LOG log2-transformed, NPN nonparanormal
normalization, QN quantile normalization, QN (CN) quantile normalization with CrossNorm, QN-Z quantile normalization followed by z-score, TDM
training distribution matching, UN untransformed, Z z-score.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04588-6

4 COMMUNICATIONS BIOLOGY |           (2023) 6:222 | https://doi.org/10.1038/s42003-023-04588-6 | www.nature.com/commsbio

www.nature.com/commsbio


wanted to examine the benefit of creating a larger data set
through the combination of platforms for downstream analysis.
For BRCA, the half-size single platform data comprised
174 samples (half of available training samples), while the full-size
single platform and cross-platform data each had 348 samples
(the full set of training samples). For GBM, the sample sizes were
51 for half-size and 102 for full-size data sets. As a negative
control, we permuted gene-pathway relationships used as input to
PLIER to establish the baseline rate of false positive pathway
associations. We found that out of 110 PLIER runs, five runs
reported one false positive significant pathway association, while
105 runs reported no significant pathways.

Overall, in both cancer types, doubling the sample size of our
data sets resulted in a greater proportion of available pathways
being significantly associated with an underlying latent variable in

the decomposed data set, with a similar increase observed for
both cross-platform and single platform full-size data sets. This
could indicate a greater biologically relevant signal being
extracted from the data (Fig. 4a, b) and is consistent with
previous studies25. We found that doubling the sample size led to
important cancer pathways being identified more stably and
regularly in both the single-platform and cross-platform settings,
including pathways related to ERB2, NFKB immune infiltration,
and RAF in BRCA, and KRAS, MYC, and PRC2-related pathways
in GBM. Pathway results are included for BRCA (Supplementary
Data 2) and GBM (Supplementary Data 3). For GBM, with its
smaller sample size overall, the proportional benefit of doubling
the number of samples was greater than the benefit seen in
BRCA. Combined platform data normalized by NPN showed the
highest proportion of significant pathways, suggesting that input
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Fig. 4 Pathways regulating gene expression identified by PLIER. Pathway-level information extractor (PLIER) analysis results showing the proportion of
pathways associated with at least one latent variable for BRCA (a) and GBM (b). The Single Platform (half sample size) panel shows single platform data
using half the available samples for each platform. The Combined Array and RNA-seq panel shows 50% array and 50% RNA-seq data combined and
normalized by various methods representing the full set of available samples. The Single Platform (full sample size) panel shows single platform data using
the full set of available samples for each platform. LOG log2-transformed, NPN nonparanormal normalization, QN quantile normalization, QN (CN) quantile
normalization with CrossNorm, QN-Z quantile normalization followed by z-scoring, TDM training distribution matching, Z z-scoring.
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data closest to a normal distribution on a gene level may be best
suited for PLIER. Untransformed data (UN), with its widely
differing ranges for array and RNA-seq data, could not be
successfully run with PLIER.

Dimensionality reduction and reconstruction. Dimensionality
reduction and/or unsupervised feature extraction methods are
commonly employed in the analysis of gene expression data. We
used Principal Components Analysis (PCA) and evaluated nor-
malization method performance. The molecular subtypes in
BRCA and GBM are strong, linear signals that we should be able
to predict in the holdout sets given the performance of the
classifiers visualized in Fig. 2 and Supplementary Fig. 3 and
should be readily extractable using PCA. We aimed to identify
which normalization methods were most suitable for feature
extraction in data sets comprising a mixture of microarray and
RNA-seq data. Our approach was as follows: PCA was performed
on the training sets and then the holdout sets were projected onto
the training space and then reconstructed to obtain reconstructed
holdout sets (see Methods, Fig. 1). We evaluated performance in
two ways: (1) we performed BRCA and GBM subtype prediction
on the reconstructed sets using the classifiers trained in the
supervised analyses and (2) we calculated reconstruction error
post-transformation (MASE; see Methods).

We observed differences in classifiers and normalization
methods as measured by the Kappa statistics (Supplementary
Figs. 6–7). For BRCA, the SVM performance was most robust to
reconstruction (Supplementary Fig. 6), consistent with expecta-
tions for linearly separable class problems. In general, the random
forest classifier suffered the largest loss of performance, likely due
to gene expression thresholds (rules) used for prediction
(Supplementary Fig. 7). In the case of NPN, the near zero
random forest Kappa statistics (Supplementary Fig. 6) resulted
from predictions of only one class label. We observed the largest
differences in performance between the two platform holdout sets
with Z normalization (Supplementary Fig. 6). We found that
projecting the holdout sets onto QN and TDM normalized
training space results in less loss of subtype classifier performance
relative to when there is no reconstruction performed (Supple-
mentary Fig. 7). In addition, we observed QN resulted in low
reconstruction error (Supplementary Fig. 8). This suggests that
QN and TDM are suitable for normalizing sets composed of data
from both platforms for use with unsupervised feature extraction
applications.

Discussion
We examined cross-platform normalization methods for
machine learning on training sets composed of data measured
on RNA-seq and microarray, and we demonstrated that it is
possible to combine these data types for use with supervised and
unsupervised applications. In general, performance on holdout
data from both platforms is largely comparable. We find that
QN and TDM, when using moderate numbers of RNA-seq
samples (10–90%), perform well for both types of machine
learning approaches. NPN is a strong performer in the super-
vised ML applications and the unsupervised PLIER analysis but
may not be appropriate in the unsupervised PCA reconstruction
applications given the decrease in Kappa in predictions on
reconstructed expression data. Other applications of cross-
platform normalization, such as combining array-based gene
expression data from different array manufacturers (e.g., Agilent
and Affymetrix) could follow the same principles as what we
have described here.

This study has some important limitations. Because of our
experimental design, we required large data sets of samples run

on both platforms. This focused our work on two high quality
data sets: TCGA BRCA and GBM data. BRCA and GBM subtypes
and common gene mutations are well-defined signatures that
have evident linear expression patterns. As a result, our guidance
may not generalize to nonlinear classifiers, data sets of poor
quality, or small sample sizes. In the context of mutation status
prediction, we found the mutation class balance to differ between
subtypes. Therefore, the overall expected accuracy calculated for
the Kappa statistic may not adequately reflect the expected
accuracy if, for instance, the classifier predicts the majority
mutation class within a subtype. This suggests that the Kappa
statistic may be less well-suited for this evaluation compared to
predicting molecular subtype.

In addition, we stress that the biological question at hand when
performing cross-platform normalization must be considered, as
some assumptions underlying a normalization method may be
violated. By harmonizing RNA-seq to microarray data, we gain
the benefit of larger sample sizes required for more data-intensive
machine learning applications. But, while gene expression dis-
tributions can be adjusted, the properties of count-based data,
especially with respect to ties and true zero values, may hinder
our ability to measure performance across multiple tasks. Alter-
native approaches may not require reshaping RNA-seq data to
match array data. For example, methods utilizing gene-pair ratios
may rely on relative expression levels of genes within samples to
identify useful features26 and should be considered for future
work, including recent approaches like meGPS that apply this
idea across platforms and data types27.

We designed these experiments to evaluate the combination of
microarray and RNA-seq data in practice in the absence of
samples measured on both platforms. This work indicates that it
is possible to perform model training on microarray and RNA-
seq. Combining both platforms could allow models to take
advantage of the additional information captured in some RNA-
seq experiments while benefiting from the historical abundance of
microarray data. For example, with low false positive rates, we
showed that increasing sample size with cross-platform normal-
ization yielded more significant pathways in our PLIER analysis.
Training sets comprising samples run on both platforms will be a
new reality as RNA-seq becomes the platform of choice and the
ability to perform such analyses will be of particular importance
for understudied biological problems.

Methods
We aimed to assess the extent to which it was possible to effectively normalize and
combine microarray and RNA-seq data with existing methods for use as a training
set for machine learning applications. We assessed performance on holdout sets
composed entirely of microarray data and entirely of RNA-seq data. To design
such an experiment, we required data sets that had matched samples—sets of
samples run on both microarray and RNA-seq—and that were of sufficient size.
Our matched samples design allowed us to directly evaluate how the addition of
RNA-seq data into the training set affects performance without the added com-
plication of a change in the underlying samples (e.g., biological replicates). Using a
different set of samples for training or evaluation could have resulted in a change in
performance that was unrelated to the platform difference, which could confound
the results. For our machine learning experiments, we used both microarray and
RNA-seq holdout sets composed of the same samples to assess how the addition of
RNA-seq data into the training set affected test accuracy on both widely used
genome-wide expression platforms.

Although our experimental design required matched samples, we designed an
analysis to evaluate normalization methods for the purpose of combining RNA-seq
and microarray data when matched samples are not available. We compare holdout
performance with both platforms separately to assess the extent to which models
trained on a mix of RNA-seq and microarray data performed differently on test
sets from the two platforms (see Experimental design). We also took care to design
the normalization process such that it is applicable for data sets without matched
samples—that is, when reference distributions are required, we do not use all
microarray samples to normalize the RNA-seq, but rather the subset of microarray
data included in the training set (see Cross-platform normalization approaches).
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Evaluation gene expression and mutation data. The Cancer Genome Atlas
(TCGA) breast cancer (BRCA) and glioblastoma (GBM) data sets include samples
that have been measured with both microarray and RNA-seq platforms28–31. In
addition, both BRCA and GBM have well-defined molecular subtypes that are
suitable for use as labels/classes for supervised machine learning approaches we
describe below. BRCA and GBM also show recurrent TP53 and PIK3CA gene
mutations, allowing for the prediction of mutation status based on gene expression
profiles32–34. For BRCA (520 pairs of matched samples), we used log2-transformed,
lowess normalized Agilent 244 K microarray data29 and RSEM (RNA-seq by
Expectation Maximization) gene-level count RNA-seq data35. For GBM (150 pairs
of matched samples) we obtained Affymetrix HT Human Genome U133A Array
data from refine.bio (GSE83130) normalized by the SCAN method36,37. GBM
RNA-seq upper quartile FPKM gene expression data came from the National
Cancer Institute Genomic Data Commons TCGA Pan-Cancer Atlas38,39. Likewise,
SNP and indel mutation calls came from the GDC Pan-Cancer Atlas MC3 public
MAF (v0.2.8)40. We consider these data to be the products of standard processing
pipelines for their respective DNA and RNA expression platforms. Our methods
focus on cross-platform normalization and assume that any within-platform batch
effects have already been corrected upstream.

For the purpose of these analyses, we restricted the data set to the tumor
samples (termed ‘matched samples’) that were measured on both platforms (520
matched samples for BRCA, 150 for GBM). Mutation calls were missing for 12/520
BRCA samples and 4/150 GBM samples. A total of 16146 genes were measured on
both expression platforms for BRCA and 11414 genes for GBM.

Subtype and mutation status prediction and unsupervised feature extraction
Experimental design. An overview of our experimental design for machine learning
evaluations is illustrated in Fig. 1. Matched samples were split into training (2/3)
and test (1/3) sets using the createDataPartition function in the caret package,
which takes the balance of the class distributions in the training and holdout sets
into account (i.e., stratified sampling; Fig. 1a)41. See Supplementary Fig. 1 for
representative plots of subtype and mutation status distributions for BRCA and
GBM. To create our panel of training sets, samples analyzed with RNA-seq were
titrated into the training set via random selection in 10% increments to produce
training sets containing 0%, 10%, 20%… 100% RNA-seq data (Fig. 1b). For every
RNA-seq sample added to a training set, the matched microarray sample was
removed, keeping the number and identity of patients consistent across all training
data sets.

Machine learning methods are applied to each training set (there are 11 training
sets, with 0–100% RNA-seq titrated in at 10% increments), which have each been
normalized in various ways according to the details below (see Cross-platform
normalization approaches and Creation of cross-platform training sets and single
platform holdout sets). We then applied prediction models based on each training
set to our holdout data sets. Two holdout sets were used: a set of RNA-seq data and
a set of microarray data. We refer to these as the RNA-seq holdout set and
microarray holdout set, respectively. These holdout sets (or test sets) of normalized
microarray and RNA-seq data are kept separate and not titrated together in order
to evaluate how the composition of the training set impacts prediction performance
in each data type. The pipeline for partitioning data into training and testing,
titration, and normalization was repeated 10 times using different random seeds, as
were the downstream analyses (e.g., subtype and mutation status classification,
unsupervised feature construction).

Cross-platform normalization approaches. In each randomized repeat of our
experiment, the same set of patients was used across all training sets, with only the
platform of the sample (either microarray or RNA-seq) varying across RNA-seq
titration levels. Likewise, the microarray and RNA-seq holdout sets consisted of
matched samples from the same set of patients. In accordance with how these
methods would be used in practice, normalization was performed separately for
training and holdout sets. For the normalization methods that require a reference
distribution (e.g., QN and TDM), the RNA-seq training and holdout sets were
normalized using the microarray portion of the training data as a reference,
separately. This is analogous to the normalization process in the absence of mat-
ched samples; the training microarray data (which is 100, 90, … 0% of the training
set, Fig. 1) would be used as a reference for both the RNA-seq training data and the
RNA-seq holdout data. These normalization processes would be performed sepa-
rately to avoid contamination of the holdout data and, thus, overestimation of
performance. Only genes measured on both platforms were included, and any
genes that had missing values in all samples or all equal values in the RNA-seq data
(all samples in holdout data, training ‘titration’ samples at any sequencing level)
were removed. See Supplementary Fig. 2 and its legend for an overview of how
training and holdout normalization was performed for all methods.

Log2-transformation (LOG): As the log2-transformed array data contained negative
values, the microarray data were inverse log-transformed and then log-transformed
again after adding 1 to each expression value such that re-transformed values are
non-negative. All missing values were set to zero. This array of data was used in all
downstream processing steps.

Quantile normalization (QN): QN was performed using the preProcessCore R
package42. Given the log2-transformed microarray distribution (target), the nor-
malize.quantiles.use.target method will normalize the columns (samples) of the
RNA-seq data such that the data sets are drawn from the same distribution. For
sets entirely composed of samples on a single platform without an applicable
reference, normalize.quantiles was used.

Quantile normalization with CrossNorm (QN (CN)): CrossNorm43 combines data
from different distributions by stacking columns from paired samples or, in the
more general case, combinatorially stacking columns from each distribution before
performing quantile normalization. Before combining data sets, the array, and
RNA-seq sample expression values were rescaled zero-to-one. The QN (CN)
process differs from QN or QN-Z because RNA-seq samples are not normalized to
fit the array distribution; rather, the samples from array and RNA-seq are cross-
normalized toward the same shared distribution together. Since CrossNorm
requires two data sets, there is no QN (CN) data for training at 0 and 100% RNA-
seq. Likewise, QN (CN) array and RNA-seq test data is simply rescaled and
quantile normalized without reference to array training data.

Quantile normalization followed by standardizing scores (QN-Z): This normal-
ization method sequentially combines quantile normalization (QN) and z-score
transformation (Z).

Training distribution matching (TDM): TDM was developed specifically to make
RNA-seq test data compatible with models trained on microarray data21. It
identifies the relationship that the microarray training data has between the spread
of the middle half of the data and the extremes and then transforms the RNA-seq
test set such that it has the same relationship between the spread of the middle half
of the data and the extremes. Specifically, given a reference distribution (array
data), TDM calculates the reference interquartile range (IQR), and then finds the
number of times the reference IQR fits into the reference distribution’s upper (max
—Q3) and lower (Q1—min) quartiles. Then, TDM sets the new upper and lower
bound of the target distribution (RNA-seq) by stretching or shrinking the target
upper and lower quartiles by the IQR factors calculated from the reference dis-
tribution. Target distribution values are winsorized to match the new upper and
lower bounds. The target distribution is then rescaled between 0 and 1, stretched to
match the range of the reference distribution, and shifted to match the minimum
value of the reference distribution.

We used the TDM R package to perform TDM normalization. For the training
set composed of 0% RNA-seq data, models trained on log2-transformed microarray
data were used for prediction/reconstruction on the TDM normalized RNA-seq
holdout set. TDM was not used when the training set consisted of 100% RNA-seq
data, as there is no relevant microarray data to use as the reference distribution in
this case.

Non-paranormal normalization (NPN): Our implementation of NPN is a rank-
based inverse normal transformation that forces data to conform to a normal
distribution by rank-transformation followed by quantile normalization, placing
each observation where it would fall on a standard normal distribution44. NPN was
performed using the huge R package prior to concatenating samples from both
platforms and separately on single-platform holdout sets45.

Standardizing scores (Z): z-scoring was performed on a per gene basis using the
scale function in R prior to concatenating training samples from both platforms.
Single-platform holdout sets were z-scored separately. Z-scores or standard scores
are calculated z ¼ x�μ

σ , where μ and σ are the gene mean and standard deviation,
respectively.

Gene expression values were standardized to the range ½0; 1� (zero-to-one
transformation) on a per gene basis, either before or after concatenating samples
from each platform.

As an additional basis for comparison, untransformed data (UN) was included
in most analysis tasks. Untransformed array data is LOG data with no zero-to-one
transformation. Untransformed RNA-seq data has no zero-to-one transformation.

Other approaches to combining and normalizing gene expression data are
commonly used in single-cell RNA-sequencing studies to integrate data sets by
reducing batch effects across studies and experimental conditions. We designed an
approach analogous to Seurat’s integration pipeline46–50 in which single cells
became single (bulk) samples, and our array and RNA-seq data sets were the two
batches or experimental conditions. Due to low sample numbers at the edges of our
titration protocol, many experimental conditions could not be integrated. For those
conditions with enough samples from array and RNA-seq for successful
integration, we have included machine learning prediction results in table form (see
Data availability).

Creation of cross-platform training sets and single platform holdout sets. Training
data sets are mixtures of microarray and RNA-seq samples titrated at 10% inter-
vals, starting with 0% RNA-seq, then 10%, 20%, …, and 100%. When RNA-seq
samples are added to a training set, the matched microarray samples are removed.
At each titration level, microarray and RNA-seq samples are normalized according
to various methods.
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0% RNA-seq (100% microarray) training data: LOG data is the input to non-
paranormal (NPN), quantile (QN), QN followed by Z (QN-Z), and z-score (Z)
normalization. UN array data is LOG data without zero-to-one transformation.
There is no QN (CN) or TDM for 100% array training data.

X% RNA-seq (100-X% microarray) training data: For LOG, microarray samples
are LOG and RNA-seq values are log2(x+ 1) transformed, then array and RNA-seq
values undergo gene-level zero-to-one transformation separately before being
joined together. For NPN, array and RNA-seq values undergo gene-level non-
paranormal normalization separately, then get combined before gene-level zero-to-
one transformation. For QN, RNA-seq data is transformed to align with the
quantiles of array data, array and RNA-seq undergo gene-level zero-to-one
transformation separately and are then combined. For QN (CN), each array and
RNA-seq column (sample) is scaled zero-to-one and then normalized using the
unpaired CrossNorm algorithm, followed by gene-level zero-to-one transforma-
tion. For QN-Z, array and RNA-seq data are QN and Z normalized separately
before getting combined for gene-level zero-to-one transformation. Similarly, for
TDM, we transform the spread of RNA-seq data to match the spread of array data,
array and RNA-seq undergo gene-level zero-to-one transformation separately and
are then combined. For Z, RNA-seq and array data are z-scored separately at the
gene-level, then combined for gene-level zero-to-one transformation. For UN,
RNA-seq data remains untransformed and data do not undergo gene-level zero-to-
one transformation.

100% RNA-seq (0% microarray) training data: Untransformed RNA-seq data gets
LOG, NPN, QN, QN-Z, and Z transformed by itself without reference to array
data. It then undergoes gene-level zero-to-one transformation. For UN, RNA-seq
data remains untransformed and data do not undergo gene-level zero-to-one
transformation after each normalization. There is no QN (CN) or TDM applied to
100% RNA-seq training data.

Microarray test data (100% microarray): Like the 100% array training data, array
test data gets LOG, NPN, QN, QN (CN), QN-Z, UN, and Z transformed by itself
without reference to any other data, and it then undergoes gene-level zero-to-one
transformation after each normalization except UN. There is no TDM for 100%
array test data.

RNA-seq test data (100% RNA-seq): For LOG, NPN, QN (CN), and Z, RNA-seq
values are transformed without reference to any other data. We transform the
100% RNA-seq test data using QN, QN-Z, and TDM across the RNA-seq titration
level spectrum (0–90%) to match the training LOG array data associated with each
titration level (0% through 90%), just as the training RNA-seq data was trans-
formed to match the training LOG array data at each level. QN and QN-Z use no
reference for 100% RNA-seq test data, and there is no TDM applied to 100% RNA-
seq test data. Transformed data undergoes gene-level zero-to-one transformation
after each normalization except UN.

Subtype and mutation status prediction on mixed platform data sets. Subtype
classifications—derived from TCGA’s analysis of the microarray data, rather than a
clinical assay—were used as the subtype labels for supervised analyses
(Fig. 1c)29–31. Because these labels were derived from the microarray data, analyses
that aim to compare the subtype prediction quality of microarray- and sequencing-
based platforms would be inappropriate. Our evaluations are restricted to the
relative performance of normalization methods across both platforms.

We performed fivefold cross-validation on training sets for model training and
hyperparameter optimization using total accuracy for performance evaluation. We
trained the following three classifiers: LASSO logistic regression51, linear support
vector machine (SVM), and random forest. We used the glmnet R package
implementation of LASSO52. The training of SVM and random forest classifiers
was performed using the caret R package and utilizing the kernlab53 and ranger54 R
packages, respectively. We used the Kappa statistic to evaluate performance on
holdout data for two main reasons. The first reason is we make no assumptions
about class balance in our data, so to mitigate the potential for bias due to class
imbalance, we chose a metric that builds in a baseline probability of chance
agreement. The second reason is to accommodate our multi-class outcome (e.g.,
five subtypes in both breast cancer and glioblastoma), which Kappa achieves
without relying on a composite of one-vs-all comparisons, as classes were not
balanced. Briefly, the Kappa statistic takes into account the expected accuracy of a
random classifier and is generally considered to be less misleading than observed
accuracy alone55. The formula for Cohen’s Kappa is:

κ ¼ p0 � pe
1� pe

ð1Þ

where p0 is the agreement observed between two methods and pe is the expected
probability of agreement by chance. In addition to the Kappa statistic, we used a
composite one-vs-all approach to calculate several metrics designed for binary
classification tasks with balanced data, including the area under the receiver
operator curve (AUC), sensitivity, and specificity. Metrics for all subtype and
mutation prediction models may be found in Supplementary Data 1.

TP53 and PIK3CAmutation calls, including SNPs and indels, were derived from
TCGA’s MC3 public call set (v0.2.8)40. Our evaluation approach changed slightly
for predicting mutation status. Given the higher prevalence of TP53 and PIK3CA
mutations in some expression-based subtypes, we wanted to make sure our
mutation classifiers were not just predicting subtypes as a proxy for mutation
status. We accounted for this by calculating the change in Kappa (delta Kappa)
between a null model and a model built with true labels. Our null model was built
with mutation labels randomized within each subtype. The null model Kappa
represents the ability of the classifier to differentiate subtypes based on the
prevalence of mutations in that subtype. Positive delta Kappa values indicate the
ability of the model to predict mutation status beyond what would happen given
the association of each mutation with particular subtypes.

Unsupervised feature extraction from mixed platform data sets
Pathway-level information extractor (PLIER): We used PLIER to identify coordi-
nated patterns of expression in our data, which may be the result of gene
regulation24. PLIER uses a set of biological constraints defined by gene expression
pathways to decompose an expression matrix with non-negative matrix factor-
ization. One output is a set of latent variables and loadings, and some of the input
pathways may be associated with one or more latent variables, suggesting that the
pathway plays a role in regulating gene expression. We ran PLIER using training
data to assess the downstream benefit of creating larger data sets through cross-
platform normalization. We report the proportion of significant pathways out of
the global set of pathways, with higher proportions indicating a more complete
capture of real biological variation. As a negative control, we identified the baseline
false positive rate of significant results obtained by chance by permuting the gene-
pathway relationships represented in the gene-pathway input matrix. Specifically,
we permuted the gene (rows) and pathways (columns) matrix by resampling
without replacement within each column such that the number of genes associated
with each pathway remained constant. We compared results from single platform
data sets (microarray or RNA-seq only) with normalized data comprising 50%
microarray and 50% RNA-seq samples. For the single platform data sets, we
included some with half of the available samples and some with the full set of
samples. The normalized data sets comprised the full set of samples with half
coming from either platform. The global set of biological pathways included 817
canonical, oncogenic, cell line, and blood cell pathways. For each input gene
expression data set, we identified the total number of pathways significantly
associated (FDR < 0.05) with at least one latent variable. To evaluate the potential
benefit of increasing sample size to pathway stability and consistency, we identified
oncogenic pathways that were more frequently (change in proportion >= 0.2)
associated with at least one latent variable in the full sample size data sets compared
to the half sample size data sets.

Principal components reconstruction for subtype prediction: We hypothesized that
normalization methods may distort the utility of low-dimensional projections and
that this distortion may differ by the level of RNA-seq data titrated into each
training set. To test this, we evaluated machine learning tasks after projecting the
test data onto the low-dimensional space defined by the training data. We per-
formed principal components analysis (PCA) on each training set using the
prcomp function in R, setting the number of components to 50 (Fig. 1c). We then
projected the holdout data onto the training data PC space and reconstructed the
holdout data using the first 50 principal components. We assessed reconstruction
error (comparing holdout input, y, to reconstructed values, ŷ) by calculating the
mean absolute scaled error (MASE) for each gene56. We selected mean absolute
scaled error (MASE) to assess reconstruction error based on the needs of our
application. Scale invariance is a key feature enabling comparison across multiple
sequencing types and normalization methods. MASE is well suited for data sets
with predicted values close to zero, in contrast with other measures. MASE also
measures error in absolute terms, matching our preference to weight over and
under estimation of values equally. MASE is calculated on a per gene basis as
follows:

MASE ¼ mean
jyi � ŷij

1
N ∑

N

i¼1
jyi � �yj

0
BB@

1
CCA ð2Þ

where, for each sample i (1 through N), yi is the original expression value, ŷi is the
expression value after reconstruction, and �y is the average of the original expression
values for that gene.

We performed supervised analysis following reconstruction to assess whether
the subtype signals were retained or if features were dominated by noise introduced
by combining platforms. We used the models trained for subtype classification to
predict on the reconstructed holdout sets to assess how well the molecular subtype
signal was retained in the reconstructed holdout data (Fig. 1c). We again used the
Kappa statistic to evaluate performance.

Statistics and reproducibility. Statistical analyses were performed using R version
4.1.2 in a publicly available Docker image. Please refer to our source code (v2.3) on
Github at https://www.github.com/greenelab/RNAseq_titration_results for
instructions on how to access the Docker container, download data, and get started
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running analyses, including a bash script to reproduce the entire analysis. We set
seeds for reproducibility to account for stochastic elements in our code.

For each cancer type and predictor variable (subtype or mutation status), we
created 10 replicate training and test data sets for machine learning and
downstream analyses. Training and test data were kept separate from the start of
each replicate. We used createDataPartition from R’s caret package to balance the
distribution of classes between training and test data. For a single replicate, two-
thirds of available samples were allocated to training and one-third to test data. The
exact number of samples partitioned to training and test data sets may vary slightly
between replicates due to stratified sampling. For subtype prediction, 520 matched
samples were available for breast cancer and 150 matched samples were available
for glioblastoma (Supplementary Fig. 1). For mutation prediction (PIK3CA and
TP53), 508 matched samples were available for breast cancer and 146 matched
samples were available for glioblastoma.

To create data sets with varying levels of RNA-seq data, RNA-seq samples were
randomly titrated into the array samples at 10% intervals to create 11 distinct
training sets per replicate (0% through 100% RNA-seq). Importantly, as RNA-seq
samples were titrated into the training data, the corresponding array sample was
removed such that one patient’s data was only represented by one sample per
experimental repeat.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data that support the findings of this study are available on Figshare Plus at https://
doi.org/10.25452/figshare.plus.1962986457. Data and code used to create data plots are
available on Figshare at https://doi.org/10.6084/m9.figshare.1968645358.

Code availability
Source code (v2.3) is available on Github at https://www.github.com/greenelab/RNAseq_
titration_results under a BSD-3 license, or https://doi.org/10.6084/m9.figshare.
1970134059. The computational environment necessary to replicate our results are
available in a Docker container. Instructions for how to access the Docker container,
download data, and get started running analyses are available on our Github page.
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