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Sestrin2 (SESN2), a highly conserved stress-responsive protein, can be triggered by various noxious stimuli, such as hypoxia, DNA
damage, oxidative stress, endoplasmic reticulum (ER) stress, and inflammation. Multiple transcription factors regulate SESN2 expression,
including hypoxia-inducible factor 1 (HIF-1), p53, nuclear factor E2-related factor 2 (Nrf2), activating transcription factor 4 (ATF4), ATF6,
etc. Upon induction, SESN2 generally leads to activation of adenosine monophosphate-activated protein kinase (AMPK) and inhibition of
mechanistic target of rapamycin complex 1 (mTORC1). To maintain cellular homeostasis, SESN2 and its downstream molecules directly
scavenge reactive oxygen species or indirectly influence the expression patterns of key genes associated with redox, macroautophagy,
mitophagy, ER stress, apoptosis, protein synthesis, and inflammation. In liver diseases including acute liver injury, fatty liver diseases,
hepatic fibrosis, and hepatocellular carcinoma (HCC), SESN2 is abnormally expressed and correlated with disease progression. In NAFLD,
SESN2 helps with postponing disease progression through balancing glycolipid metabolism and macroautophagy (lipophagy), and
rectifying oxidative damage and ER stress. During hepatic fibrosis, SESN2 represses HSCs activation and intrahepatic inflammation,
hindering the occurrence and progress of fibrogenesis. However, the role of SESN2 in HCC is controversial due to its paradoxical pro-
autophagic and anti-apoptotic effects. In conclusion, this review summarizes the biological functions of SESN2 in hypoxia, genotoxic
stress, oxidative stress, ER stress, and inflammation, and specifically emphasizes the pathophysiological significance of SESN2 in liver
diseases, aiming to providing a comprehensive understanding for SESN2 as a potential therapeutic target in liver diseases.
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FACTS

® SESN2 is a stress-responsive protein with a distinct molecular
structure regulating mTORCT.

® SESN2 is involved in multiple pathophysiological events, such
as hypoxia, genotoxic stress, oxidative stress, endoplasmic
reticulum stress, inflammation, autophagy, and cell death.

® SESN2 exerts potent hepatoprotective effects against acute
and chronic liver injuries.

OPEN QUESTIONS

® Does SESN2 have the potential as a viable therapeutic target
for liver diseases?
® The roles of SESN2 in liver cancers should be further explored.

INTRODUCTION

Sestrins (SESNs) belong to an evolutionarily conserved stress-
responsive protein family existed in most vertebrates. The SESNs
family comprises three members, SESN1, SESN2, and SESN3, among
which SESN2 has been the most profoundly investigated [1]. SESN2,

also nominated as Hi95, was originally identified inducible by
prolonged hypoxia, DNA damage, and oxidative stress [2, 3l
Structurally, SESN2 is composed of two globin-like a-helix-only
subdomains, N-terminal domain (NTD; residues 66-220) and
C-terminal domain (CTD; residues 339-480), connected by a helix-
loop-helix linker (residues 221-338). The NTD contains a homology
region (residues 109-139) that corresponds to the helix-turn-helix
oxidoreductase motif of an alkyl hydroperoxide reductase AhpD in
Mycobacterium tuberculosis. The catalytic cysteine residue (Cys125)
and the residues (Tyr127 and His132) mediating the proton delay
system of AhpD are well-conserved within the NTD, enabling SESN2
to resemble AhpD in directly scavenging reactive oxygen species
(ROS). The CTD contains a helix-loop structure but no helix-turn-helix
motif or catalytic residues involved in AhpD oxidoreductase activity,
implying that the CTD may not have the antioxidative activity.
Aspartic acid residues Asp406 and Asp407 in the CTD may interact
with GTPase-activating protein activity towards Rags 2 (GATOR2),
liberating GATOR1 from GATOR2-mediated restriction [4]. GATOR1
binds to and inactivates Rag A/B, restricting lysosomal translocation
and activation of mechanistic target of rapamycin complex 1
(mTORC1) [5]. Serine residue Ser190 in the NTD is also necessary for
GATOR2 binding, suggesting that SESN2 may make multiple
contacts with GATOR2 through both NTD and CTD [6]. There is a
leucine-binding pocket at the intersection of helices C2, C3, and C7
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Fig. 1 The crystal structure and functional domains of human SESN2. SESN2 is shown as a ribbon diagram with NTD, Linker, and CTD
labeled as pink, blue, and yellow, respectively. The disordered regions (1-65, 222-232, 241-255, 272-280, 296-309) are labeled as dash lines.
The locations of key residues (C125, Y127, H132, S190, T232, 5249, 5279, D406, and D407) are marked in red.

in the CTD, which enables SESN2 to directly bind with leucine and
act as a leucine sensor for transmitting leucine signal to activate
mMTORC1 [6-9]. The leucine pocket is in close proximity to the
GATOR2 binding sites, which provides a possible mechanism for
how leucine binding may cause SESN2 dissociation from GATOR2
that the changes in the leucine binding state alters the position of
domains and affects the availability of GATOR2 binding sites [6].
Alternatively, leucine suppresses SESN2 phosphorylation at Thr232,
Ser249, and Ser279, forcing SESN2 to dissociate from and activate
GATOR2, leading to mTORC1 activation [10]. The unique molecular
structure (Fig. 1) endows SESN2 with manifold roles in different
biological processes.

As a classical stress-responsive protein, SESN2 can be induced in
response to diverse stress conditions, such as hypoxia, genotoxic
stress, and oxidative stress. In recent years, SESN2 has also been
observed to be altered and impacted on endoplasmic reticulum
(ER) stress and inflammation. Induced SESN2 may serve as a
cellular defender against multiple detrimental stimuli and
contribute to the recovery of organ homeostasis from diseases,
especially liver diseases. In the liver, SESN2 displays additional
functions including regulating glycolipid metabolism, HSCs
activation, autophagy, cell survival and death.

In this review, we summarize the biological functions of SESN2
in distinct pathophysiological processes and particularly describe
its association with liver diseases, aiming to promote profound
understanding for the medical significance of SESN2.

DIVERSIFIED FUNCTIONS AND REGULATIONS OF SESN2
UNDER STRESSES

SESN2 in hypoxia

Hypoxia is a complex pathophysiological process occurring under
diverse conditions. SESN2 was initially discovered as a prolonged
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hypoxia-induced molecule independent of p53 [2]. Later studies
showed that SESN2 is transcriptionally activated by hypoxia-
inducible factor-1 (HIF-1), a primary adaptive responsor to hypoxia
[11, 12]. Induced SESN2 contributes to cellular self-protection by
mitigating hypoxia-caused oxidative damage and cell death
[2, 11, 13]. Another benefit of SESN2 to hypoxic injury is that
SESN2 can deprive the induction of HIF-1 alpha subunit (HIF-1a)
on vascular endothelial growth factor (VEGF) expression and
brain-blood-barrier permeability, where may involve a mechanism
that SESN2 facilitates HIF-1a degradation via enhancing the
catalytic activity of prolyl hydroxylase (PH), an essential enzyme
hydroxylating HIF-1a for ubiquitination [14]. Hence, SESN2 may be
a preferable therapeutic target for hypoxia-related diseases.

SESN2 in genotoxic stress

DNA damage can be caused by various endogenous or exogenous
insults, including oncogenic mutations, oxidative stress, metabolic
stress, etc. [15]. P53 is an important guardian of genome that can be
activated under genotoxic and oxidative stress to promote genomic
repair through induction of specific target genes. Upon DNA
damage, SESN2 is induced in a p53-dependent manner [2]. SESN2
mediates p53-initiated mMTORC1 inhibition, eliciting a metabolic
checkpoint in response to genotoxic stress and executing the
genomic guardianship [3, 16]. Serine/threonine kinase 3 (AKT3)
signal is also involved in inducing SESN2 and then performing DNA
repair [17]. This shows that SESN2 is a critical gatekeeper of genome.

SESN2 in oxidative stress

Oxidative stress is triggered by redox imbalance after hyperactive
oxidative system and/or hypoactive antioxidative defense. In
response to oxidative stress, SESN2 can be transcriptionally
activated by multiple transcription factors including nuclear factor
E2-related factor 2 (Nrf2), CCAAT enhancer binding protein 3 (C/
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EBPP), HIF-1, p53, activator protein-1 (AP-1), forkhead box protein
03 (Fox03), nuclear factor-kappa B (NF-kB), and activating
transcription factor 4 (ATF4) [18-25].

SESN2 architects cellular defense against redox imbalance
generated by stimuli such as hydrogen peroxide [21], angiotensin I
[26], methylglyoxal [27], etc, mainly via three patterns. Firstly, with
the alkyl hydroperoxide reductase-like structure, SESN2 can directly
function as an oxidoreductase to scavenge free radicals. However, the
catalytically-crucial residue Cys125 within the NTD is surrounded by
hydrophobic molecular surfaces, rendering SESN2 preferentially
affinitive towards hydrophobic alkyl hydroperoxides rather than
hydrogen peroxide. Also, its physiological substrates and reducing
partners need clarification [4]. Secondly, SESN2 has physical-biological
interactions with multiple redox regulators, among which the
interaction between SESN2 and Nrf2-antioxidant-response element
(ARE) antioxidant system has been the best studied [28-30]. Nrf2 is a
core transcriptional regulator of antioxidant systems based on Mafs-
mediated heterodimerization and ARE binding machinery. SESN2 but
not SESN1 or SESN3 is exclusively induced at both transcriptional and
translational levels by Nrf2 agonists and deprived when Nrf2 deletion.
In silico and laboratory analyses displayed an ARE sequence (-550 to
-539 bp) in the 5" upstream region of SESN2 gene promoter for Nrf2
binding [31]. Alternatively, induced SESN2 contributes to Nrf2
expression and nuclear translocation, amplifying the transcription of
ARE-targeted antioxidant genes, including heme-oxygenase-1 (HO-1)
and NAD(P)H: quinone reductase 1 (NQO1) [28].

Thirdly, SESN2 can motivate macroautophagy (hereafter autop-
hagy) machinery to clear defective proteins and organelles and
recover redox balance, which is mainly achieved by inhibiting
mTORC1, a pivotal checkpoint for autophagy, via both adenosine
monophosphate-activated protein kinase (AMPK)-dependent and
AMPK-independent mechanisms [32-35]. For AMPK-dependent
mechanism, SESN2 increases the transcription of AMPKa1, AMPK(1,
and AMPKy1 subunits, facilitates the formation of AMPKal1B1y1
heterotrimer, and evokes AMPK activity via liver kinase B1 (LKB1)-
catalyzed AMPKa1 phosphorylation at Thr127 [36]. AMPK phosphor-
ylates tuberous sclerosis 2 (TSC2), the GTPase-activating protein
(GAP) of the Ras homolog enriched in brain (Rheb). TSC2 facilitates
the hydrolysis of Rheb-bound GTP and converts it to inactivated
GDP-bound form, hindering Rheb interaction with the catalytic
domain of mTOR and mTORCT phosphorylation [3]. AMPK also
phosphorylates the critical mTORC1 binding subunit regulatory
associated protein of mTOR (Raptor) at two highly conserved
serines, Ser722 and Ser792, and induces their direct binding to 14-3-
3 protein, restricting the kinase activity of mTORC1 towards its
downstream substrates [37]. mTORC1 when its catalytic activity is
blocked unfreezes Unc-51-like protein kinase 1 (ULK1), which then
forms an active complex via autophosphorylation and phosphoryla-
tion of autophagy-related protein 13 (Atg13), focal adhesion kinase
interacting protein of 200 kD (FIP200), and Atg101, and activates
autophagy [38]. ULK1 can also be phosphorylated by AMPK at
multiple active residues and directly initiates autophagy [39]. In a
second way independent of AMPK, SESN2 physically interacts with
GATOR2 and releases GATOR1 acting as a GAP for Rag A/B, limiting
mTORC1 translocation to lysosomal surface where to be activated by
Rheb and provoking autophagy [40]. Physiological and pharmaco-
logical induction of SESN2 can contribute to autophagy marker light
chain 3 (LC3)-Il expression and autophagosome formation, suppres-
sing mitochondrial dysfunction and oxidative stress [21, 41]. A
possible mechanism for SESN2-regulated autophagy to ease
oxidative stress may be that SESN2 physically associates with
ULK1 and autophagic cargo receptor p62/sequestosome-1
(SQSTM1) to form a complex, facilitating p62/SQSTM1 phosphoryla-
tion at Ser403 and autophagic degradation of p62/SQSTM1 and its
substrates [42], such as Kelch-like ECH-associated protein 1 (Keap1),
a Nrf2 suppressor that can exclusively bind to the evolutionarily
conserved N-terminal Neh2 regulatory domain of Nrf2 and facilitate
its ubiquitylation and degradation in cytoplasm with the
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collaboration of Cullin3 and ring-box 1 (RBX1) [43, 44]. The
autophagic degradation of Keap1 can promote the expression of
Nrf2 downstream genes, including sulfiredoxin (Srx), glutathione-S-
transferase (GST), and NQO1 [45]. More specifically, SESN2 can
activate mitophagy, a mitochondrion-selective autophagic machin-
ery, to remove damaged mitochondria for restoring redox home-
ostasis. Parkin is the predominant E3 ubiquitin ligase that can be
recruited to mitochondria and phosphorylated by PTEN-induced
kinase 1 (PINK1) upon mitochondrial damage. Then, Parkin
integrates with ubiquitin and ubiquitylates substrates on mitochon-
drial outer membrane for recognition by autophagic cargo receptors
and mitophagy formation. SESN2 amplifies PINK1/Parkin-mediated
mitophagy by two main manners. On one hand, SESN2 interacts
with ULK1 to phosphorylate Beclin1 at Ser14, promoting Beclin1 to
bind to and phosphorylate Parkin and helping Parkin translocate to
mitochondria [46]. Moreover, SESN2 can directly interact with Parkin,
reinforcing the mitochondrial accumulation of Parkin [47]. On the
other hand, SESN2 can facilitate the perinuclear-clustering of
mitochondria by mediating p62/SQSTM1 aggregation and its
binding to lysine 63 (K63)-linked ubiquitin on mitochondrial surface
[48, 49]. There is another possible mode for SESN2 regulation on
mitophagy that SESN2 can directly interact with mitochondrial
alpha-subunit of F1-ATP synthase (ATP5A) through the CTD,
attracting LC3-coated autolysosomes to locate ROS-damaged
mitochondria for degradation [50]. There also forms a loop between
ULK1 and SESN2 that SESN2 can be phosphorylated by ULK1 at
Ser73 and Ser254, which is required for mitochondrial fusion with
autophagosomes [50]. The multicomponent redox regulatory net-
work centering on SESN2 is shown in Fig. 2.

SESN2 in ER stress
Prolonged and unresolved ER stress are closely related to home-
ostasis disequilibrium and cell death. ER stress can activate three
unfolded protein response (UPR) branches to orchestrate the
recovery of ER function, including protein kinase RNA-like ER kinase
(PERK)-eukaryotic translation initiation factor 2a (elF2a)-ATF4
branch, inositol-requiring enzyme 1 alpha (IRE1a)-X-box binding
protein 1 (XBP1) branch, and ATF6 branch [51, 52]. PERK-elF2a
branch can reduce protein synthesis. Paradoxically, preferential
translation of ATF4 binds to C/EBP homologous protein (CHOP), a
pro-apoptotic transcript, aggravates protein synthesis, ATP deple-
tion, oxidative stress, and cell death [53, 54]. IRE10-XBP1 and ATF6
branches can up-regulate the transcription of XBP1, glucose
regulated protein 78 (GRP78), and GRP94, accelerating misfolded
protein degradation and accurate protein folding [55, 56]. All three
branches contribute to ER stress-mediated SESN2 induction, but the
pathways involved vary among different stress inducers. ATF4
mediates both thapsigargin (Tg)- and brefeldin A (BFA)-induced
SESN2 transactivation possibly by binding the site (-221 to -228 bp)
within the upstream region of SESN2 transcription start site [57, 58].
XBP1 also transmits the activation signal of Tg to SESN2, but the
regulatory pattern requires further verification [57]. ATF6 mainly
governs tunicamycin (Tm)-triggered SESN2 enhancement, which
can be implemented by being affinitive to UPR-element-like
element 1 (UPRE-LET) (-549 to -544 bp) and UPRE-LE6 (-235 to
-230 bp) in the proximal half region of SESN2 gene promoter [59].
Inducible SESN2 functions as a feedback modulator for ER stress
and manipulates cell fates. SESN2 contributes to cell survival
under Tg and BFA treatment, which is especially obvious at the
early stimulation phase, indicating that progressive auto-activated
SESN2 can mitigate mild ER stress [57]. Several studies have
reached a consensus that SESN2 links ER stress to AMPK-mTORC1
signaling [60-65]. SESN2 deficiency augments ER stress-related
signaling including PERK and IRETa, which is associated with
AMPK inactivation [61]. SESN2 knockdown also maintains PERK-
elF2a-CHOP signal transduction, leading to mTOR activation [66].
SESN2-mediated mTORC1 inhibition recovers ER homeostasis by
two ways. One is that lack of mTOR-catalyzed phosphorylation of

SPRINGER NATURE



C. Lu et al.

. Hydrogen peroxide
Methylglyoxal e
Angiotensin Il

Oxidative
stress

W HIF-1 kp53

SESN2
afs I_: HO-1 Y
/" NQO1 7T
7 TARE "'IMU’“‘ Srx (N
GST
Nucleus

Lysosome -» Mitophagy

Fig. 2 SESN2-regulated molecular network upon oxidative stress. SESN2 is up-regulated during oxidative stress induced by hydrogen
peroxide, methylglyoxal, angiotensin Il, etc., which is facilitated by transcription factors including C/EBPg, HIF-1, p53, Nrf2, AP-1, FoxO3, NF-kB,
and ATF4. (i) SESN2 restrains mTORC1 activity through directly binding to GATOR2. GATOR1 is released from GATOR1/2 complex and
inactivates Rag A/B via promoting GTP hydrolysis, which prevents mTORC1 binding and recruitment to lysosome. ULK1 is dissociated, then
auto-phosphorylates, phosphorylates the complex components including Atg13, FIP200, and Atg101, and promotes autophagy. SESN2 also
indirectly inactivates mTORC1 in an AMPK-dependent way. SESN2 promotes AMPK activation and Raptor phosphorylation to inhibit mTORC1
activation. Alternatively, AMPK activation leads to TSC2 phosphorylation and inhibits GTP binding to Rheb, which halts mTORC1 activation. (ii)
SESN2-ULK1 interaction promotes the autophagic degradation of Keap1 in a p62/SQSTM1-dependent manner, and accelerates Nrf2 nuclear
translocation, which contributes to the formation of Nrf2/Mafs/ARE complex and the expression of downstream antioxidant genes including
SESN?2. (i) SESN2 interacts with ULK1 and phosphorylates Beclin1, which anchors Parkin before its location to mitochondria, reinforces PINK1-
Parkin interaction, and initiates mitophagy. SESN2 also interacts with Parkin, facilitating its mitochondrial translocation and mitophagy.
Alternatively, SESN2 colocalizes with ATP5A on the outer mitochondrial membrane where ATP5A attaches LC3 directly to trigger mitophagy.

downstream molecules [ribosomal protein S6 kinase (S6K) and
elFAE-binding protein (4E-BP)] interrupts protein synthesis [60, 65].
The other one is that mTORC1 suppression initiates autophagy to
eliminate misfolded proteins [63, 66, 67]. Cell death as a
consequence of unresolved ER stress is also impressed by SESN2.
SESN2 expression lessens ER stress-related apoptosis of dendritic
cells (DCs), endothelial cells, and trophoblast cells [68-70]. SESN2
deficiency augments PERK-ATF4-CHOP signaling to induce NACHT,
LRR, and PYD domains-containing protein 3 (NLRP3)/apoptosis-
associated speck-like protein containing CARD (ASC)/Caspase-1-
dependent cell pyroptosis [71, 72]. SESN2 can also defend against
ER stress-associated non-canonical necroptotic death [73]. Further-
more, SESN2 can convalesce intracellular redox homeostasis to
recover ER quality and function by enhancing the transcriptional
activity of Nrf2 [74]. The modes of SESN2 to recover ER
homeostasis is summarized in Fig. 3.

SESN2 in inflammation

Inflammation generally involves both immune cells and non-
immune cells. SESN2 is expressed in diverse immune cells, especially
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in macrophages and monocytes that are essential for innate
immune response [75]. In bone marrow-derived mononuclear
macrophages (BMDMs), NO and hypoxia transcriptionally activate
SESN2 in a HIF-1a-dependent manner to resist cellular oxidative
damage [20]. HIF-1a also mediates globular adiponectin (gAcrp)-
induced SESN2 expression and anti-inflammatory response, which is
under the regulation of extracellular regulated protein kinase (ERK)/
phosphoinositide 3-kinase (PI3K) signaling [76]. Lipopolysaccharide
(LPS) and other toll-like receptor (TLR) ligands (e.g. polyl:C and
peptidoglycan) activate PI3K and p38 MAPK signals by conjugating
with TLR, prompting AP-1 and Nrf2 induction on the transcription
and translation of SESN2 [22, 77]. Inducible nitric oxide synthase
(iINOS)-mediated NO production is also implicated in LPS-stimulated
SESN2 elevation [48]. SESN2 can restrain p38 MAPK and c-Jun N-
terminal kinase (JNK) phosphorylation to inhibit the DNA-binding
activity of AP-1 and the activity of nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase, limiting release of pro-
inflammatory cytokines [e.g. tumor necrosis factor alpha (TNF-a),
IL-6, and IL-1f], ROS production, and cell death [77]. Oxidized low-
density lipoprotein (OxLDL) elicits SESN2 expression by JNK/c-Jun

Cell Death and Disease (2023)14:160
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Fig. 3 The regulatory mechanism of SESN2 during ER stress. ER stress agonists, thapsigargin, brefeldin A, and tunicamycin, can excite ER
stress via inducing GRP78 dissociation and liberation of IRE1a, PERK, and ATF6. IRE1a phosphorylates and forms a dimer, cleaving XBP1T mRNA
into an active form XBP1s. ATF6 when liberated translocates into Golgi and is lysed to ATF6p50 by S1P/S2P. Both XBP1 and ATF6p50 as
transcription factors can up-regulate the transcription of downstream genes including XBP1, GRP78, GRP94, and SESN2, which promotes
protein folding and misfolded protein degradation, and relieves ER stress. Induced SESN2 can arrest protein synthesis and enhance autophagy
via AMPK-mTORC1 pathway and reduces oxidative damage via Nrf2. PERK phosphorylates and dimerizes, phosphorylating downstream elF2a
and subsequently promoting the transcriptional activity of ATF4. ATF4 can initiate the transcription of CHOP, enhancing protein synthesis,

apoptosis, and pyroptosis. ATF4 can also induce SESN2 expression.

signaling pathway to decay ROS generation and apoptosis in
macrophages [78]. Furthermore, in a model of myocardial infarction,
SESN2 is up-regulated in both pro-inflammatory M1 and anti-
inflammatory M2 type cardiac macrophages, and SESN2 suppresses
inflammatory response of M1 macrophages via inhibiting
mTORC1 signaling and enhances M2 type macrophage polarization
[79]. In cochlear tissues, SESN2 loss occurs with age and accelerates
age-related sensory cell degeneration, which is correlated with
overproduction of pro-inflammatory cytokines including TNF,
chemokine (c-c motif) ligand 2 (CCL2/MCP-1), CCL3, CCL4, and IL-
1B in cochlear macrophages [80]. In a model of acute cerebral
ischemic stroke, ectopic SESN2 expression promotes the shifting of
brain-resident macrophage/microglia from M1 to M2 phenotype
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and alleviates neuroinflammation by inhibiting mTOR pathway and
restoring autophagic flux [81].

In monocytes, human acute monocytic leukemia cell line THP-1
cells for example, SESN2 is induced by LPS dose- and time-
dependently, establishing a compensatory mechanism under p38
MAPK and PI3K activation by augmenting AMPK phosphorylation,
decreasing NF-kB phosphorylation, and reducing secretion of pro-
inflammatory cytokines (TNF-a, CCL2/MCP-1, and IL-6) [22, 61]. A
later study supplemented that both high glucose and OxLDL can
mediate monocyte polarization, which is characterized by
increased M1 markers like iNOS, IL-6, TNF-q, etc. and decreased
M2 markers like TGF-f, IL-10, etc., and monocyte adhesion to
endothelial cells via SESN2-AMPK-mTOR nexus [82].
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NLRP3 is predominantly expressed in immune cells from the
myeloid lineage, such as macrophages, monocytes, and DCs [83].
In Sesn2-knockout BMDMs, mitophagy is deficient but NLRP3
inflammasome is hyperactivated when primed with LPS and ATP.
Mechanistically, SESN2 enhances p62/SQSTM1 aggregation to
K63-ubiquitinated mitochondria. Synchronously, SESN2 facilitates
ULK1-mediated initiation of autophagic machinery and launches
the degradation of primed mitochondria, which diminishes
mitochondrial ROS and cytosolic oxidized mitochondrial DNA
generation, and suppresses prolonged NLRP3 inflammasome
activation and inflammatory cytokine release (IL-1f and IL-18)
[48, 84]. In an acute lung injury model, SESN2 suppresses NLRP3
activation and pyroptosis in alveolar macrophages via promoting
PINK/Parkin-mediated mitophagy [49]. In sepsis models, SESN2
levels in blood monocytes negatively correlate with serum IL-13
and IL-18 levels and disease progression [48]. SESN2 also reduces
gasdermin D (GSDMD)-dependent pyroptosis of splenic DCs in the
context of sepsis via inhibiting PERK-ATF4-CHOP signaling-
triggered NLRP3/ASC pyroptosome formation and Caspase-1
activation [71]. Collectively, SESN2 has pleiotropic functions in
immune cells and exert robust anti-inflammatory activities (Fig. 4).

DYNAMICS AND CONTROL OF SESN2 IN LIVER DISEASES AND
IMPLICATIONS

Acute liver injury (ALI)

ALl is pathologically featured by extensive hepatocyte death and
hypohepatia, which is generally caused by virus infection, drug
abuse, hepatectomy, etc. Several studies collaboratively confirmed
that preventative SESN2 overexpression can suppress galactosa-
mine/LPS or acetaminophen-induced acute hepatocyte apoptosis
and serum cytokine elevation, which is attributed to the
antioxidative property of SESN2 [22, 77, 85]. Pharmacological
induction of SESN2 by oleanolic acid also prevents hepatic ischemia
reperfusion injury [86]. These findings uncover the potential of
SESN2 regulation in the prevention of liver-related conditions.

Fatty liver diseases

Non-alcoholic fatty liver disease (NAFLD). NAFLD is one of the
most common chronic liver diseases with a soaring worldwide
prevalence, which generally starts from simple steatosis and
progresses to steatohepatitis, hepatic cirrhosis, and/or hepatobili-
ary malignancies such as hepatocellular carcinoma (HCC) [87].

Glucose and lipid metabolism: Excessive fat deposition in
hepatocytes, also mentioned as hepatocyte steatosis, is the most
remarkable pathological manifestation of NAFLD, where obesity
and insulin resistance are major risk factors [88]. SESN2 is the only
isoform among three family members that is inducible by
saturated fatty acids in hepatoma cell line HepG2 cells. However,
under chronic NAFLD conditions, SESN2 gene expression in both
human and murine livers is decreased [89]. Sesn2 knockout
aggravates glucose intolerance, insulin resistance, hepatocyte
apoptosis, macrophage infiltration, and hepatic stellate cells
(HSCs) activation in wild-type C57BL/6J mice fed with high-fat
diet (HFD) or in Lep®®°® mice, which involves AMPK inhibition and
mTORC1-S6K activation; Ectopic SESN2 reconstitution can rescue
SESN2-deficient mice from HFD-caused liver damage [60, 90].
Kowalsky et al. further elaborated that adenovirus-mediated
systematic SESN2 overexpression decreases the expression of
gluconeogenic and lipogenic genes in the liver, including acetyl-
CoA carboxylase alpha (ACACA), ACACB, and fatty acid synthase
(FASN), resulting in lower basal and insulin-reduced blood glucose
levels, and hepatic lipid accumulation under HFD condition.
Molecularly, they found that SESN2 induces AKT activation, an
essential signal molecule responsible for glucose and lipid
regulation, via mTORC2 but not mTORC1 or AMPK. SESN2
indirectly binds to mTORC2 relying on SESN2-GATOR2-mTORC2

SPRINGER NATURE

interaction via WD repeat domain 24 (WDR24) and WDR59, which
then facilitates AKT S473 phosphorylation. SESN2 also directly
binds to the pleckstrin homology domain of AKT and induces AKT
translocation to the plasma membrane. PI3K is also involved in the
activation of AKT by SESN2 [91]. The regulatory action of SESN2 on
hepatic lipogenesis is also relevant to liver X receptor alpha (LXRa),
a transcription factor controlling de novo fatty acid synthesis.
SESN2 induced by resveratrol represses LXRa-retinoid X receptor
alpha (RXRa) DNA-binding activity and restricts the expression of
lipogenic gene sterol regulatory element-binding protein-1c
(SREBP-1¢) and its target genes, including ACC, FASN, and
stearoyl-CoA desaturase-1 (SCD1) [92, 93].

Accumulative evidence has shown that autophagy machine is
impaired during the onset of NAFLD [94]. SESN2-deficient murine
livers under HFD exposure show more and larger lipid droplets
and lesser colocalization of lipid droplets and autophagic vesicles
under transmission electron microscope, which implies deficient
autophagic degradation of lipid droplets (as known as lipophagy)
[90]. Notably, SESN2 induced by carbon monoxide restores
autophagy in mouse hepatocytes AML12 cells and murine livers
under methionine/choline deficiency (MCD) conditions via AMPK-
mTORC1 axis, reducing triglyceride accumulation and hepatocyte
damage [95]. These suggest that autophagy maintenance or
enhancement may be a strategy for clearing excessive lipid
droplets and ameliorating steatosis.

Oxidative stress and ER stress: Oxidative stress is another
hallmark of NAFLD. Excessive free radicals can attack unsaturated
fatty acids on biological membranes, inducing lipid peroxidation,
destroying membrane structure, and leading to cell damage [96].
SESN2 is an important endogenous defender with prominent
antioxidant capacity. Bae et al. found that SESN2 enhances p62/
SQSTM1-mediated autophagic degradation of Keap1 and facil-
itates Nrf2 release and activation, thereby alleviating oxidative
liver damage [45]. Han et al. further verified that pharmacological
induction of SESN2 by liraglutide promotes the transduction of
Nrf2/HO-1 pathway and initiates the translation of downstream
targets, including catalase (CAT), NQO1, and glutamate cysteine
ligase modifier subunit (GCLM), in livers of HFD mice, which
contributes to the recovery of redox balance [97].

ER stress is also involved in the pathological mechanism of
NAFLD. HFD evokes hepatic ER stress, characterized by increased
expression of GRP78, ATF6, IRE1q, and elF2a [60, 98]. Park et al.
found that SESN2 is up-regulated by HFD via PERK-elF2a-c/EBPB
signaling, which then regulates AMPK-mTORC1 axis to impede
protein synthesis, relieve ER stress, and balance liver metabolism
during obesity [60]. Jegal et al. linked SESN2 with oxidative stress
and ER stress and confirmed the role of Nrf2-induced SESN2 in
relieving Tm-induced ER stress-related liver injury [99].

Alcoholic fatty liver disease (AFLD). AFLD, which is caused by
chronic alcohol binge, is another major branch of fatty liver
diseases. The disease spectrum of AFLD is similar to NAFLD and
AFLD shares a large set of common pathological manifestations
with NAFLD, such as hepatosteatosis, oxidative stress, ER stress,
autophagy malfunction, etc. This suggests that the cytoprotective
function and mechanism of SESN2 in AFLD may be analogous to
that in NAFLD but still awaits further verification. More recently,
Zhou et al. discovered that SESN2 is declined in murine livers after
chronic alcohol exposure for 4 weeks and in human hepatocyte
HL-7702 cells after 24-h alcohol stimulation. Pharmacological
induction of SESN2 by pterostilbene significantly improves AFLD,
featured by decreased serum aspartate aminotransferase (AST)
and alanine aminotransferase (ALT) activity and reduced intrahe-
patic CD45" leukocyte and F4/80" macrophage/Kupffer cell
infiltration. Mechanistically, pharmacologically-forced SESN2
expression promotes autophagic machinery and selective degra-
dation of cellular communication network factor 1 (CCN1) via p62/
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SQSTM1, then mitigating hepatocyte senescence and senescence-
associated secretory phenotype under alcohol exposure [100].

Together, SESN2 confers hepatocyte protection during fatty
liver diseases, which is probably associated with regulation on
glycolipid metabolism, oxidative stress, ER stress, autophagy,
senescence, etc. (Table 1). Pharmacological induction and
genetical reconstitution of SESN2 may be medically favorable for
the improvement of fatty liver diseases.

Hepatic fibrosis and cirrhosis

Hepatic fibrosis and cirrhosis are common advanced stages after
chronic liver injuries and inflammatory response, including fatty
liver diseases, viral hepatitis, etc. Fibrogenesis is featured by
excessive extracellular matrix accumulation, which destroys
intrahepatic structure, disrupts biological exchange of substances
between hepatocytes and hepatic sinusoids, and is accompanied
by extensive hepatocyte death, HSCs activation, and hypohepatia
[101].

HSCs activation. SESN2 was firstly found to confer protection
against hepatic fibrogenesis in obese mice and then in carbon
tetrachloride (CCly)- and bile duct ligation (BDL)-insulted fibrotic
mice [60, 102, 103]. HSCs activation is the key event driving
hepatic fibrogenesis. In primary HSCs isolated from murine livers
that exposed to single dose of CCl,, SESN2 expression is markedly
elevated. Concertedly, SESN2 is transcriptionally up-regulated in
primary murine HSCs during in vitro auto-activation or in
immortalized human HSCs line LX-2 cells stimulated by transform-
ing growth factor-p (TGF-f) for 0-12 h [103]. Intriguingly, TGF-3
induction for 48 h or long-term CCl, damage for 8 weeks results in
SESN2 reduction in rat HSC-T6 cells or murine livers [102]. Clinical
liver specimens from advanced cirrhotic patients also show
decreased hepatic SESN2 expression [103]. These findings
suggested that SESN2 expression varies in different trends during
early and advanced fibrotic responses and this may be valuable to
the therapeutic discovery, but the molecular basis for this dynamic
alternation needs further exploration. HSCs-specific delivery of
SESN2 reduces a-SMA-labeled activated HSCs and collagen
deposition, thereby ameliorating prolonged CCly- or BDL-
induced hepatic fibrosis in mice. Mechanistically, there has a
possible interaction between SESN2 and TGF-, a signal molecule
that can activate adjacent quiescent HSCs, transform HSCs into
myofibroblasts, and promote fibrosis development. TGF-$ induc-
tion causes Smad3 phosphorylation and augments the binding of
p-Smad3 to a putative Smad-binding element within SESN2 gene
promoter (-964 to -956 bp). In addition to Smad-dependent
pathway, TGF-B-induced p38 MAPK activation and ROS production
are also involved in SESN2 induction. SESN2 inhibits Smad3
phosphorylation but enhances Smad7 expression [102, 103].
Smad?7 is a negative regulator of TGF-B/Smad pathway as Smad7
can bind to TGF- receptor | (TGFBRI) and prevent the
phosphorylation of Smad2 and Smad3, or recruit E3 ubiquitin
ligase Smad ubiquitination regulatory factors (Smurfs) to Smad2
and TGFBRI and ubiquitinate and degrade the two proteins [104].

Inflammation. Liver inflammation is a key driver of HSCs
activation and fibrogenesis. Hu et al. observed that lentiviral
SESN2 overexpression abrogates CCl,-induced elevation of pro-
inflammatory cytokines including TNF-q, IL-13, and CCL2/MCP-1 in
murine livers [102]. Yang et al. also found that recombinant
adenovirus expressing SESN2 reduces CD45* leukocytes in murine
fibrotic livers caused by CCl, or BDL [103]. Recently, Zhou et al.
delineated that pharmacological induction of SESN2 decreases the
number of CD45% leukocytes and F4/80% macrophages/Kupffer
cells in murine livers under long-term alcohol exposure [100].
These findings imply that the anti-inflammatory action of SESN2
may be based on its modulation of inflammatory cell infiltration
and activation in the liver.

SPRINGER NATURE

In summary, current studies have preliminarily revealed the
implication of SESN2 in ameliorating hepatic fibrosis (Table 2).
However, fibrogenesis involves multiple types of hepatic cells
including HSCs, hepatocytes, Kupffer cells, liver sinusoidal
endothelial cell, etc., thus, whether and how SESN2 in other types
of hepatic cells influences the process of hepatic fibrosis remain
inconclusive.

Liver cancer

Liver cancer has the sixth highest incidence and the fourth highest
mortality rate among cancers worldwide, which can be derived
from chronic liver diseases, etc. HCC accounts for approximately
90% of liver cancer cases [105]. Chen et al. and Qi et al. reported
that SESN2 expression is dramatically lower in HCC tissues than
that in adjacent non-cancerous tissues, which is highly correlated
with lymph node metastasis, tumor progression, and poor
prognosis in HCC patients [106, 107]. However, Dai et al. disputed
that SESN2 abundance is higher in HCC tissues than that in
corresponding adjacent non-cancerous liver tissues. Coherently,
SESN2 levels are higher in HCC cell lines, including Bel-7404, SNU-
368, HLE, HLF, and Hep3B cells, comparing with normal human
hepatocytes HL-7702 cells [108]. The contradictory findings
between the studies may be owing to the discrepancy and
insufficiency of HCC samples or the comorbidities in HCC patients,
which needs more comprehensive explorations.

Autophagy. SESN2 has been well-documented in initiating
autophagy, however, the role of autophagy machinery in HCC is
paradoxical, so is SESN2. Wang et al. found that fangchinoline
induces autophagic death of hepatoma cell lines HepG2 and PLC/
PRF/5 cells via activating p53/SESN2/AMPK signaling [109]. Qi et al.
confirmed that SESN2/AMPK/mTOR1 signaling induced by mus-
cone triggers autophagy-dependent apoptosis of HepG2 cells
[107]. The researches highlight the anti-oncogenic effect of SESN2
and autophagy. However, autophagy is defined as a double-edged
sword as it can be beneficial to cancer cells by preventing
oxidative stress, DNA damage, and inflammation, or starvation
[110]. Jegal et al. found that SESN2-dependent autophagy induced
by eupatilin protects HepG2 cells from arachidonic acid and iron-
induced oxidative stress and promotes cell survival [41]. The
heterophany of SESN2-dependent autophagy in HCC may be
associated with the difference in metabolic environments of HCC
cells or drug administration that may activate unrevealed
signaling cascades.

Cell survival and death. Induction of apoptotic cell death can
restrain the proliferation, invasion, and migration of HCC cells,
which may be a viable anti-cancer strategy [111, 112]. Several
studies have confirmed that SESN2 can promote apoptosis of
multiple types of cancer cells, including human head and neck
cancer cells, lung adenocarcinoma cells, and colon cancer cells
[113-115]. However, intriguingly, up-regulated SESN2 in HepG2
cells halts cell apoptosis and exacerbates primary resistance to
sorafenib, which is attributed to activation of pro-survival AKT and
AMPK signaling pathways [108]. Kumar et al. found that SESN2
forms a complex with JNK and FoxO1 and promotes FoxO1
nuclear translocation, elevating the transcriptional level of
peroxisome proliferator-activated receptor y coactivator 1a
(PGC-10). PGC-Ta can promote glutamine metabolism, increase
mitochondrial biogenesis, and decrease the expression of pro-
apoptotic genes, such as p53 up-regulated modulator of apoptosis
(PUMA) and B-cell lymphoma-2-associated X protein (Bax),
facilitating the survival of HepG2 cells under glucose starvation
conditions [116]. The function of SESN2 in different cancer cells
may depend on the species or cellular metabolic conditions.
Altogether, SESN2 has been preliminarily shown to regulate
autophagy and cell status in HCC (Table 3), but its concrete effects
are far from clear. In vivo studies are needed to further determinate
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the association between SESN2 and HCC pathology, including tumor
size and number, tumor stage, survival rate, prognosis, etc, and
testify the therapeutic implication of SESN2 modulation.

CONCLUSION AND FUTURE DIRECTIONS

In this review, we summarize that SESN2 regulates multiple cellular
events including glycolipid metabolism, oxidative stress, ER stress,
HSCs activation, inflammation, autophagy, cell survival and death and
integrate the multicomponent network involved in SESN2 action.
From preclinical studies, we also conclude that SESN2 is involved in
the development and progression of acute and chronic liver diseases
and serve as an endogenous hepatoprotective molecule.

Evidence has shown that SESN2 is of great clinical significance
in a variety of diseases. Circulating SESN2 levels have been
identified viable in indicating disease severity or prognosis,
including cardiovascular diseases [117-119], respiratory diseases
[120, 121], neurodegenerative diseases [122, 123], metabolic
diseases [124, 125], cancers [106, 126], etc. Since SESN2 expression
is dynamically changed during liver pathology, we hypothesize
that SESN2 has a good potential as a clinical biomarker and
prognostic indicator for liver diseases. In addition, the findings
from preclinical studies uncover the favorable outcome of SESN2
regulation in the intervention of liver damage with no obvious
side effects, which suggests that SESN2 may be a promising
therapeutic target for liver diseases. Future work focusing on
identifying compounds that induce or activate SESN2 may drive
the development of hepatoprotective strategies. Moreover, direct
targeting at SESN2 using genetical techniques like viral vector
delivery system may be tested in future clinical trials.
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