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Abstract

Solid organ transplantation is a life-saving treatment for people with end-stage organ disease. 

Immune-mediated transplant rejection is a common complication that decreases allograft survival. 

While immunosuppression is required to prevent rejection, it also increases the risk of infection. 

Some infections, such as cytomegalovirus and BK virus, can promote inflammatory gene 

expression that can further tip the balance toward rejection. BK virus and other infections can 

induce damage that resembles the clinical pathology of rejection, and this complicates accurate 

diagnosis. Moreover, T cells specific for viral infection can lead to rejection through heterologous 

immunity to donor antigen directly mediated by anti-viral cells. Thus, viral infections and allograft 

rejection interact in multiple ways that are important to maintain immunologic homeostasis in 

solid organ transplant recipients. Better insight into this dynamic interplay will help promote 

long-term transplant survival.

Introduction

Allograft rejection is a major cause of graft damage and loss, with up to 25% of solid 

organ recipients experiencing rejection by the end of the first year after transplantation.1-4 

There are two main types of rejection, T cell mediated rejection (TCMR) and antibody-

mediated rejection (AMR). TCMR is caused by infiltration of donor-reactive CD4 and/or 

CD8 T cells into the allograft, with concomitant inflammation and tissue damage.5 AMR is 

caused by donor-specific antibodies (DSA) binding to the allograft endothelium, activating 

complement, and recruiting leukocytes that induce graft damage.6 Chronic rejection is 

commonly associated with end stage disease in the allograft, and therefore is referred to as 

chronic allograft injury for kidney, cardiac allograft vasculopathy for heart, vanishing bile 

duct syndrome for liver, and chronic lung allograft dysfunction for lung.7-12

Rejection can also be categorized as hyperacute, acute, and chronic, which manifest at 

varying times post-transplant. Hyperacute rejection is rejection caused by pre-existing 
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DSA, and occurs within hours of transplantation. It is exceedingly rare in the current era 

where panel-reactive antibody screening and histocompatibility testing are sophisticated and 

routine.13,14 Acute rejection can occur at any time post-transplant but is most common 

within the first year. Recovery from acute rejection is variable depending on the severity 

and ability to treat promptly; acute rejection is a major risk factor for subsequent chronic 

rejection.15 Chronic allograft rejection occurs months to years after transplantation. Chronic 

rejection causes graft vascular disease and is a leading cause of late graft failure.16

Rejection occurs through 3 primary T cell mediated pathways. The direct pathway involves 

direct recognition of donor allo-major histocompatibility complex (MHC) on donor cells and 

is commonly responsible for acute rejection. The majority of donor antigen-presenting cells 

die within weeks of transplantation, limiting the timeframe of this pathway.17 The indirect 

pathway involves presentation of processed alloantigen on self-MHC. Chronic rejection is 

commonly mediated by the indirect pathway. The third pathway is semi-direct, in which 

donor MHC is presented intact on recipient antigen presenting cells.18,19

Advances in immunosuppressive therapies have significantly decreased the incidence of 

acute rejection.20 However, escalation of cumulative immunosuppression also increases 

the risk of infection, and infection can contribute to allograft rejection both directly and 

indirectly. For instance, uncontrolled cytomegalovirus (CMV) infection is associated with 

elevated risk of acute rejection.21 BK virus directly damages kidney allografts.22 Other 

infections such as Epstein Barr virus (EBV) and adenovirus also contribute to rejection. 

Post-transplant infections are commonly treated through reduction of immunosuppressive 

therapy, which can indirectly increase the risk of acute, subacute or chronic rejection.22-24 

Because immunosuppression reduction is common to all viruses and the mechanism is 

straightforward, we do not discuss it separately for each virus. Of note, this treatment 

protocol is not standard of care for all infections, but is commonly selected as therapy 

for many viral infections without direct study of its efficacy. Interestingly, immune cross-

reactivity to allograft and viral antigens can also result in pre-existing immune cells 

directing so-called heterologous responses to the allograft.25 Potential viral-associated 

mechanisms of rejection are detailed below by infectious agent.

Cytomegalovirus

CMV is a DNA virus in the herpes family, which infects ~60% of people in the United 

States by adulthood.26,27 It is a major infectious risk factor in transplant recipients.28 After 

immune control, CMV establishes latency for the lifetime of the host and periodically 

reactivates, requiring an ongoing effective immune memory response to control it.29,30 

Recipients with no history of CMV infection (CMV seronegative) who receive CMV 

seropositive organs are considered at high risk of post-transplant CMV infection, with 

seropositive recipients at moderate risk.31,32 CMV viremia, defined as detectable CMV 

virus in blood, is detected in up to 30% of kidney transplant recipients.28,33 CMV disease 

resulting from uncontrolled viremia is associated with CMV syndrome and end organ 

disease including gastrointestinal disease, pneumonia, hepatitis, retinitis, and invasion of the 

allograft, with increased risk of allograft loss.34,35 Thus, control of CMV infection is an 

important aspect of post-transplant health management.
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In addition to the nonimmunological risks associated with CMV reactivation, this virus also 

increases the risk of allograft rejection (Table 1). Specifically, CMV viremia is associated 

with increased risk of acute rejection.21,36-42 Consistent with this association, CMV antiviral 

prophylaxis and surveillance with pre-emptive therapy decrease the risk of rejection.41,43-45 

However, one large kidney transplant study indicates that CMV contributes to acute rejection 

only in recipients receiving 3-drug maintenance immunosuppression.46 CMV infection 

(viremia or disease) and acute rejection are associated with other risk factors such as 

advanced donor age and delayed graft function, potentially confounding analysis of the 

relative contribution of CMV disease in registry-based clinical studies.46 Therefore, further 

study will be important to contextualize the role of CMV relative to delayed graft function 

and other known factors associated with rejection.

CMV manipulates protein expression of infected and bystander cells in multiple ways that 

can directly increase the chance of acute rejection. First, CMV upregulates expression 

of adhesion molecules on infected cells, which can increase leukocyte infiltrate and 

inflammation in an allograft.47 In rat models, CMV upregulated ICAM-1 expression 

in allograft tissue, leading to increased infiltration of inflammatory leukocytes.48,49 

Upregulated expression of adhesion molecules in allograft tissue has also been observed in 

human transplant recipients with CMV infection and rejection.50 Second, CMV has complex 

effects on expression of MHC, a major alloantigen. CMV can downregulate MHC class I 

expression on infected cells by blocking intracellular transport, targeting MHC molecules 

for degradation, and blocking peptide loading of MHC.51 CMV also downregulates MHC 

class II expression in infected monocytes by reducing MHC class II transcription, thereby 

limiting detection of CMV by CD4 T cells.52 In contrast, uninfected bystander cells in 

infected tissues can upregulate MHC class I expression, likely in response to inflammatory 

infiltrate and cytokines. This bystander upregulation is hypothesized to provide a mechanism 

for CD8 T cells to control CMV despite cell-intrinsic decreases in MHC in infected cells, as 

high-MHC expressing bystander cells may be able to present CMV antigen to the T cells.51 

CMV infection can also upregulate MHC class II expression in allograft endothelium, 

again potentially enhancing allograft antigen presentation.47,53 MHC class II upregulation 

is interferon (IFN) γ independent, and can be inhibited by ganciclovir, leading to the 

hypothesis that CMV DNA replication leads to the MHC class II upregulation.53,54 Thus, 

through both direct and indirect effects, CMV can increase or decrease MHC expression, 

and the imbalance of these opposing activities can lead to lack of viral control or potentially 

rejection if the upregulation predominates.

CMV induces changes in immune cell activity that can promote rejection. For instance, 

CMV viremia induces highly inflammatory and cytotoxic cellular responses in transplant 

recipients, including natural killer (NK) cells, CD8 T cells and γδ T cells.55,56 CMV also 

has been associated with accelerated CD8 T cell aging after transplantation.57,58 Aged 

CD8 T cells have a highly differentiated pro-inflammatory phenotype that can contribute to 

mortality in the aged.59,60 T cell aging also involves accumulation of memory cells, altered 

MHC expression, and impaired regulatory T cell function, each of which can contribute to 

increased risk of rejection.61 Thus, the T cell phenotypes observed in transplant recipients 

are associated with poor outcomes that could contribute to rejection. In addition, T cells 

that are cross-reactive for CMV and alloantigen have been detected in blood and kidney 

Higdon et al. Page 3

Transplantation. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of kidney transplant recipients, though they have yet to be proven to directly contribute to 

rejection.62 This mechanism is discussed in greater detail in the later section on heterologous 

immunity. Of note, CMV has also been associated with decreased alloreactivity after liver 

transplant through upregulation of inhibitory receptor CD244, in contrast to the many other 

findings associating CMV with enhanced rejection.63 The mechanism by which CMV 

contributes to acute allograft rejection is incompletely understood, so further study will 

be of great interest.

In addition to increasing the risk of acute rejection, CMV is associated with increased risk 

of chronic allograft rejection. Chronic rejection is often characterized as antibody-mediated 

with CD4 T cell help, and donor/recipient mismatch of HLA-DQ and -DR is associated 

with increased risk of DSA formation.17 Of note, chronic rejection is commonly mediated 

through indirect and semi-direct MHC class II recognition by CD4 T cells, indicating the 

MHC class II modulation described above for acute rejection may impact chronic rejection 

as well.18 Chronic rejection in the kidney results in interstitial fibrosis and tubular atrophy. 

Kidney transplant recipients with both acute rejection and CMV disease are potentially at 

elevated risk of chronic rejection compared to those with only acute rejection or CMV 

disease.64 One study found elevated risk of chronic allograft injury in kidney transplant 

recipients who developed CMV disease within 12 weeks of transplantation;65 another study 

found no association of CMV and chronic rejection risk.66 In heart transplant recipients, 

chronic rejection is characterized by arteriosclerosis.67 CMV infection increases the risk of 

arteriosclerosis after heart transplant, and this risk is mitigated by antiviral prophylaxis.68 

In liver transplantation, chronic rejection is characterized by bile duct atrophy and loss, and 

persistent CMV infection is a major risk factor.10 In lung transplantation, chronic rejection is 

characterized by progressive airway obstruction that cannot be explained by acute rejection 

or infection.36 Treatment with antiviral prophylaxis decreases the incidence of chronic 

rejection of the lung.36 Rat models of chronic rejection have found that CMV accelerates 

chronic rejection of both aorta and kidney allografts.7,69 In a heterotopic aortic allograft 

model, CMV infected grafts had elevated adhesion molecules, infiltration of inflammatory 

cells, and induction of tissue growth in the graft, suggesting that these pro-inflammatory 

factors contributed to rejection.7,70 The kidney model demonstrated increased inflammation, 

macrophage infiltration, and fibrosis associated with CMV infection.7 Thus, CMV is a 

significant contributor to chronic allograft rejection, with antiviral prophylaxis playing a 

major role in prevention across transplant types.

Another mechanism by which CMV is linked to chronic rejection is through macrophage 

infiltration. Monocytes, a macrophage precursor, are frequently infected with CMV.71,72 

In fact, CMV alters monocyte gene expression to a more pro-inflammatory state.73,74 A 

rat CMV (RCMV) model of accelerated chronic rejection found upregulated chemokine 

expression in RCMV-infected allografts, concomitant with elevated T cell and macrophage 

infiltration and formation of tertiary lymphoid organs containing macrophages and T 

cells.75,76 In the same rat model, pretransplant depletion of macrophages from CMV-

infected cardiac allografts delayed the development of chronic rejection and extended graft 

survival.77 Whole-genome transcriptional analysis from human kidney transplant biopsies 

found an inflammatory macrophage gene signature that correlated with both higher degree 

of subclinical allograft injury, and subsequent development of chronic rejection.78 Thus, the 
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pro-inflammatory states induced by CMV-infected monocytes and macrophages contribute 

to chronic rejection.

Clinical implications of the role of CMV in rejection are multifold. First, monitoring and 

controlling CMV viral load is important to evaluating and mitigating the risk of allograft 

dysfunction and decline. Second, the risk of rejection suggests that matching donor to 

recipient for CMV serostatus may be appropriate to reduce rates of rejection.79 Third, 

the findings on antiviral prophylaxis reducing rejection rates suggest that more extensive 

antiviral prophylaxis may be appropriate as a preventative measure for rejection. Indeed, 

prolonged CMV prophylaxis has been shown to significantly reduce the risk of chronic 

rejection in lung transplant recipients.80,81 Each of these clinical implications is important to 

evaluate transplant health and therapies, and further study of rejection risk in particular will 

be very valuable.

BK Virus

BK virus (BKV) is a polyomavirus and a major infectious complication of kidney transplant, 

which infects >80% of people by adulthood.82 BKV establishes latency in kidney tubular 

epithelia and bladder cells.83,84 In healthy individuals, NK cell, CD4 T cell, and CD8 

T cell cytotoxicity controls BKV infection.85,86 Antibodies to BKV play an important 

role in control of primary BKV infection, but do not protect against BKV in secondary 

responses.86,87 Self-resolving BKV infection in transplant recipients has been associated 

with rapid induction of BKV-specific IFNγ-producing T cells, and the presence of BKV-

specific T cells early post-transplant correlates with protection against viral replication .88 

Multiple components of the immune system contribute to protection against BKV, but T 

cells appear to be the most important to memory responses.

BKV and other polyomaviruses have been associated with disease in immunocompromised 

and immunosuppressed people.84 Immunosuppression can impair control of BKV leading 

to uncontrolled viremia and BK Virus Nephropathy (BKVN).89 BKVN is characterized by 

viral shedding in the urine, detectable virus in kidney biopsy, direct viral cytopathic effects, 

interstitial inflammation and tubular atrophy.84 In consequence of the kidney damage, 

BKVN increases the risk of allograft loss in both adult and pediatric kidney recipients 

(Table 1).90,91 Higher BKV viral load and donor BKV infection have been associated 

with increased risk of BVKN in kidney recipients.92,93 BKVN occurs predominantly in 

the context of kidney transplantation.92 While the mechanism of specificity of BKVN to 

kidney transplantation is unknown, one hypothesis is that BKVN results when the recipient 

receives an different strain of BKV from the donor, with the result that recipient immunity 

cannot control the re-infection with the new strain. Because of kidney tropism of BKV, 

this mechanism would not affect transplantation of other organs.94 BKV is a major cause 

of chronic kidney disease in kidney transplant recipients, with some evidence in other 

transplant types.95 For example, liver recipients with chronic kidney disease have much 

higher rates of BKV viremia and viruria than liver recipients without chronic kidney 

disease.94
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Recent studies have shown that BKVN is associated with elevated expression of 

immune related genes, including chemokine receptor signaling, suggesting that these 

proinflammatory genes promote the kidney damage associated with BKVN.96 Specifically, 

CXCL10 and STAT1 were upregulated, both of which are associated with activated T cell 

responses.96 A higher degree of HLA mismatch between donor and recipient is associated 

with elevated risk of both BVKN and acute rejection, suggesting that inflammatory 

pathways involved in rejection could also contribute to development of BKVN and vice 

versa.97

BKVN also complicates the diagnosis of acute rejection because the associated kidney 

pathology is very similar to that of rejection. Biopsy immunophenotype in BKVN and 

rejection are largely similar, but there may be greater infiltration of B cells and lower 

infiltration of T cells in BKVN specifically.98 This is consistent with the high importance 

of T cell memory and lower importance of B cell memory to protective from BKV 

reactivation. Detection of SV-40 stain and BK viral load are crucial in distinguishing the 

two pathologies.99,100 BKVN also may occur on a different time frame from acute rejection, 

with rejection occurring typically within the first 6 months and BKVN occurring around 1 

year post-transplant.100

A major clinical implication of BKV is the importance of identifying the appropriate 

therapies in various settings. For instance, tacrolimus and prednisone treatment have been 

associated with risk of BKVN.101 Tacrolimus has been associated with higher risk of 

BK viremia than cyclosporin A.102,103 However, one recent study found that everolimus 

treatment with reduced dose of tacrolimus actually increased BK viremia rates relative to 

the standard dose of tacrolimus.104 Thus, more study is needed to identify the most effective 

immunosuppression to prevent BKVN, if one exists. Studies addressing the efficacy of 

combined immunosuppression and antiviral therapy indicate that in cases where reduction 

of immunosuppression leads to rejection, this may be an appropriate therapy.105,106 

Management of BK nephropathy, BK viremia and BK viruria remains underexplored, 

especially in populations with high immunologic risk for rejection.

Epstein Barr Virus

In addition to CMV, another herpes family virus with implications for rejection is EBV, 

which infects over 90% of human adults.107 Elevated immunosuppression for treatment 

of rejection can induce EBV viremia.108 Lytic EBV infection has also been correlated 

with late acute rejection, though it remains to be determined whether EBV preceded 

rejection or vice versa (Table 1).109 In addition, EBV causes another major complication 

of transplantation, post-transplant lymphoproliferative disorder (PTLD). PTLD is defined 

as abnormal proliferation of lymphoid cells in recipients of hematopoietic stem cell or 

solid organ transplantation, but is most commonly characterized by proliferation of EBV-

infected B cells.110 Upon infecting a B cell, EBV expresses genes LMP1 and 2A that 

mimic co-stimulatory and B cell receptor (BCR) signaling to drive proliferation and 

survival of the infected cells.111 While sometimes benign, the proliferation in PTLD can 

drive malignant lymphoma.110,112 EBV seronegative recipients of EBV seropositive organs 

have the highest risk of PTLD, but prolonged immunosuppression also increases PTLD 
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risk.113 EBV-associated B cell lymphomas have also been described in other cases of 

immune deficits, including patients with AIDS and with primary immune deficiency.110 

As is the case for CMV infection, T cells are important to control EBV infection and to 

block proliferation of infected B cells.110 Studies have shown mixed results as to whether 

reduced levels of EBV-specific T cells lead to PTLD, but recent data indicate that T cell 

polyfunctionality is reduced in PTLD patients, suggesting that PTLD occurs in patients with 

impaired T cell function.110 A major clinical consideration for EBV is balancing relative 

risks of rejection and PTLD in determining appropriate immunosuppressive therapy, and 

then modifying therapies as needed in the event of PTLD or rejection events.

SARS-CoV-2

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been linked to 

allograft rejection in several studies. Acute kidney injury is a common complication of 

COVID-19, necessitating dialysis for up to 45% of patients in intensive care, and chronic 

kidney disease is a major risk factor for COVID-19 mortality.114 In a case study, a 

kidney transplant recipient with no pre-existing DSA developed TCMR subsequent to 

COVID-19, though this patient had immunosuppressive therapy substantially reduced during 

the infection.115 Case studies have found AMR mediated by de novo DSA subsequent to 

COVID-19.116,117 A study of 20 kidney transplant recipients with COVID-19 found that 

70% had biopsy-proven acute or chronic AMR detected after recovery, including 9 patients 

with no prior history of AMR (Table 1), though the analysis was only at 1 post-recovery 

time point, so causality cannot be determined.118 In contrast, a recent study of anti-HLA 

and anti-SARS-CoV-2 antibody responses in kidney transplant recipients found that SARS-

CoV-2 infection did not increase DSA, even in the context of withdrawn antimetabolite.119 

Thus, the impact of SARS-CoV-2 on AMR is an important area for further study. These 

studies suggest a link between SARS-CoV-2 and allograft rejection, but did not exclude the 

possibility that rejection was induced by reduced immunosuppression. Further study will be 

important to fully understand the contribution of this infection to allograft rejection.

Hepatitis C

Similar to the other infections described above, Hepatitis C (HCV) has been associated with 

increased risk of rejection in kidney transplant recipients. This risk has been hypothesized 

to be linked to the use of interferons as treatment for HCV. However, kidney transplant 

recipients treated with direct acting antivirals (DAA) do not have any increase in risk of 

rejection.120 In fact, DAA-treated recipients of HCV+ kidneys have similar outcomes, with 

no increase in rejection, to recipients of HCV− kidneys. Thus, in the current era of DAA 

treatment, the impact of HCV on rejection is minimal.

In contrast, HCV plays an unusual role in allograft rejection in that it has been 

associated with allograft tolerance in the context of liver transplantation. Withdrawal 

of immunosuppression and operational tolerance have been achieved in liver transplant 

recipients chronically infected with HCV. The tolerant patients had an expansion of 

exhausted HCV-specific T cells (Table 1).121 A follow-up study found that HCV-specific 

T cells in liver recipients could cross-react with alloantigen, and therapeutic clearance of 
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virus with direct acting antivirals (DAA) was associated with increased reactivity to donor 

alloantigen.122 However, this increased reactivity did not lead to increased rejection. These 

findings suggest that cross-reactivity between infection and allograft can actually modulate 

immunity in a graft-protective manner. Because the liver is the site of HCV infection, local 

inflammation may contribute to its tolerogenic effects in the liver. Cross-reactivity is further 

discussed in the section on heterologous immunity.

Additional viral infections

Human herpesvirus 6 (HHV-6) is another herpesvirus that infects over 90% of humans and 

has been linked to rejection.123 HHV-6 has been associated with acute rejection in liver and 

kidney transplant recipients.124,125 Rejection risk also increases with coinfection of multiple 

herpesviruses, including CMV, EBV, and HHV-6.125 This may be caused by cross-reactivity, 

as outlined in the later section on heterologous immunity. Thus, understanding the role of 

a variety of infections as well as co-infection will be important to fully understanding the 

contribution of infections to allograft rejection.

Another viral infection that commonly affects transplant recipients is adenovirus. 

Adenovirus typically infects people during childhood and establishes latency. It is a 

common viral complication in transplant recipients that usually resolves without therapeutic 

intervention.126 Adenoviral infection has been associated with acute rejection,23,127 

though whether adenovirus induces rejection remains unknown. Additionally, adenovirus 

nephropathy causes similar pathology to acute cell-mediated rejection, complicating 

differential diagnosis of the two.128

The infections outlined in this section demonstrate that there are clinical implications of 

many viral infections, not just the most common ones. Each infection and co-infection has 

a distinct impact on rejection risk with disparate clinical manifestations. This indicates that 

understanding the full scope of infection will be crucial to understanding rejection and 

other clinical manifestations of the infection-immunosuppression balance in various organ 

transplant populations.

Other infections

Bacterial infection can also contribute to allograft rejection. Organ transplants with the 

highest rates of rejection are those associated with higher loads of microbial exposure, 

including the skin, intestines, and lung.129 A mouse model of allograft tolerance 

demonstrated that bacterial infection at the time of transplant can block induction of 

tolerance.130 This block of tolerance was further determined to be mediated specifically 

by an individual Toll-like receptor (TLR).131 TLRs are a type of pattern recognition receptor 

(PRR) adapted to form innate immune responses to microbial pathogens. TLR signaling 

is required for rejection based on minor antigen mismatch.132,133 Further, polymorphisms 

of TLR4 have been associated with differential risk of rejection in human patients, 

with elevated or dampened TLR4 signaling respectively increasing or decreasing risk 

of rejection.134,135 Other PRRs including RIG I-like receptors, Nod-like receptors, and 

C-type lectin receptors may also contribute to allograft rejection.129 In addition to bacterial 
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infection, microbial colonization of the gut and mucosal surfaces has major impacts on 

immunity and in particular alloimmunity. This topic is beyond the scope of this review, 

but has previously been extensively reviewed.136,137 Of note, TLRs can drive rejection 

in the absence of infection, through engagement of damage-associated molecular patterns 

(DAMPs), which are endogenous molecules released in response to cell damage or death, 

including the damage associated with ischemia-reperfusion injury.129,138 DAMPs have been 

associated with increased risk of allograft rejection.139,140 Thus, pathways involved in 

infection can contribute to rejection even in the absence of infection. Taken together, these 

animal model data offer enticing teleological narratives of infection and rejection. Yet 

caution is warranted in interpreting the relevance of animal models to clinical therapies. For 

example, specific-pathogen free mice do not accurately reflect microbial exposure in human 

patients, so a tolerance induction protocol that is effective in mice may not be as effective 

in patients. Similarly, how zoonotic infections might manifest in xenotransplantation in the 

clinical setting remains to be seen, an issue of particular importance in the context of recent 

experimental pig- to human kidney and heart transplantation.141-143

Heterologous immunity

Heterologous immunity is defined as the induction of an immune response to an antigen 

after exposure to an unrelated antigen/infection (Figure 1A) and has been associated with 

1 T cell receptor (TCR) that responds to more than 1 antigen (Figure 1B, C).144 These 

cross-reactive antigen receptors were first described in the context of responses to multiple 

pathogens (Figure 1B). Calculations based on theoretically possible TCRs and peptide-MHC 

have determined that any 1 TCR can theoretically bind up to a million peptide-MHC 

pairs.145,146 Cross-reactivity can be mediated in 3 distinct ways. First, peptides from distinct 

viruses but with similar epitopes could lead to molecular mimicry in which the TCR binds 

both peptides at the same residues. Second, the TCR could bind with similar avidity to a 

distinct set of peptide contacts on 2 different peptides. Third, a T cell expressing 1 TCRβ 
and 2 distinct TCRα chains could have cross-reactivity for 2 different antigens mediated 

by TCRα binding.145 Limiting dilution assays have been used to show cross-reactivity 

of the same cytotoxic T cell clone for 2 viruses, and in some cases cross-reactivity for 

alloantigen.145 As described above for CMV, this is a major source of risk related to 

infection and rejection, as cells that proliferate to respond to an infection can then reject the 

allograft. It is difficult to study heterologous immunity in transplant recipients because of the 

need to identify responses to 2 distinct antigens, so the data described here are from a variety 

of in vitro and animal models. The data described here are not intended as an exhaustive list, 

but rather a summary of the range of studies completed on heterologous immunity (Table 2).

A common framework to study heterologous immunity is measurement of responses to 

known co-infection or vaccination (Table 2).144 For instance, T cell lines from healthy 

volunteers expanded in response to EBV or influenza peptide cross-reacted to antigen from 

the other virus in 3 of 8 donors analyzed.147 A study of infectious mononucleosis found 

that the population of CD8 T cells proliferating in response to EBV included pre-existing 

flu-responsive memory cells, suggesting that those cells were cross-reactive.147 The EBV 

and flu epitopes stimulating the cross-reactive T cells shared only 3 amino acid overlap, 

indicating that a small degree of overlap is sufficient for cross-reactivity.148 In a mouse 
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model, mice were infected first with Lymphocytic choriomeningitis virus (LCMV) and 

subsequently with vaccinia virus (VV). T cells that bound LCMV peptide-MHC proliferated 

in response to VV infection.148 Infection with Pichinde virus subsequent to LCMV also led 

to expansion of cross-reactive epitopes.149 Co-infection studies have shown that pre-existing 

immunity to a heterologous infection can promote protective responses to a new infection, 

though the protection was not always reciprocal.145 There is also evidence that memory T 

cell pools are enriched for T cells that cross-react with multiple viruses, likely as a result 

of ongoing antigenic signaling.145 Thus, studies in both humans and animal models have 

demonstrated the existence of T cell clones that react to 2 distinct viral infections (Table 2).

While the above studies provide substantial evidence for the existence of heterologous 

immunity, they do not measure heterologous immunity shared between viruses and 

alloantigen. Several mouse models demonstrate the existence of heterologous alloimmunity 

(Table 2, Figure 1C). Infection of mice with LCMV, VV or vesicular stomatitis virus 

(VSV) produces T cells that produce IFNγ in response to stimulation with cells presenting 

allogeneic MHC.150,151 When treated with donor bone marrow infusion and costimulatory 

blockade, a protocol that tolerizes naïve mice to an allogeneic skin graft, mice previously 

infected with LCMV, VV, or VSV rejected their skin allografts.150 Rejection mediated 

by cross-reactivity was further tested in a model of allogeneic skin graft in mice lacking 

adaptive immunity. In this model, allogeneic grafts are typically accepted long-term. When 

purified LCMV-MHC tetramer specific CD8 T cells were adoptively transferred into these 

mice, allogeneic skin grafts were rejected, demonstrating that these cells were sufficient to 

induce rejection.151 Thus, antiviral T cells can exhibit reactivity against alloantigen.

Several studies have also identified allo-cross-reactivity in healthy humans (Table 2). One 

study identified T cells specific to CMV, influenza, and varicella zoster virus (VZV) 

with peptide-MHC tetramer, and found these cells proliferated in response to allogeneic 

stimulation with irradiated HLA-mismatched peripheral blood cells.152 Eleven virus-specific 

T cell lines derived from healthy volunteers were stimulated with a panel of B cell lines 

expressing a range of HLA types, and 9 produced IFNγ in response to the cell lines.153 In 

this study, for 2 T cell clones, it was demonstrated that an identical TCR was reacting to 

both virus and HLA.153 HLA-C is an important target for immune tolerance because it is 

expressed at the maternal-fetal interface in pregnancy, and cross-reactivity for HLA-C by 

EBV-specific T cells has been identified in cell lines.154 3-4% of CD4 and CD8 T cells in 

healthy volunteers proliferate in response to alloantigen, and memory and virus specific T 

cells are significant contributors to this allo-response.155 Because these studies are in healthy 

individuals they do not address whether the allo-reactive cells actually induce rejection, but 

they demonstrate the importance of further study in the context of transplantation.

The limited range of studies of heterologous immunity to alloantigen and virus in transplant 

recipients have produced some intriguing findings (Table 2). One study found a public 

CMV-specific TCR cross-reactive for HLA-B27 in 2 unrelated lung transplant recipients.156 

Another study found CMV-specific T cells proliferating in response to alloantigen in blood 

from kidney transplant recipients both pretransplant and transiently after transplantation, 

though these cells did not appear to impact allograft function during the study period.157 A 

third study analyzed TCR of CMV-responsive T cells from heart and kidney transplant 
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recipients and identified TCRs with putative recognition for antigen in the context of 

donor HLA, suggestive of semi-direct alloreactivity.158 A kidney transplant candidate 

vaccinated for VZV had a CD8 memory T cell clone that displayed cytotoxicity against 

HLA-B*055.159 In lung transplant recipients, EBV-specific CD8 T cells have been shown 

to cross-react with alloantigen.160 Of note, these studies have not typically found an 

association of cross-reactive T cells and enhanced risk of rejection. It has been hypothesized 

that this is because effects will be more likely to be present at the time of active viral 

infections, so follow up studies should address heterologous immunity in that context.161 

Another possibility is that the cross-reactive T cells are blocked from responding to the 

allograft by regulatory cells, potentially even regulatory T cells with the same TCR. It is 

also possible that the immunosuppression in the transplant recipients in these studies was 

adequate to block activity by these cross-reactive T cells. Because of the limited number 

of studies completed thus far, much more work in this area is needed to address these 

hypotheses. In particular, since previous infection and heterologous immunity can block 

tolerance induction in mice,150,162 studies of cross-reactive T cells in protocols of allograft 

tolerance induction in humans are needed to determine whether these T cells can block 

tolerance in the human setting.

Heterologous immunity is a process that can apply to both T cell and B cell responses, 

and yet the vast majority of studies identifying heterologous immunity have focused on T 

cells. There is some evidence that viral infection leads to the production of HLA-specific 

B cells. This has been hypothesized to be the result of virally-produced TLR ligands 

and immune cell-produced cytokines leading to polyclonal B cell activation, including 

alloreactive B cells.163 In kidney transplant recipients and patients on the kidney waitlist, 

viral infection and other pro-inflammatory events are associated with increased levels of 

HLA-specific antibody.164 The above studies provide evidence of an association between B 

cell alloreactivity and infection, but do not directly address cross-reactivity. One recent 

study tested 51 human monoclonal antibodies specific to viruses (CMV, VZV, human 

immunodeficiency virus, and parvovirus) for reactivity against HLA, and 41 antibodies 

specific to HLA for reactivity against viruses. No cross-reactivity was detected, in stark 

contrast to the many studies showing T cell cross-reactivity.165 This may be due to the 

differential selection processes of B and T cells. Thymic T cell development includes a 

positive selection checkpoint in which the TCR must interact with self-peptide loaded in 

MHC class I or II in order to survive.166 In contrast, B cell positive selection is not mediated 

through MHC recognition.167 Thus, the differential positive selection processes could lead 

to T cells having a much higher probability of cross-reactivity between virus and MHC. 

Intriguingly, TLR ligands have been shown to contribute to B cell positive selection, much 

like TLR signaling contributes to rejection.168 Thus, positive selection may play a crucial 

role in development of both T and B cells that promote alloreactivity, though by different 

mechanisms. Further study will be needed to understand the mechanistic differences in T 

cell and B cell alloreactivity.

Heterologous immunity has several clinical implications for transplantation. First, the 

existence of cross-reactivity between anti-viral and anti-HLA T cells demonstrates that 

immune history is an important factor in evaluating sensitization of a transplant candidate 

to a putative donor organ, and that this sensitization can impact patient outcomes. Testing 
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dominant antiviral T cell repertoires for anti-donor responses could be a valuable addition to 

donor/recipient matching. While the complexity of these assays has currently limited their 

scope of use to the research setting, identification of clinical settings of unmet need may 

help develop strategies for refining the assays into future clinical practice. For example, 

heterologous immunity has significant implications for transplant tolerance. Animal models 

have found difficulty in maintaining stable tolerance in the presence of cross-reactive T 

cells, indicating that tolerance protocols may be more likely to fail in patients with these T 

cells. Knowledge gained through animal models of cross-reactivity and immune tolerance 

will be important to develop clinical immune tolerance protocols.

Conclusions

Infection remains an important consideration for the study and treatment of allograft 

rejection. Infections such as herpesviruses CMV, EBV, and HHV-6, are known to increase 

the risk of rejection. Hepatitis C in contrast may reduce the risk of rejection in liver 

recipients. Preliminary studies have linked SARS-CoV-2 to allograft rejection, but further 

study will be needed to fully elucidate this linkage. Treatment for viral infection often 

involves reduction of immunosuppressive therapy, which can also increase the risk of 

rejection. Clinical responses to infection in solid organ transplant recipients can invoke 

patterns of pathological responses similar to rejection. Such overlap, particularly in 

subclinical and indolent responses, complicates the process of diagnosis and treatment, as 

most notably demonstrated in the case of BK nephropathy in kidney transplant recipients. 

Immune cells that proliferate in response to viral infection can in some cases react to donor, 

potentially inducing an immune response against the allograft. In the face of severe and 

worsening organ shortage for patients awaiting solid organ transplantation, strategies to 

extend allograft survival have become an increased focus. Leveraging and expanding upon 

our current knowledge of infection-immunosuppression homeostasis in transplant recipients 

will contribute to improving patient and allograft survival.

Funding:

This work was supported by awards to JSM from the Veterans Administration (1I01CX001971), JCT from the John 
M. Sobrato Gift Fund, and LEH from the National Institutes of Health (K01 1K01DK123196).

Abbreviations

AMR Antibody-mediated rejection

BCR B cell receptor

BKV BK virus

BKVN BK Virus Nephropathy

CMV Cytomegalovirus

DAMP Damage-associated molecular pattern

DSA Donor-specific antibodies
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EBV Epstein Barr virus

HHV-6 Human herpesvirus 6

IFNγ Interferon gamma

LCMV Lymphocytic choriomeningitis virus

MHC Major histocompatibility complex

NK cells Natural killer cells

PRR Pattern recognition receptor

PTLD Post-transplant lymphoproliferative disorder

RCMV Rat CMV

TCMR T cell mediated rejection

TCR T cell receptor

TLR Toll-like receptor

VV Vaccinia virus

VSV Vesicular stomatitis virus
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Figure 1: Development of heterologous immunity.
A) A naïve T cell pool encountering viral antigen will proliferate to form an effector 

response, and contract to the memory phase once the infection is under control. B) T cell 

receptor clones that cross-react with a different virus (orange TCR clone, purple virus) can 

mount a heterologous response to that virus. C) Upon exposure to alloantigen (red cell), T 

cell receptor clones (green) that cross-react to allo can mount a heterologous response to 

alloantigen. Note: allorecognition can be mediated through either direct or indirect antigen 

presentation, as described in the text. For simplicity, we only show direct presentation in this 

figure.
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Table 1:

Summary of infectious contributions to allograft rejection.

Virus Impact on immune function Treatment

CMV • Viremia associated with increased risk of acute 
rejection21,36-42

• Antiviral prophylaxis decreases rejection risk41,43-45

• History of viremia associated with increased risk of 
chronic rejection 7,10,64-66,68

• Upregulates adhesion molecules promoting allograft 
infiltration and inflammation48-50

• Modulates MHC expression47,51-54

• Induces inflammatory NK and T cells55,56

• Induces pro-inflammatory T cell aging57-60

Reduction of immunosuppression

• Antivirals: valganciclovir, ganciclovir, 
foscarnet, cidofovir, letermovir169

• Donor/recipient serostatus matching79

BKV • Kidney allograft direct cytopathic effects84

• Inflammation84,96-98

• Tubular atrophy84

• BKVN and rejection have similar pathology, 
complicating diagnosis99,100

• Reduction of immunosuppression105,106

• Antivirals: cidofovir170

• Specific combinations of 
immunosuppressive drugs may be 
effective to treat BKVN while preventing 
rejection101-104

EBV • EBV viremia induced by high dose 
immunosuppression108

• Lytic EBV correlated with late acute rejection109

• Treatment needs to counterbalance risks of rejection and 
PTLD110

• Modulation of immunosuppression

• Patients who develop PTLD are treated 
for their hematogic malignancy110

SARS-
CoV-2

• Several small studies have identified transplant recipients 
developing rejection subsequent to infection115-119

• Monoclonal antibodies171,172

• Antivirals: remdesivir,173 nirmatrelvir-
ritonavir,174 molnupiravir174,175

• Vaccination176

HCV • Chronic active infection associated with operational 
tolerance to liver transplant121

• Viral clearance associated with donor reactivity, but no 
proven rejection, in liver transplant122

• Pre-DAA therapies associated with rejection risk for 
kidney transplantation, but no elevated rejection risk for 
kidney recipients in DAA era120

• Direct acting antivirals (DAA)122

Summary provided for all viruses individually discussed in the text. References are listed for each individual point.
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Table 2:

Summary of knowledge of heterologous immunity.

Organism Form of cross-
reactivity

Evidence of cross-reactivity

Mus musculus Two infections • LCMV-specific T cells proliferate in response to VV or Pichinde antigen148,149

Virus and alloantigen • LCMV-, VV-, or VSV-specific T cells produce IFNγ in response to allogeneic 
MHC150,151

• Prior infection with LCMV, VV, or VSV blocks skin graft tolerance induction150,151

Homo sapiens Two infections • Memory flu-specific T cells can proliferate in response to EBV147,148,152-155

Virus and alloantigen 
(healthy volunteers)

• T cells specific to CMV, influenza, VZV proliferate in response to alloantigen152

• Virus-specific T cell lines produce IFNγ in response to HLA153

• Memory CD4 and CD8 T cells from healthy volunteers proliferate in response to 
alloantigen155

Virus and alloantigen 
(transplant 
recipients)

• T cells specific to CMV, VZV, EBV have been shown to react to HLA in transplant 
recipients156-161

• These studies have not directly addressed rejection risk

Summary for mouse and human models, subdivided based on nature of heterologous challenge. References are listed for each individual point. This 
list is not intended to be exhaustive.
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